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In Brief
The proteome and K-acetylome in
eight pairs of HCC tumors and
normal adjacent tissues was
investigated using a timsTOF Pro
instrument. We observed
suppression of K-acetylation in
HCC especially in metabolic
enzymes. The roles of deacetylase
SIRT2 were explored by
examining the effects of SIRT2
overexpression in HCC cells.
SIRT2 overexpression reduced K-
acetylation on proteins involved in
diverse cellular processes and
inhibited glycolysis and oxidative
phosphorylation. Our findings
provide valuable information to
understand the roles of K-
acetylation in HCC.
Highlights
• K-acetylation was generally reduced in HCC, especially in metabolic enzymes.• Deacetylase SIRT2 was upregulated in HCC tumors.• SIRT2 overexpression induced broad alteration of protein K-acetylation.• SIRT2 overexpression inhibited glycolysis and oxidative phosphorylation.
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RESEARCH
In-depth Profiling and Quantification of the
Lysine Acetylome in Hepatocellular Carcinoma
with a Trapped Ion Mobility Mass Spectrometer
Jia Xu1, Xinyu Guan1, Xiaodong Jia2 , Hongyan Li3,*, Ruibing Chen1,* , and Yinying Lu4,*
Hepatocellular carcinoma (HCC) is the third most common
cause of cancer-related death worldwide with limited
therapeutic options. Comprehensive investigation of pro-
tein posttranslational modifications in HCC is still limited.
Lysine acetylation is one of the most common types of
posttranslational modification involved in many cellular
processes and plays crucial roles in the regulation of
cancer. In this study, we analyzed the proteome and K-
acetylome in eight pairs of HCC tumors and normal
adjacent tissues using a timsTOF Pro instrument. As a
result, we identified 9219 K-acetylation sites in 2625 pro-
teins, of which 1003 sites exhibited differential acetylation
levels between tumors and normal adjacent tissues.
Interestingly, many novel tumor-specific K-acetylation
sites were characterized, for example, filamin A (K865),
filamin B (K697), and cofilin (K19), suggesting altered ac-
tivities of these cytoskeleton-modulating molecules,
which may contribute to tumor metastasis. In addition, we
observed an overall suppression of protein K-acetylation
in HCC tumors, especially for enzymes from various
metabolic pathways, for example, glycolysis, tricarboxylic
acid cycle, and fatty acid metabolism. Moreover, the
expression of deacetylase sirtuin 2 (SIRT2) was upregu-
lated in HCC tumors, and its role of deacetylation in HCC
cells was further explored by examining the impact of
SIRT2 overexpression on the proteome and K-acetylome
in Huh7 HCC cells. SIRT2 overexpression reduced K-
acetylation of proteins involved in a wide range of cellular
processes, including energy metabolism. Furthermore,
cellular assays showed that overexpression of SIRT2 in
HCC cells inhibited both glycolysis and oxidative phos-
phorylation. Taken together, our findings provide valuable
information to better understand the roles of K-acetylation
in HCC and to treat this disease by correcting the aberrant
acetylation patterns.

Liver cancer posts a global health challenge with increasing
incidence around the world (1). Hepatocellular carcinoma
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(HCC) is the most common type of liver cancer, accounting for
about 90% of all cases (2). HCC patients are often diagnosed
at the advanced stage of the disease with limited therapeutic
options available (3). Overall, the prognosis of HCC remains
poor with a 5-year survival rate of just 18% (4, 5). Targeted
therapy based on multi-target kinase inhibitors, for example,
sorafenib, and immune checkpoint blockade, for example
anti-programmed cell death 1 and anti-programmed cell death
ligand 1, are gaining success for HCC treatment, however,
only a subset of patients respond to these therapies, and the
overall survival benefit is not satisfactory (6, 7). To further
explore the molecular characteristics of HCC is crucial for
developing novel and more efficient HCC treatment strategies.
Lysine acetylation is an important type of posttranslational

modification (PTM), and it was first discovered on histones by
Vincent Allfrey et al. in 1964 (8). Histone acetylation and
deacetylation as a major element of epigenetic regulation has
been intensively investigated, and the alteration of histone
acetylation modulates chromatin structure and thereby affects
gene transcription (9, 10). Meanwhile, substantial evidence
has established that acetylation occurs on a variety of
nonhistone proteins in evolutionarily diverse organisms (11).
Acetylation could affect protein structure, protein–protein
interaction, protein subcellular localization, and enzymatic
activity and has been associated with diverse cellular pro-
cesses, for example, signal transduction, protein folding,
autophagy, and metabolism (12). In human liver tissues, more
than 1000 acetylation sites in proteins have been identified,
and enzymes involved in a wide range of metabolic pathways
are found to be acetylated (13), suggesting a potential role of
acetylation in the regulation of cellular metabolism. Accumu-
lating evidences have implicated acetylation in the metabolic
reprogramming of cancer cells (14). For example, acetylation
at K305 of pyruvate kinase isoform M2 decreases its enzyme
activity (15), while acetylation at K433 promotes its nuclear
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RESEARCH
translocation (16), and both acetylation events contribute to
the role of pyruvate kinase isoform 2 in promoting cancer
progression.
Acetylation occurs by nonenzymatic reaction with acetyl-

CoA that potentially targets all solvent accessible lysine resi-
dues in cellular proteins (17, 18). Acetylation can also be
catalyzed by acyltransferases (KATs) that target specific pro-
teins, including both histone and nonhistone substrates (12,
19). Deacetylation is catalyzed by various lysine deacetylases
(KDACs) that can be divided into four families: class I, class II,
class III, and class IV (20). Sirtuin deacetylases, also referred to
as class III KDACs, are evolutionarily conserved NAD-
dependent deacetylases, and mammalian sirtuins markedly
vary in their subcellular localization, enzymatic activity, and
targets (21, 22). Specifically, SIRT2 is predominately localized
in the cytoplasm but can also shuttle to the nucleus and
mitochondria (23). SIRT2 was initially reported as an α-tubulin
deacetylase protein (24), and further studies have shown that
SIRT2 interacts with many histone and nonhistone substrates
involved in various cellular processes (25). SIRT2 has been
reported to modulate the acetylation and activities of several
enzymes involved in glycolysis, for example, phosphoglyc-
erate mutase 1, and enzymes from the pentose phosphate
pathway, for example, glucose-6-phosphate dehydrogenase
(14). With the advance in modern mass spectrometry, more
and more K-acetylation sites are being characterized (11, 13,
26), however, how majority of these sites are regulated and
more importantly how they are involved in diseases remain
largely unclear.
Currently, immunoenrichment of acetylpeptides followed by

LC-MS/MS identification is the mostly widely employed
strategy for large-scale profiling of protein acetylation. Pre-
fractionation using techniques such as strong cation ex-
change or gel-based separation is commonly applied to
improve the detection coverage of acetylation sites (27). The
recently introduced timsTOF Pro instrument implements a
trapped ion mobility spectrometry (TIMS) that provides an
additional dimension of separation to the liquid chromatog-
raphy. With the parallel accumulation serial fragmentation
(PASEF) method enabled by the dual TIMS design, this
instrumental platform delivers high scanning speed and en-
ables detection of more than 6000 proteins from HeLa cell
digest in a single run (28). Such high speed and sensitivity of
timsTOF Pro makes it promising for proteome and PTM
analysis of complex clinical samples without extensive pre-
fractionation. However, thus far, its application in clinical
proteomics studies is still limited.
In this study, we investigated the proteome and K-acety-

lome in eight paired tumor and nontumor tissues from
treatment-naive HCC patients using a timsTOF Pro mass
spectrometer. All samples were not fractionated and directly
analyzed by single runs with 90 min or 60 min gradients. Over
6000 proteins and 9000 K-acetylation sites were detected,
showing a decent detection coverage. Label-free
2 Mol Cell Proteomics (2022) 21(8) 100255
quantification identified a variety of differentially expressed
proteins and revealed the landscape of K-acetylation alter-
ation in HCC. Interestingly, the deacetylase SIRT2 was upre-
gulated in tumor tissues, and its potential role in regulating
protein acetylation in HCC cells was further explored by
examining the effects of SIRT2 overexpression on the prote-
ome and K-acetylome in Huh7 liver cancer cells. SIRT2
overexpression reduced K-acetylation of proteins involved in a
wide range of cellular processes. Furthermore, overexpression
of SIRT2 in liver cancer cells inhibited both glycolysis and
oxidative phosphorylation as revealed by seahorse analysis.
EXPERIMENTAL PROCEDURES

Antibodies and Reagents

Antibody against GAPDH and SIRT2 was purchased from Abcam.
Triton X-100 was bought in Sangon Biotech. Protease Inhibitor
Cocktail tablets were purchased from Merck Millipore. Trichostatin A
(TSA) was bought in MedChemExpress. Nicotinamide (NAM), tri-
chloroacetic acid (TCA), triethylammonium bicarbonate (TEAB), DTT,
iodoacetamide, EDTA, 2-deoxy-glucose (2-DG), TFA, and formic acid
(FA) were bought from Sigma-Aldrich. BCA protein quantification kit
was bought from Beyotime Biotechnology. Trypsin was purchased
from Promega. Anti-acetyl-lysine antibody beads were bought from
PTM BIO. Acetonitrile (ACN) was purchased from ThermoFisher Sci-
entific. TRIzol reagent was bought in Invitrogen. FastQuant RT kit was
bought from TianGen. Oligomycin was bought from Toronto Research
Chemicals.

Sample Collection and Preparation

This study was approval by the Medical Ethics Committee of the
fifth Medical Center of General Hospital of PLA (R2016244DA040), and
consent was obtained from the patients. The studies in this work abide
by the Declaration of Helsinki principles. Resected tumor samples
from eight treatment-naïve HCC patients were collected in the fifth
Medical Center of General Hospital of PLA. Normal adjacent tissues
(NATs) were obtained from the resected specimens at ~2 cm away
from the tumor margin. The patient information was provided in
supplemental Table S1. The specimens were washed with PBS and
stored in liquid nitrogen before use.

Protein Extraction and Digestion

The collected tissue samples were grinded in liquid nitrogen and
transferred to a 5 ml centrifuge tube. Then, samples were disrupted
using four volumes of lysis buffer (1% Triton X-100, 1% protease in-
hibitor cocktail III, 3 μM TSA, and 50 mM NAM) followed by 5 min of
sonication (3-s on and 5-s off, amplitude 25%) on ice using an ultra-
sonic processor. To avoid artificial deacetylation during sample
preparation, pan KDAC inhibitor TSA that targets Class I, II, and IV was
added in the lysis buffer, and NAM was used to inhibit the deacety-
lation activity of sirtuins. The remaining debris was removed by
centrifugation at 12000g at 4 ◦C for 10 min. Finally, the supernatant
was collected, and protein concentration was measured with a BCA
kit. For each sample, 3 mg of protein was used in the following pro-
cedure. TCA was added to the samples to the final concentration of
20%, and proteins were precipitated at 4 ◦C for 2 h. The pellet was
collected by centrifugation at 4500g for 5 min and washed by three
times with precooled acetone. Next, the pellet was redissolved in
200 mM triethylammonium bicarbonate. The samples were reduced
with 5 mM DTT for 60 min at 37 ◦C and alkylated with 11 mM
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iodoacetamide for 45 min at room temperature in darkness. Trypsin
was added at 1:50 trypsin-to-protein mass ratio for digestion at 37 ◦C
overnight. Tryptic peptides were desalted with Strata X SPE columns
(Phenomenex) and dried by vacuum centrifugation. Peptide concen-
tration was measured by a Pierce Quantitative Colorimetric Peptide
Assay kit (ThermoFisher Scientific), and 5 μg of peptides was used for
proteome analysis.

Acetylpeptide Enrichment

For acetylpeptide enrichment, 2 mg tryptic peptides were first dis-
solved in the NETN lysis buffer (100 mM NaCl, 1 mM EDTA, 50 mM
Tris–HCl, 0.5% NP-40, pH 8.0) and incubated with prewashed anti-
lysine-acetylation antibody-conjugated agarose beads at 4 ◦C over-
night with gentle shaking. Then, the beads were washed four times
with NETN buffer and twice with water. The bound peptides were
eluted from the beads with 0.1% TFA. Next, the eluted fractions were
vacuum dried. For LC-MS/MS analysis, the enriched acetylpeptides
were desalted with C18 ZipTips (Millipore) according to the manu-
facturer’s instructions, and all purified K-acetylpeptides were loaded
for each sample.

Liquid Chromatography Tandem Mass Spectrometry

Peptides were analyzed by nano-LC-MS/MS using a NanoElute
UHPLC system coupled online to a hybrid TIMS- quadrupole time of
flight mass spectrometer (timsTOF Pro) with a modified nano-
electrospray ion source. Liquid chromatography was performed with
a constant flow of 450 nl/min on a reversed-phase column
(25 cm × 100 μm i.d.) with a pulled emitter tip, packed with 1.9 μmC18-
coated porous silica beads.Mobile phase A waswater with 0.1%FA (v/
v) and 2%ACN, andmobile phase Bwas 0.1%FA (v/v) and 100%ACN.
For proteome, in a 90-min experiment, peptides were separated with a
linear gradient from6 to 24%Bwithin 70min, followedby an increase to
35% B within 14 min and further to 80% within 3 min then holding at
80% for the last 3min. For acetylome, in a 60-min experiment, peptides
were separated with a linear gradient from 6 to 22% B within 43 min,
followed by an increase to 30% B within 13 min and further to 80%
within 2 min then holding at 80% for the last 2 min. The electrospray
voltage applied was 1.7 kV. The timsTOF Pro mass spectrometer was
set to the PASEF mode. The mass resolution of the TOF analyzer was
30,000. Precursor ions with charge state of 2 to 5 and unknown were
selected for HCD fragmentation, and 10 PASEF MS/MS scans were
acquired for each cycle. The target intensitywas 2e4 and ramp timewas
set to 100 ms. The dynamic exclusion time was set to 30 s to avoid
repeated scanning of the precursor ions. MS and MS/MS spectra were
recorded from m/z 100 to 1700.

Protein Identification and Quantification

The tandem mass spectra were searched against the reviewed
Homo sapiens SwissProt database (20,375 sequence entries, released
in September 2020) using MaxQuant (version: 1.6.6.0) (29). Trypsin
was selected as the proteolytic enzyme, and two missed cleavages
sites were allowed. For proteome, carbamidomethylation of cysteine
residues was set as a fixed modification, and methionine oxidation
was set as a variable modification. For acetylome, carbamidomethy-
lation of cysteine residues was set as a fixed modification, and
methionine oxidation and lysine acetylation were set as variable
modifications. The positions of acetylation sites were determined by
site probabilities calculated by PTM score, and localization probability
>0.75 was used as cutoff. Peptides with the minimum length of seven
amino acid were considered, and the required false discovery rate was
set to 1% at both the peptide and protein level. The maximum number
of peptide modifications was set to 5. Match Between Run was
applied with default parameters. The mass tolerance for precursor
ions was set as 20 ppm in first search and 20 ppm in main search, and
the mass tolerance for fragment ions was set as 0.02 Da. Unique
peptides ≥ 2 was applied as the filter criteria for protein identification
and quantification. Quantification was performed by MaxQuant using
the label-free quantification algorithm that employed extracted ion
currents of peptides for comparison between samples. Unique pep-
tides were used for quantification, and the other parameters were kept
as default values. Label-free quantification intensities were extracted
from the MaxQuant result files and log2 transformed for statistical
analysis. For the acetylpeptide quantification, the intensities of ace-
tylpeptides were normalized with the abundance of the corresponding
proteins in the same sample to avoid the impact of protein expression
changes on the measured acetylation level.

Bioinformatics Analysis

Principal component analysis (PCA) was performed by the R
package FactoMineR (version:2.3.0) (30), and heatmaps were gener-
ated with the package pheatmap (version:1.0.12) https://CRAN.R-
project.org. The volcano plot was generated by the package ggplot2
(version:3.3.3) (31) using “fold change (FC) > 1.5” and “p < 0.05” as the
cutoff. Correlation analysis was performed by the package corrplot
(version: 0.84) https://github.com/taiyun/corrplot and Perform-
anceAnalytics (version:2.0.4) https://CRAN.R-project.org. For the
proteome data, the functional enrichment analysis was performed
using the R package clusterprofiler (version: 3.16.1) (32) for Kyoto
Encyclopedia of Genes and Genomes pathway enrichment (33). Gene
Ontology (GO) analysis was performed using g:Profiler (https://biit.cs.
ut.ee/gprofiler/gost) (34). Functional enrichment analysis for K-acety-
lome was performed by AGOTOOL (https://agotool.org/) using the
abundance-corrected proteome as the control (35). MoMo (version:
5.4.1) was employed to find the statistically significant amino acid
sequence motifs associated with the observed acetylation sites, and
the shuffled peptides with the central residue conserved were used as
the background (36). Protein structures from the Protein Data Base
were analyzed by pymol software (37).

Cell Lines and Culture

Huh7 HCC cell line was purchased from Japanese Collection of
Research Bioresources. The MHCC-97H cell line was purchased from
the Cell Bank of Type Culture Collection. Cells were maintained in
Dulbecco’s modified Eagle’s high glucose medium supplemented with
10% fetal bovine serum and 1% penicillin–streptomycin (100 μg/ml) at
37 ◦C in a humidified incubator in the presence of 5% CO2.

RNA Isolation and Quantitative Real-Time PCR

Total RNA was isolated from the cells using TRIzol reagent and
complementary DNA was synthesized from 2 μg of total RNA using
the FastQuant RT kit according to the manufacturer’s instructions.
Quantitative mRNA analysis was performed on a 7500 Fast Real-Time
PCR System (ABI) using the SuperReal SYBR Green PreMix (TianGen)
following the manufacturer’s instructions. The mean Ct for each
sample was normalized using GAPDH as the reference gene (for
primer sequences, see supplemental Table S2).

Western Blotting

Cellular proteins were extracted with 1% SDS cell lysis buffer, and
20 μg of lysate was separated by 10% SDS-PAGE and transferred to a
Immobilon-P membrane. The membrane was incubated in a blocking
solution consisting of 5% milk in 10 mM Tris–HCl (pH 8.0), 150 mM
NaCl, and 0.1% Tween 20 at room temperature for 1 h. Then, primary
antibodies were incubated with the membranes at 4 ◦C overnight and
washed with tris-buffered saline and tween 20 buffer three times. Next,
the blots were incubated with the horseradish peroxidase-conjugated
Mol Cell Proteomics (2022) 21(8) 100255 3
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secondary antibody and developed by enhanced chemiluminescence.
GAPDH was used as the internal standard. The band intensities were
measured using ImageJ (V 1.8.0) for quantitative comparisons.

Transfection and RNA Interference

SIRT2-Flag was amplified via PCR and cloned into vector
pcDNA3.1. Transfection was performed in the OPTI-MEM medium
(Invitrogen) using LipoGene 2000Plus Transfection Reagent (Yuheng
Bio) according to the manufacturer's instructions. For siRNA-
mediated SIRT2 knockdown, cells were transfected with siRNA tar-
geting SIRT2 or a negative control siRNA (siNC) using the Lipofect-
amine 2000 reagent (Invitrogen) according to the manufacturer’s
instructions. Three siRNAs were synthesized by GENEWIZ
(supplemental Table S2). Transfection efficiency was evaluated by
quantitative real-time PCR and Western blotting, and the siRNA with
the highest knockdown efficiency was selected for the following
experiments.

Cell Proliferation Assay

Cells were plated at the density of 2000 cells per well in 96-well
plates and allowed to grow for 24 h, 48 h, or 72 h. Then, 10 μl of
Cell Counting Kit-8 solution (Solarbio) was added to each well. The
samples were incubated at 37 ◦C for 2 h before the absorbance was
measured at 450 nm.

Extracellular Flux Analysis

The oxygen consumption rate (OCR) and extracellular acidification
rate (ECAR) of Huh7 cells were determined using the Seahorse XF
extracellular flux analyzer (Agilent). Cells were plated at a density of
3 × 104 cells per well on 24-well Seahorse plates and allowed to attach
overnight in the growth medium. Then, the adherent cells were
washed by PBS, and the fresh assay medium was added before
analysis. For the glycolysis stress test, ECAR was measured under
basal condition and in response to 10 mM glucose, 1 mM oligomycin
and 50 mM 2-DG successively to calculate the basal glycolytic rate,
glycolytic capacity (in response to oligomycin), and glycolytic reserve
(calculated as glycolytic capacity-basal glycolytic rate). For the mito-
chondrial stress test, OCR was measured under basal condition and in
response to sequential injections of 1 μM oligomycin, 1 μM carbonyl
cyanide 4-trifluoromethoxyphenylhydrazone (FCCP), and 0.5 μM
rotenone/antimycin A(R/A) to calculate basal respiration rate (baseline
OCR-R/A OCR), maximal respiration rate (FCCP OCR-R/A OCR), and
oxidative reserve (maximal respiration-basal respiration).

Experimental Design and Statistical Rationale

The proteomics and acetylomics experiments were performed as
illustrated in Figure 1. Eight paired tumor and NATs from HCC patients
were investigated. Statistical and bioinformatics analyses were per-
formed using the R framework (version: 3.6.1). The statistical signifi-
cance was evaluated by two-tailed unpaired Student’s t test. Proteins
with a fold change >1.5 and a p value < 0.05 were defined as signif-
icantly differentially expressed. Cell experiments were performed in
triplicates and analyzed by two-sided Student′s t test for comparison
between two groups. Data were presented as means ± sd, and p <
0.05 was considered as a significant difference.

RESULTS

Quantitative Proteomics Analysis of HCC

In this study, we characterized the proteome and K-acety-
lome in eight paired tumor and NATs from treatment-naïve
HCC patients by a four-dimensional label-free quantitative
4 Mol Cell Proteomics (2022) 21(8) 100255
proteomics strategy using a timsTOF Pro mass spectrometer
(Fig. 1). Proteomics analysis identified a total of 6014 proteins,
of which 5361 proteins were quantified across all samples. On
average, 4678 proteins per tumor and 4475 proteins per NATs
were identified (supplemental Fig. S1, A and B). PCA showed
a clear discrepancy between HCC tumors and NATs, and
higher inter-patient heterogeneity was observed among tumor
samples than NATs (Fig. 2A). A total of 1492 proteins were
observed to be significantly differentially expressed (fold
change >1.5, p < 0.05), of which 971 were upregulated and
521 were downregulated (Fig. 2, B and C and supplemental
Table S3).
To better understand the biological functions of the differ-

entially expressed proteins, we performed Kyoto Encyclopedia
of Genes and Genomes pathway enrichment analysis, and the
results showed that they were associated with distinct path-
ways (Fig. 2,D and E and supplemental Table S3). For example,
the upregulated proteins were most significantly enriched in
pathways such as spliceosome, RNA transport, ribosome, and
antigen processing and presentation (Fig. 2D). In the antigen
processing and presentation pathway, MHC-I class molecule
TAP binding protein (TAPBP) andHLA class I histocompatibility
antigen responsible for presenting endogenous antigens and
activating CD8+ T cells were upregulated (38). MHC-II class
molecule HLA class II histocompatibility antigen gamma chain
(CD74) involved in the formation and transport of MHC class II
peptide complexes for the generation of CD4+ T cell responses
was also upregulated (39). The data suggested elevated infil-
tration of immune cells in HCC tumors compared to NATs. In
addition, we observed overexpression of multiple proteins
involved in ferroptosis, a recently recognized form of cell death
elicited by iron-dependent phospholipid peroxidation. For
example, the long chain fatty acid CoA ligase 4 (ACSL4), a key
enzyme that modulated cellular lipid composition and dictated
ferroptosis sensitivity (40), was upregulated in tumors, revealing
the potential vulnerability of HCC that could be exploited for
ferroptosis-based therapies. Furthermore, multiple
metabolism-related pathways, for example, fatty acid meta-
bolism, carbon metabolism, biosynthesis of amino acid, were
overrepresented for the downregulated proteins (Fig. 2E). GO
analysis revealed that a large majority of the proteins upregu-
lated in HCC tumors were associated with RNA processing and
transport (supplemental Fig. S1C). Meanwhile, many of the
downregulated proteins were metabolic enzymes
(supplemental Fig. S1D). The data unveiled the global alteration
of protein expression in HCC, especially related to gene
expression and metabolism. The observations were consistent
with an earlier large-scale study of HCC clinical samples (41).

Characterization of the K-acetylome of HCC

To explore the role of protein acetylation in the regulation of
HCC, we further investigated the nonhistone K-acetylome in
these eight pairs of HCC tumors and NATs. The K-acetylated
peptides were isolated through immunoprecipitation with anti-
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K-acetylation antibody-conjugated beads (Fig. 1). Taking
advantage of the high scanning speed provided by timsTOF
Pro, a total of 9219 K-acetylation sites in 2625 proteins were
identified, with an average of 3053 and 3972 acetylation sites
identified per tumor and NAT, respectively (Fig. 3A).
Next, we investigated the occurrence of sequence motifs by

analyzing the probabilities of amino acids from the −6 to +6
positions surrounding the identified lysine acetylation sites.
The top three enriched motifs included GK, KS, and KT, ac-
counting for 10.03%, 8.39%, and 7.01% of all the observed K-
acetylated peptides, respectively (Fig. 3B).
To understand the cellular distribution and biological func-

tions of the 2625 K-acetylated proteins, we performed UniProt
keywords, cellular component (CC), biological process, and
pathway enrichment analysis, using the abundance-corrected
proteome as the control for statistical analysis (Fig. 3, C and
D). The results showed that the acetylated proteins were
associated with keywords such as alternative splicing, acet-
ylation, and nucleus. CC analysis revealed that these proteins
were mainly localized in organelle, membrane, intracellular
organelle lumen, and mitochondria. Biological process anal-
ysis indicated that the K-acetylated proteins were significantly
associated with cellular process and metabolic process.
Pathway analysis based on the Reactome database sug-
gested that detected K-acetylated proteins were associated
with various pathways, for example, metabolism, signal
transduction, gene expression (Fig. 3D).
Interestingly, we observed a number of acetylated sites

specifically in tumors or NATs (Fig. 3E and supplemental
Table S4). The data showed that 620 acetylation sites were
repeatedly observed from NATs (n ≥ 3) but undetectable in
tumors, and 196 acetylation sites were only detected in tu-
mors (n ≥ 3). Pathway enrichment analysis revealed that
proteins with NAT-specific acetylation sites were highly
involved in various cellular metabolism processes, while
tumor-specific acetylation sites were most significantly asso-
ciated with metabolism of RNA (Fig. 3F and supplemental
Table S4). CC analysis revealed that proteins with NAT-
specific K-acetylation sites were mainly localized in the
mitochondria and cytoplasm, while proteins containing tumor-
specific K-acetylation sites were markedly enriched in the
nucleus (Fig. 3F and supplemental Table S4).
Majority of the proteins with tumor-specific K-acetylation

sites were upregulated in tumors at the protein level. For
example, heat shock protein HSP90AB1 plays an important
role in endoplasmic reticulum stress response and promotes
tumor growth and metastasis (42). The proteome data
showed that HSP90AB1 was overexpressed in HCC tumors
(fold change = 1.66, p = 1.6 × 10−5) (Fig. 4A), and its K72
acetylation was detected specifically in the tumor samples
(n = 6/8) (Fig. 4B). On the other hand, some proteins
exhibited similar expression levels between tumors and
NATs but were specifically acetylated in the tumors (Fig. 4A).
For example, acetylation of three cytoskeleton-regulating
proteins, that is, filamin A (FLNA, K865), filamin B (FLNB,
K697), and cofilin 1 (CFL1, K19), were only detected in the
tumor samples (Figs. 4B and S2). These three molecules
play crucial roles in the regulation of actin dynamics and cell
migration, a key process during tumor metastasis (43–45).
Our observations suggest that the functions of these
cytoskeleton-regulating molecules may be modulated
through acetylation in HCC, and further investigation is
required to clarify the biological implications of the identified
acetylation sites.
Mol Cell Proteomics (2022) 21(8) 100255 5
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Functions of Proteins with Differential K-acetylation in HCC

Next, we further investigated the K-acetylated proteins
detected in both tumors and NATs by quantitative analysis. To
rule out the impact of protein expression changes on the
measured acetylation levels, we normalized the intensities of
acetylpeptides with the abundance of the corresponding pro-
tein in the same sample. Overall, 5090 sites from 1610 proteins
were quantified. Correlation analysis of the acetylome data
showed a high degree of correlation between each sample (R >
0.8) (supplemental Fig. S3A). PCA revealed that the acetylome
data from tumors and NATs formed two distinct clusters, sug-
gesting dramatic differences of the acetylation landscape be-
tween these two types of samples (Fig. 5A). Using p < 0.05 and
FC > 1.5 as the cutoff threshold, 1003 acetylation sites
exhibited significant changes. Specifically, 165 sites from 129
proteins were upregulated in HCC tumor tissues, and 838 sites
from 381 proteins were downregulated (Fig. 5B). The results
showed that acetylation was globally suppressed in HCC tu-
mors, whichmaypartly be due to the impairment of TCAand the
reduced level of acetyl-CoA in HCC (46). Another possibility
was that tumor cells sustained a higher level of proliferation and
faster protein turnover than normal cells. Weinert et al reported
that growth arrest in several types of cells lead to increased
acetylation likely by prolonging the exposure of proteins to
acetyl-CoA (47). In a recently reported acetylome study of four
paired HCC tissue samples, 792 acetylation sites in 415 pro-
teins were identified (26). In their study, only three acetylation
sites, that is, EP300 (K1550), GRHPR (K327), andGLDC (K423),
were observed to be upregulated in HCC tumors. We also
detected these three sites, but they were not significantly
changed between tumors and NATs in our data. Next, we
compared the proteins with downregulated K-acetylation, and
the results showed significant overlapping between these two
studies, however,manymore acetylation siteswere identified in
our study, providing novel information regarding the K-acety-
lation profile in HCC (supplemental Fig. S3B).
To further understand the biological implications of protein

K-acetylation in HCC, we performed pathway enrichment and
GO analysis on the proteins exhibiting differential K-acetyla-
tion levels between tumors and NATs (Fig. 5, C–E). The results
showed that the proteins with downregulated K-acetylation
sites were mostly enriched in metabolism pathways associ-
ated with fatty acid, amino acid, pyruvate, and TCA cycle,
while proteins with upregulated acetylation sites were related
to metabolism of RNA and signaling by nuclear receptors
(Fig. 5C and supplemental Table S5). Molecular function
analysis showed that the differentially acetylated proteins
were associated with RNA binding and catalytic activity
(Fig. 5, D and E). Additionally, the proteins with upregulated K-
acetylation exhibited localization enrichment in nucleus and
organelle, while proteins with downregulated K-acetylation
were predominantly localized in the mitochondria and cyto-
plasm (Fig. 5, D and E). Interestingly, we detected 16 proteins
6 Mol Cell Proteomics (2022) 21(8) 100255
with both upregulated and downregulated acetylation sites,
implying that different molecular mechanisms were involved in
the regulation of their acetylation (supplemental Fig. S3C). For
example, glutathione reductase catalyzes the reduction of
GSSG to GSH and plays key roles in cellular redox homeo-
stasis. Here, we observed upregulated acetylation of K110
and downregulated acetylation of K164 on glutathione
reductase in HCC tumors. Taken together, the results showed
that K-acetylation of nonhistone proteins may play important
roles in diverse cellular processes in HCC, especially in the
regulation of gene expression and cellular metabolism.

Metabolic Enzymes with Decreased K-acetylation in HCC
Tumors

Our data showed the downregulated K-acetylation of
metabolic enzymes in diverse metabolic pathways, for
example, glycolysis, TCA cycle, fatty acid metabolism,
biosynthesis of amino acid, and valine, leucine, isoleucine
degradation pathways (Fig. 6A). For example, the acetylation
of K12 and K73 on glucose-6-phosphate isomerase (GPI) was
downregulated in HCC (Fig. 6B). In the cytoplasm, GPI cata-
lyzes the conversion of glucose-6-phosphate to fructose-6-
phosphate, the second step in glycolysis. However, how
acetylation affects its activity has not been reported. In our
study, we detected downregulation of the acetylation of K12
and K73 on GPI in HCC (Figs. 6B and S4A). The mitochondrial
enzyme, malate dehydrogenase (MDH2), plays a key role in
the TCA cycle, and the acetylation of K185, K301, K307, and
K314 on MDH2 enhances its enzymatic activity (13, 47). In our
study, we observed downregulated acetylation of K185, K301,
K307 on MDH2, suggesting that its enzymatic activity was
likely inhibited in HCC. In addition, we detected down-
regulated acetylation of another six lysine sites, including K78,
K296, K157, K74, K324, and K203 on MDH2 (Figs. 6C and
S4B). Taken together, our data highlighted the potential role of
acetylation in the regulation of metabolic reprogramming in
HCC.

The Role of SIRT2 as a Contributing Factor in the
Deacetylation of Nonhistone Proteins in HCC

Next, we sought to explore the potential molecular mech-
anisms regulating the observed suppressed acetylation in
HCC. The acetylome in HCC tumors may be affected by
multiple factors, such as nonenzymatic reaction with acetyl-
CoA that targets all solvent accessible lysine residues and
the differential proliferation rate and protein turnover between
tumors and normal cells. Moreover, acetylation-modulating
enzymes may also play a role by regulating the acetylation
of specific targets. In the HCC proteome data, we detected
seven enzymes associated with acetylation regulation. His-
tone acetyltransferase type B catalytic subunit (HAT1), histone
deacetylase 1(HDAC1), histone deacetylase 2 (HDAC2), and
SIRT2 were upregulated in tumors, while histone deacetylase
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6 (HDAC6), NAD-dependent protein deacetylase sirtuin-3
(SIRT3), and NAD-dependent protein deacetylase sirtuin-5
(SIRT5) were downregulated (Fig. 7A). Since majority of the
observed downregulated acetylation sites were from cyto-
plasmic proteins, we suspected that some of the observed
deacetylation may be associated with the function of SIRT2
primarily localized in the cytoplasm.
To explore the potential targets of SIRT2, we overexpressed

SIRT2 in Huh7 liver cancer cells and investigated the impact
on the cellular proteome and K-acetylome using the same
procedure for HCC tumor tissue analysis. PCA of the prote-
omics data showed a clear discrepancy between SIRT2-
overexpressing cells and NC cells (supplemental Fig. S5, A
and B). A total of 766 proteins were observed to be signifi-
cantly differentially expressed (fold change >1.5, p < 0.05), of
which 551 were upregulated and 215 were downregulated
(supplemental Fig. S5C and supplemental Table S6). Pathway
enrichment analysis showed that the upregulated proteins
were most significantly enriched in pathways such as ribo-
some, protein export, and nucleocytoplasmic transport
(supplemental Fig. S5D and supplemental Table S6). And the
downregulated proteins were most significantly enriched in
proteasome, adherens junction, and carbon metabolism
(supplemental Fig. S5E and supplemental Table S6).
Next, we investigated the impact of SIRT2 overexpression

on the K-acetylome normalized by proteome abundance. PCA
showed that the acetylome data from SIRT2-overexpressing
cells and control cells formed two distinct clusters, suggest-
ing the alteration of the K-acetylation landscape between
these two types of samples (Fig. 7B). Using p < 0.05 and FC
<1/1.5 as the cutoff threshold, a total of 935 K-acetyl-sites
from 590 proteins were detected to be downregulated in
response to SIRT2 overexpression (Fig. 7C and supplemental
Table S7). In addition, 950 K-acetylation sites were repeatedly
observed from NC cells (n ≥ 2 of 3 biological replicates) but
not detectable in SIRT2-overexpressing cells. Pathway
enrichment analysis using the Reactome database showed
that the proteins with downregulated acetylation were
involved in pathways such as TCA cycle, gene expression,
SUMOylation, and metabolism of RNA (supplemental Fig. S6A
and supplemental Table S7). These proteins were most
significantly enriched in nucleoplasm, followed by nuclear
lumen, intracellular organelle lumen, and cytosol
(supplemental Fig. S6A and supplemental Table S7). Proteins
with K-acetylation affected by SIRT2 were significantly
enriched for keywords describing phosphoprotein, acetyla-
tion, cell cycle, and transcription regulation (supplemental
Fig. S6B and supplemental Table S7). Intriguingly, we
observed reduced acetylation of acetylation-regulating en-
zymes, including deacetylases HDAC1 (K31) and HDAC2
upregulated (D) and downregulated (E) proteins. The analysis was condu
and supplemental Table S3. HCC, hepatocellular carcinoma; KEGG, K
tissues.
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(K11, K32), and histone acetyltransferase p300 (K1001,
K1769, K1554, K1590), suggesting an intertwined regulatory
network among acetylation modulators.
Interestingly, 122 of the SIRT2-induced downregulated sites

from 100 proteins were also observed to be decreased in HCC
tissues. Reactome pathway analysis showed statistically sig-
nificant enrichment in three pathways, including metabolism,
fatty metabolism, pyruvate metabolism, and TCA cycle
(Fig. 7D and supplemental Table S8). CC analysis showed
enrichment in cytoplasm and mitochondrion (Fig. 7D and
supplemental Table S8). As shown in Figure 7E, we detected
four glycolytic enzymes with reduced K-acetylation in both
HCC tumors and SIRT2-overexpressing cells, including GPI
(K73), GAPDH (K117,) phosphoglycerate kinase (PGK1) (K91),
and LDHA (K278), and five enzymes from the TCA cycle,
including isocitrate dehydrogenase (K272, K180), OGDH
(K869, K389), SUCLG1 (K57), SDHA (K250, K608), and MDH2
(K296). SIRT2 was previously implicated in the regulation of
metabolic shift in pluripotent stem cells and T cells with
different phenotypes and mechanisms (48, 49). Our data
suggested that SIRT2 may also be involved in energy meta-
bolism in HCC cells.

SIRT2 Modulates Energy Metabolism in HCC Cells

Deacetylases are being extensively investigated as anti-
cancer drug targets (50), and there has been a great interest to
explore their functions in various biological contexts. In a
previous study, Hamaidi et al (49) found that knockout or in-
hibition of SIRT2 enhanced both glycolysis and oxidative
phosphorylation in T cells and proposed that chemical inhi-
bition of SIRT2 may enhance tumor-specific T cell responses
and improve antitumor immunity by promoting metabolic
reprogramming toward a profound hyper-metabolic state.
However, the effects of SIRT2 on the metabolism of tumor
cells is still unknown and thus information is crucial to further
evaluate the role of SIRT2 as a potential therapeutic target in
HCC.
To investigate the function of SIRT2 in cellular metabolism

of HCC cells, we overexpressed SIRT2 in Huh7 cells and
examined its impact on glycolysis and oxygen consumption.
First, the overexpression of SIRT2 was confirmed by both
quantitative real-time PCR and Western blotting (Fig. 8, A and
B). Next, we examined the oxidative phosphorylation by
measuring OCR using a Seahorse Analyzer (Fig. 8C). Huh7
cells treated with SIRT2-overexpression or empty vectors
were treated sequentially with the ATP synthase inhibitor oli-
gomycin, oxidative phosphorylation uncoupler FCCP, and
electron transport chain inhibitor R/A. The results showed that
SIRT2 overexpression reduced the overall oxidative phos-
phorylation in Huh7 cells. The values of basal respiration,
cted by clusterProfiler (version: 3.16.0). See also supplemental Fig. S1
yoto Encyclopedia of Genes and Genomes; NATs, normal adjacent
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maximal respiration, and spare respiratory capacity were all
significantly reduced by SIRT2 overexpression. Moreover, we
studied the glycolytic flux by measuring ECAR using the
Seahorse Analyzer (Fig. 8D). Glucose was first added to boost
the glycolysis level, and the addition of ATP synthase inhibitor
oligomycin shut down oxidative phosphorylation, allowing the
by MoMo (version: 5.4.1), using shuffled input peptides as the control. C,
K-acetylated proteins using the Reactome database. E, numbers of the t
samples). F, functional enrichment analysis of proteins containing tum
enrichment analysis was conducted by AGOTOOL (https://agotool.org/),
analysis (p < 0.05 as cutoff). See also supplemental Table S4. GO, ge
tissues.

10 Mol Cell Proteomics (2022) 21(8) 100255
measurement of glycolytic capacity. The following addition of
glycolysis inhibitor 2-DG inhibited glycolysis and allowed us to
evaluate the glycolytic reserve. The analysis results showed
that SIRT2 overexpression reduced the overall glycolytic flux
in Huh7 cells. Glycolysis and glycolytic capacity were both
significantly reduced by SIRT2 overexpression. Glycolytic
GO analysis of the K-acetylated proteins. D, pathway enrichment of the
umor- and NAT-specific K-acetylation sites (n = 1, n = 2, n ≥ 3 out of 8
or- or NAT-specific acetylation sites (n ≥ 3). The GO and pathway
using the abundance-corrected proteome as the control for statistical
ne ontology; HCC, hepatocellular carcinoma; NATs, normal adjacent
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reserve was slightly reduced but the difference was not sta-
tistically significant. In summary, the results showed that
SIRT2 overexpression inhibited energy metabolism of HCC
cells in both cytoplasmic glycolysis and mitochondrial respi-
ration, likely due to the deacetylation of multiple key enzymes
in both pathways.
Furthermore, we investigated the effects of SIRT2 on cell

proliferation and examined cell proliferation in HCC cells by
the Cell Counting Kit-8 assay. The results showed that
knockdown of SIRT2 inhibited the proliferation of MHCC-97H
cells (Fig. 9, A–C). Consistently, overexpression of SIRT2
enhanced cell proliferation in Huh7 cells (Fig. 9, D–F). The data
indicated that SIRT2 promoted proliferation of HCC cells.
DISCUSSION

In recent years, clinical proteomics has advanced
tremendously and has provided comprehensive information
for the molecular features of various cancers (51). To
resolve the sample complexity and achieve high coverage,
prefractionation is normally performed before MS analyses,
resulting in increased instrument time and limiting its ap-
plications in clinical practice for personalized medicine.
Here, we employed a timsTOF Pro instrument to analyze
eight HCC tissue samples using single injections, and all
the MS experiments were finished within a day. The TIMS
device helped to resolve the high complexity of tumor
samples with an added dimension of separation in addition
to HPLC and mass spectrometry. The TOF analyzer had
very high acquisition rate (>100 Hz), enabling efficient
sampling of ions in the sub-ms time frame. A previous
study showed that TIMS-PASEF provided consistent and
accurate protein quantification for whole cell lysates
without prefractionation (28). In this study, 4678 proteins
were identified per HCC tumor, and 4475 proteins were
identified per NAT sample, comparable to the earlier large-
scale HCC study, which employed a standard workflow of
shot-gun proteomics with six fractions and identified 5953
proteins per tumor and 5114 proteins per nontumor tis-
sues (41).
Acetylation is a pervasive and reversible form of PTM that

regulates the activity, stability, and location of proteins (52).
In this study, we detected 9219 acetylation sites from 2625
proteins from HCC tissues. Widespread downregulation of
protein acetylation was observed in HCC tumors compared
to NATs. Majority of the proteins with downregulated K-
acetylation were localized in the mitochondria and cyto-
plasm, participating in various metabolic processes. For
example, glycolytic enzyme LDHA that catalyzes pyruvate to
function and cellular component enrichment analysis of proteins with K-a
GO and pathway enrichment analysis was conducted by AGOTOOL (h
control for statistical analysis (p < 0.05 as cutoff). See also supplement
patocellular carcinoma; NATs, normal adjacent tissues.
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lactate is frequently overexpressed in multiple tumors and
plays an important role in promoting tumor progression (53,
54). It has been reported that LDHA-K5 acetylation was
decreased in human pancreatic cancers, resulting in
elevated LDHA enzymatic activity and enhanced cancer cell
proliferation and migration (55). In our study, we observed
downregulated acetylation of K126, K59, K278 of LDHA in
HCC tumor tissues. Fatty acid synthase (FASN) is one of the
rate-limiting enzymes in the de novo lipogenesis pathway,
and the acetylation of FASN promotes its degradation and
inhibits de novo lipogenesis (56). Here, we identified 29 K-
acetylation sites in FASN, and two of them K2449 and K776
were downregulated in HCC. Of note, the sample size of this
study is relatively small, and the observations may need to
be further validated in larger sample sets. In addition, for
majority of the dysregulated acetylation sites, how they are
modulated and how they affect the modified proteins re-
quires further investigation.
Our findings suggest that SIRT2 overexpression may affect

some of the dysregulated K-acetylation sites in HCC tissues.
Substantial evidence has implicated SIRT2 in a variety of
cellular processes, such as mitosis regulation, genome
integrity, cell differentiation, cell homeostasis, aging, infection,
inflammation, oxidative stress, metabolism, and autophagy
(57–60), consistent with the widespread alterations of protein
K-acetylation in SIRT2-overexpressing cells detected in this
study. Moreover, our data showed that SIRT2 overexpression
inhibited K-acetylation on multiple glycolytic enzymes, for
example, GPI (K73), GAPDH(K117), PGK1 (K91), LDHA(K278).
Previous studies have associated SIRT2 with the deacetyla-
tion of GAPDH and PGK1 (48); however, the acetylation sites
remain unknown. Our data suggest that the reduced acety-
lation of these sites in HCC tumors may be modulated by
SIRT2. In addition, SIRT2 overexpression decreased the K-
acetylation on five TCA enzymes, including isocitrate dehy-
drogenase (K272, K180), SDHA (K250, K608), MDH2 (K296),
OGDH (K869, K389), and SUCLG1 (K57). Although SIRT2 is
predominately localized in the cytoplasm, several recent
studies have shown that it is associated with the inner mem-
brane of mitochondria (61) and dynamically interacts with
multiple TCA enzymes (49). On the hand, the observed
downregulated acetylation could be induced by the metabolic
changes in SIRT2-overexpressing cells, and whether these
enzymes are direct substrates of SIRT2 requires further
exploration.
Several KDAC inhibitors have been tested in preclinical

studies or clinical trials for their efficacy for HCC, such as
vorinostat and resminostat, alone or in combination with
sorafenib (62, 63). However, majority of these chemicals target
cetylation upregulated (D) and downregulated (E) in HCC tumors. The
ttps://agotool.org/), using the abundance-corrected proteome as the
al Fig. S3 and supplemental Table S5. GO, gene ontology; HCC, he-
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class I and/or class II KDACs. The study of SIRT2 and its in-
hibitors in HCC is still limited. Knockdown of SIRT2 with
shRNA impaired HCC cell proliferation and migration (64). A
very recent study showed that SIRT1 and SIRT2 inhibitors
could enhance the inhibitory effect of sorafenib, the standard
change>1.5, p < 0.05, by two-sided Student’s t test). D, reactome path
acetylation sites that were also decreased in HCC tumors. The ana
abundance-corrected proteome as the control for statistical analysis
overexpression-induced downregulation of K-acetylation sites on me
supplemental Figs. S5, S6, supplemental Tables S7 and S8. HCC, hep
component analysis.
of care for patients with advanced HCC (65). These studies
suggest the potential of targeting SIRT2 for HCC treatment,
especially in combination with sorafenib, however, more in-
depth investigation is still required to explore its value as a
therapeutic target in HCC.
way enrichment analysis of the 122 SIRT2-induced downregulated K-
lysis was conducted by AGOTOOL (https://agotool.org/) using the
(p < 0.05 as cutoff). E, a schematic diagram illustrating SIRT2

tabolic enzymes involved in glycolysis and TCA cycle. See also
atocellular carcinoma; NATs, normal adjacent tissues; PCA, principal
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