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+is study was aimed to explore the magnetic resonance imaging (MRI) image features based on the fuzzy local information
C-means clustering (FLICM) image segmentation method to analyze the risk factors of restroke in patients with lacunar in-
farction. In this study, based on the FLICM algorithm, the Canny edge detection algorithm and the Fourier shape descriptor were
introduced to optimize the algorithm. +e difference of Jaccard coefficient, Dice coefficient, peak signal-to-noise ratio (PSNR),
structural similarity index measure (SSIM), running time, and segmentation accuracy of the optimized FLICM algorithm and
other algorithms when the brain tissue MRI images were segmented was studied. 36 patients with lacunar infarction were selected
as the research objects, and they were divided into a control group (no restroke, 20 cases) and a stroke group (restroke, 16 cases)
according to whether the patients had restroke. +e differences in MRI imaging characteristics of the two groups of patients were
compared, and the risk factors for restroke in lacunar infarction were analyzed by logistic multivariate regression. +e results
showed that the Jaccard coefficient, Dice coefficient, PSNR value, and SSIM value of the optimized FLICM algorithm for
segmenting brain tissue were all higher than those of other algorithms. +e shortest running time was 26 s, and the highest
accuracy rate was 97.86%. +e proportion of patients with a history of hypertension, the proportion of patients with para-
ventricular white matter lesion (WML) score greater than 2 in the stroke group, the proportion of patients with a deepWML score
of 2, and the average age of patients in the stroke group were much higher than those in the control group (P< 0.05). Logistic
multivariate regression showed that age and history of hypertension were risk factors for restroke after lacunar infarction
(P< 0.05). It showed that the optimized FLICM algorithm can effectively segment brain MRI images, and the risk factors for
restroke in patients with lacunar infarction were age and hypertension history. +is study could provide a reference for the
diagnosis and prognosis of lacunar infarction.

1. Introduction

Lacunar cerebral infarction (LCI) is a common type of is-
chemic stroke, and LCI patients in China account for more
than 25% of cerebral infarction [1]. At present, imaging
techniques such as computed tomography (CT) and mag-
netic resonance imaging (MRI) are often used to diagnose

patients with lacunar infarction. When CT is used to di-
agnose lacunar cerebral infarction, there are low-density
changes in the lesion site and the boundary is unclear. At the
same time, it is less sensitive to the brain tissue edema caused
by lacunar infarction. If the patient undergoes a CT ex-
amination less than 24 hours after the onset of the disease,
the infarct focus of the brain tissue has not changed
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significantly at this time, so the positive rate of CT exami-
nation is low. MRI is often used in the diagnosis and
treatment of intracerebral atherosclerosis due to its non-
invasive, simple operation and high resolution [2]. MRI has
higher tissue resolution, can clearly display early lesions, and
is very sensitive to cytotoxic edema and interstitial edema.
+e diffusion-weighted imaging (DWI) sequence can show
the lesions 3 hours after the onset of lacunar infarction, and
low-field MRI scans for lacunar infarctions are significantly
better than CT scans [3]. Current research results show that
the history of hyperlipidemia, hypertension, diabetes, obe-
sity, and smoking is a risk factor for LCI [4, 5], but the
related risk factors for restroke in LCI patients are still
unclear.

At present, traditional clustering techniques and deep
learning algorithms are often used to segment them. Among
them, deep learning shows the advantages of fast calculation,
speed, and high accuracy and is widely used in medical
image processing [6]. However, in the process of extracting
the features of MRI images, the deep learning method re-
quires multiple feature learning training, and it can be
applied to the segmentation of the test set image. It ignores
the brain structure features [7], so its segmentation accuracy
needs to be further improved. Based on the fuzzy local
information C-means clustering (FLICM) algorithm in the
image segmentation process, not only the domain infor-
mation of the pixels is considered but also the parameters
can be updated through continuous iteration, which can
effectively improve the accuracy of image segmentation [8].
However, the FLICM algorithm only uses the characteristics
of the image itself in the process of segmenting the middle
H-shaped region of the cerebrospinal fluid and does not
combine the unique biological structure of the brain, which
needs to be further optimized.

In summary, the relevant risk factors for restroke in LCI
patients are still unclear, and the FLICM algorithm still has
certain limitations in the segmentation of MRI brain tissue.
In this study, an MRI image brain tissue segmentation
method was established based on the LCM algorithm, and it
was applied to the diagnosis of LCI. According to the MRI
image features of LCI patients, the relevant risk factors of
restroke were evaluated, so as to provide reference for the
diagnosis and prognosis of LCI patients.

2. Materials and Methods

2.1. Brain Tissue Image Segmentation Method Based on the
FLICM Algorithm. +e FLICM algorithm is a robust image
segmentation algorithm based on fuzzy clustering of local
spatial information [9]. It can update the parameters
through multiple iterations to minimize the objective
function. +e objective function can be expressed as the
following equation:
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Here, xi is a vector of m, which represents the pixel
dataset in the image, and i � 1, 2, . . . , n; b refers to the

number of categories; μij is the membership function of xi
belonging to the j-th category; vj represents the cluster
center of the j-th category, and ‖xi − vj‖ is the Euclidean
distance between the two data; and Bij is the fuzzy factor,
which can be calculated as follows:
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In equation (2), ni represents a 3× 3 area centered on pixel i
and cij represents the Euclidean distance between two points.

+e calculation methods of the clustering center and the
membership function of the FLICM algorithm are given as
the following equations:
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+e FLICM algorithm can get the initial contour of the
level set evolution, but it cannot realize the automatic
segmentation of medicine, so the level set method was
applied to control its parameters in this study. It was as-
sumed that the target area was R. +e level set initialization
can be expressed as the following equation:

ϕ(x, y) � −4ε(0.5 − B). (5)

In equation (5), B � R≥ t0 represents the binary image
obtained by the target area R through the threshold
t0 ∈ [0.1]. +e threshold t0 can be adjusted to make B close
to the standard segmentation of the target area. ε refers to the
adjusted Dirac function. +e calculation method to obtain
the two evaluation parameters according to the initialization
level set ϕ could be expressed as follows:

Len(ϕ) � 􏽚 δ(ϕ)dx dy, (6)

Are(ϕ) � 􏽚 H(ϕ)dx dy, (7)

H(ϕ) �
1, ϕ≥ 0,

0, ϕ< 0.
􏼨 (8)

It was assumed that the ratio of the parameters Len(ϕ)

and Are(ϕ) was β; then, β � (Len(ϕ)/Are(ϕ)). +e value of
β was related to the evolution speed of the level set, and each
control parameter of the level set can be evaluated by the β
value.

+e brain tissue image segmentation method based on
the FLICM algorithm can obtain the initial classification
label of each pixel according to the FLICM algorithm, and
the segmented image was obtained after the initial clas-
sification label processing. +e specific process of brain
tissue image segmentation based on the FLICM algorithm
is shown in Figure 1.

2 Contrast Media & Molecular Imaging



2.2. Establishment of a Segmentation Method for the Middle
H-Shaped Region in the Cerebrospinal Fluid Based on the
FLICM Algorithm. Before the H-shaped region in the ce-
rebrospinal fluid of the MRI image was segmented, the MRI
image had to be preprocessed. In addition to the con-
ventional denoising, the preprocessing of brain MRI im-
ages also needed to be processed to remove the skull. +e
Canny edge detection algorithm has a simple processing
process, good real time performance, and good anti-in-
terference performance, so it is suitable for edge detection
of MRI images [10]. It was supposed that H(x, y) was the
impulse response of the boundary [−ω,ω] filter and G(−x)

was the edge function. +e edge response function of the
image filtered by H(x, y) can be expressed as the following
equation:

FG � 􏽚
ω

−ω
G(−x)H(x)dx. (9)

+e square root of the noise response is expressed as
follows:
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In equations (9)∼(10), σ represents the uniform differ-
ence of Gaussian noise and Fz represents the square root of
the noise response.

+e edge positioning accuracy D is defined as follows:
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In equation (11),G′(−x) andH′(x) are the derivatives of
G(−x) and H(x, y), respectively.

+e average distance S(f) of the zero-crossing point of
the impulse response derivative of the detection operator
shall satisfy the following condition:
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In equation (12), H
2″(x) is the second derivative of

H(x, y).

+e smoothing and denoising were performed on the
original image G(x, y) to obtain a smooth image I(x, y). It
was supposed that the two-dimensional Gaussian function
was expressed as follows:
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1

2πσ2
exp −

x
2
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2

2σ2
􏼠 􏼡. (13)

+en, equation (14) could be used to solve the first-order
directional derivative of the Gaussian function G(x, y) in
direction n:

Gn �
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zn
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Here, n is the direction vector and n � [cos α/sin α] and

∇G(x, y) is the gradient vector and ∇G(x, y) �
zG/zx

zG/zy
􏼢 􏼣.

+e Canny operator was based on two-dimensional
convolution ∇G(x, y)∗f(x, y). In order to improve the
operation efficiency of the Canny operator, the two-di-
mensional convolution template of ∇G(x, y) can be
decomposed into two one-dimensional filters, namely,
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∗ exp[−x2/2σ2]. +e image G(x, y) is convolved

according to equation (16), and then, the following equa-
tions could be obtained:

Ex �
zG(x, y)

zx
∗g(x, y), (17)

Ey �
zG(x, y)

zy
∗g(x, y). (18)

In equations (15)∼(18), k is a constant and σ is a Gaussian
filter parameter. +e partial derivatives of the image g(x, y)

along the x and y directions could be written as follows:

Ex(i, j) �
[I(i, j + 1) − I(i, j) + I(i + 1, j + 1) − I(i + 1, j)]

2
,

(19)

Ey(i, j) �
[I(i, j) − I(i + 1, j) + I(i, j + 1) − I(i + 1, j + 1)]

2
.

(20)

+e gradient magnitude M(i, j) and direction η(i, j) of
each pixel (i, j) in the image can be expressed as the fol-
lowing equations:

Initial MRI image

Extract featuresImage 

FLICM Feature Initial 

Level set Level set 

Segmented MRI images

Figure 1: +e brain tissue image segmentation process based on
the FLICM algorithm.
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+e Fourier descriptor is often used to represent the
shape features of a single closed curve [11]. +e coordinate
sequence of theN point on the image boundary after moving
counterclockwise can be expressed as the following
equation:

s(k) � [x(k)y(k)], k � 0, 1, . . . N − 1. (23)

+e complex number for each boundary point could be
expressed as follows:

s(k) � x(k)jy(k), k � 0, 1, . . . N − 1. (24)

+e discrete Fourier transform coefficients can be
expressed as the following equation, in which λ(u) refers to
the Fourier descriptor:

λ(u) �
1
N

􏽘

N−1

k�0
s(k)e

− j2/N
, u � 0, 1, . . . N − 1. (25)

After the MRI image was preprocessed, the Fourier
shape descriptor and Canny operator were used to identify
its H-shaped area to obtain a grayscale histogram. After the
threshold range was adjusted to reach the termination
condition, the middle H-shaped region segmentation of the
cerebrospinal fluid in the MRI image was obtained, and the
specific process is shown in Figure 2.

2.3. Test Environment and Evaluation of MRI Image
Segmentation Performance. +e software environment for
this experiment was the Windows 10, 64-bit system; the
hardware environment was the central processing unit (CPU):
Intel (R) Core (TM) i5-8265 U CPU @1.6GHz, 1.80GHz; the
hard disk was 1040G; and the memory was 16G.

+e Jaccard coefficient and Dice coefficient were used to
evaluate the performance of MRI image segmentation. +e
Jaccard coefficient represented the degree of coincidence
between the segmented image and the standard segmented
image, and the value range was [0, 1]. +e Dice coefficient
was used to evaluate the accuracy of the segmentation al-
gorithm. +e calculation methods of the Jaccard coefficient
and the Dice coefficient are as follows:

Jaccard �
A0 ∩Bi
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+e peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM) were used to analyze the quality of seg-
mented images. +e PSNR is commonly used to evaluate the
difference between the image to be tested and the standard
image. +e calculation method is given as follows:

PSNR A0, Bi( 􏼁 � 10 log10
M

2

MSE A0, Bi( 􏼁
􏼠 􏼡. (28)

+e SSIM evaluation results were more similar to human
senses [12]. +e calculation method of SSIM is expressed in
the following equation:

SSIM A0, Bi( 􏼁 � L A0, Bi( 􏼁( 􏼁 · C A0, Bi( 􏼁( 􏼁• S A0, Bi( 􏼁( 􏼁.

(29)

In equations (28) and (29), A0 represents the part of the
standard segmented image that belongs to category i, Bi
represents the part of the image segmented by the seg-
mentation algorithm that belongs to category i, M denotes
the peak signal, MSE (A0, Bi) denotes the image mean square
error, L (A0, Bi) represents the brightness contrast, C (A0, Bi)
refers to the contrast, and S (A0, Bi) refers to the structure
contrast.

Skull removal

Fourier shape 
descriptor

Canny operator to 
extract edges

Obtain grayscale 
histogram

Obtain the Fourier 
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End

Y

N

Figure 2: +e specific process for the middle H-shaped region
segmentation of the cerebrospinal fluid in the MRI image.
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2.4. Research Objects and �eir Grouping. 36 LCI patients
diagnosed in hospitals from February 2019 to June 2020 were
selected as the research objects. All patients underwent
cranial MRI examination, including 25 males and 11 fe-
males.+e age range of the patients was 42–86 years, with an
average age of 59.45± 6.19 years. +e inclusion criteria were
defined as follows: patients with ischemic stroke with
neurological deficit symptoms within one month of onset
and patients whose follow-up MRI interval was >2 months.
+e exclusion criteria were defined as follows: patients with
extensive cerebral infarction; patients with a history of
malignant tumors; patients with severe liver or renal in-
sufficiency; and patients with a history of mental illness and
family history. Patients were divided into a control group
(without restroke, 20 cases) and a stroke group (with
restroke, 16 cases) according to whether they had restroke.
+e process had been approved by the ethics committee of
the hospital, and all subjects included in the study had signed
the informed consent forms.

2.5. MRI Examination and Lesion Measurement Method.
All patients were examined with a 3.0 TMRI scanner. Dif-
fusion-weighted imaging (DWI) scanning parameters were
determined as follows: the time of repetition (TR) was
4100ms, time of echo (TE) was 102ms, field of view (FOV)
was 230mm, and layer thickness was 5mm. +e parameters
of T2-weighted imaging (T2WI) were determined as follows:
TR was 6000ms, TE was 125ms, FOV was 240mm, and
layer thickness was 5mm.

+e MRI image scanning and lesion diameter mea-
surement of all patients were completed by a neurologist and
an imaging doctor. +e diameter of the lesion was measured
on the DWI sequence in the MRI image, and the largest
diameter was selected through multiple measurements.

2.6. Observation Indicators and Standards. +e clinical data
and imaging characteristics of patients at the time of en-
rollment were collected. +e clinical data included the pa-
tient’s age, gender, urine protein, and disease history. +e
MRI features of asymptomatic cerebral infarction (SCI),
white matter lesions (WMLs), and perivascular space (PVS)
of the patients were collected and measured.

+e Fazekas scale [13] was used to evaluate the lateral
paraventricular and deep WML scores. +e paraventricular
WML score can be graded into 4 levels: 0 points (no lesions
were seen), 1 point (cap-shaped/pencil linear lesions were
visible), 2 points (smooth and ring-shaped lesions were
visible), and 3 points (irregular lesions to the deep white
matter can be seen).+e deepWML score can also be graded
into four levels: 0 points (no lesions were seen), 1 point
(spotted lesions were visible), 2 points (visible lesions began
to merge), and 3 points (large patches of lesions were visible
fusion).

2.7. Statistical Analysis. +e test data were processed using
SPSS20.0 statistical software. +e mean± standard deviation
(x± s) of the measurement data was expressed by the t-test,

the count data were expressed by the percentage (%), and the
χ2 test was used. P< 0.05 indicated that the difference was
statistically significant.

3. Results

3.1. Analysis of the Brain Tissue MRI Image Segmentation
Results Based on the FLICM Algorithm. +e brain tissue of
the original brain MRI image (Figure 3(a)) was segmented
by the FLICM algorithm optimized in this study. +e seg-
mented brain white matter image (Figure 3(b)), cerebro-
spinal fluid image (Figure 3(c)), and brain gray matter image
(Figure 3(d)) showed that the optimized FLICM algorithm
can completely segment different brain tissues from brain
MRI images.

3.2. Performance of Brain Tissue MRI Image Segmentation
Based on the FLICM Algorithm. +e optimized FLICM al-
gorithm in this study was compared with the fuzzy C-means
algorithm (FCM) and convolutional neural network (CNN)
segmentation of brain tissue MRI images of the brain white
matter Jaccard coefficients (Figure 4). As the noise level
continued to increase, the Jaccard coefficients of different
segmentation algorithms showed a downward trend. Under
the same noise, the Jaccard coefficient of the optimized
FLICM algorithm was remarkably higher than that of the
other algorithms.

+e optimized FLICM algorithm in this study was
compared with the FCM algorithm and CNN algorithm in
segmentation of brain tissue MRI images of the brain gray
matter Jaccard coefficient (Figure 5). As the noise level
continued to increase, the Jaccard coefficients of different
algorithms for brain gray matter segmentation all showed a
downward trend. Under the same noise, the Jaccard coef-
ficient of the optimized FLICM algorithm was much higher
in contrast to that of the other algorithms.

+e Dice coefficients in the white matter of brain tissue
MRI images with different algorithms were analyzed and
compared, and the results are illustrated in Figure 6. As the
noise level continued to increase, the Dice coefficients of
different algorithms for brain white matter segmentation all
showed a downward trend. Under the same noise, the Dice
coefficient of the optimized FLICM algorithm was obviously
higher than the coefficients of the other algorithms.

+e Dice coefficient of gray matter in MRI images of
brain tissues with different algorithms was compared, and
the results are given in Figure 7. As the noise level continued
to increase, the Dice coefficient of gray matter segmentation
by different algorithms showed a downward trend. Under
the same noise, the Dice coefficient of the optimized FLICM
algorithm was obviously higher than that of the other
algorithms.

3.3. Evaluation of the Segmentation Quality of MRI Images
Based on the FLICM Algorithm. +e PSNR values of the
brain tissue MRI images with different algorithms were
compared, and the results are disclosed in Figure 8. As the
noise density increased, the PSNR values of the brain tissue

Contrast Media & Molecular Imaging 5



MRI image segmentation by different algorithms showed a
downward trend. Under the same noise, the PSNR value of
the optimized FLICM algorithm was obviously higher than
that of the other algorithms.

+e SSIM values of brain tissue MRI images with dif-
ferent algorithms were compared, as given in Figure 9. As
the noise density increased, the SSIM values of brain tissue
MRI image segmentation by different algorithms showed a

(a) (b) (c) (d)

Figure 3: +e brain tissue MRI image segmentation results based on the FLICM algorithm. (a) +e initial MRI image; (b) the segmented
brain white matter MRI image; (c) the segmented cerebrospinal fluid MRI image; and (d) the segmented brain gray matter MRI image.
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Figure 4: Comparison of the Jaccard coefficients of the brain white
matter segmentation in MRI images with different algorithms.
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Figure 5: Comparison of the Jaccard coefficients of the brain gray
matter segmentation in MRI images with different algorithms.
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Figure 6: Comparison of the Dice coefficients of brain gray matter
segmentation in MRI images with different algorithms.
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Figure 7: Comparison of the Dice coefficients of brain gray matter
segmentation in MRI images with different algorithms.
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downward trend. Under the same noise, the SSIM value of
the optimized FLICM algorithm was obviously higher in
contrast to the values of other algorithms.

3.4. Comparison of the Running Time and Segmentation
Accuracy of MRI Image Segmentation Based on the FLICM
Algorithm. +e running time and segmentation accuracy of
different algorithms for segmenting the brain tissue MRI
images were compared for detailed analysis. As illustrated in
Figure 10, the optimized FLICM algorithm showed the
shortest running time (26 s) and the highest accuracy
(97.86%) for segmenting brain tissue MRI images, which
were greatly better than those of the other algorithms,
showing statistically obvious differences (P< 0.05).

3.5. Imaging Characteristics of LCI MRI Images. In the ab-
normal white matter signal, the T1 sequence showed an
equal/low signal (Figure 11(a)) and the T2/flair sequence
showed a high signal (Figures 11(b) and 11(c)), with

unclear edges and no cavitation in the lesion. A lacunar
infarct (shown by the red arrow in the figure) was found
on the MRI image, with a diameter of 3 to 15 mm,
showing the characteristics of the cerebrospinal fluid
signal.

+e abnormal perivascular space showed a low signal
on the T1-weighted image (T1WI) (Figure 12(a)) and a
high signal on the T2-weighted image (T2WI)
(Figure 12(b)) on MRI, and the maximum diameter of the
lesion was less than 3mm, which was similar to the signal
characteristics of the cerebrospinal fluid (shown by the red
arrow in the figure).

WMLs on MRI showed a flair high signal (Figure 13(a)),
T1WI low signal (Figure 13(b)), and T2WI high signal
(Figure 13(c)), and the lesions were mostly located in the
deep white matter of the brain and around the lateral
ventricles (shown by the red arrow in the figure).

3.6.RiskFactors ofLCIRestroke. +e gender, age, and disease
history of the two groups were compared, and the results are
shown in Figure 14.+e proportion of patients with a history
of hypertension in the stroke group was much higher than
that in the control group (P< 0.05). +ere was a great
difference in the location of the lesion between the two
groups (P< 0.05). +e proportion of patients with WML
scores greater than 2 in the stroke group was higher than that
in the control group (P< 0.05), and the proportion of pa-
tients with deep WML scores of 2 in the stroke group was
higher than that in the control group (P< 0.05). In addition,
the average age of patients in the stroke group was ob-
servably higher in contrast to that of the control group
(P< 0.05).

Logistics was used for multivariate regression analysis
(Table 1). Age and history of hypertension were risk
factors for LCI restroke (P< 0.05). +e location of the
lesion and the WML score of the lateral ventricle were
greater than 2 points, and the deep WMLs score was 2
points, showing no correlation with the occurrence of LCI
restroke (P> 0.05).
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Figure 8: Comparison of the PSNR value of brain tissueMRI image
segmentation with different algorithms.
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Figure 10: Comparison of the running time and segmentation
accuracy of different algorithms for segmentation of MRI images.
Note: ∗suggests that the difference was statistically obvious in
contrast to FLICM algorithms (P< 0.05).
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4. Discussion

Based on the FLICM algorithm, the level set method was
introduced to automatically segment the brain tissue MRI
image, and the Canny edge detection algorithm and Fourier
shape descriptor were introduced to identify and segment
the middle H-shaped area of the cerebrospinal fluid in this

study. +e results showed that, under different noise levels,
the Jaccard coefficient, Dice coefficient, PSNR value, and
SSIM value of the optimized FLICM algorithm for brain
tissue white matter and gray matter segmentation were
higher than those of the FCM and CNN algorithms. It
suggested that the optimized FLICM algorithm in this study
can effectively improve the segmentation performance and

(a) (b) (c)

Figure 11: MRI image of asymptomatic cerebral infarction of a male patient aged 45 years. (a), (b), (c)+e T1-weighted image, T2-weighted
image, and flair manifestation, respectively.

(a) (b)

Figure 12: +e perivascular space MRI image of a male patient aged 58 years. (a), (b) +e T1WI and T2WI, respectively.

(a) (b) (c)

Figure 13: WML MRI image of a patient. (a), (b), (c) +e flair manifestation, T1WI, and T2WI, respectively.
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Figure 14: Comparison of clinical data and MRI image features of the two groups of patients. (a) +e comparison of gender and disease
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(P< 0.05).
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image quality of MRI images. +e traditional FCM algo-
rithm does not take into account the spatial information
between image pixels, which makes image segmentation less
robust, resulting in a severe degradation of noise image
segmentation performance [14]. +e FLICM algorithm in
this study took into account both the image gray information
and the spatial position information, so the segmentation
performance was greatly improved [15].+e Canny operator
has a certain ability to suppress noise [16], which further
improves the quality of segmented images. +e research
results in this study revealed that the shortest running time
of the optimized FLICM algorithm to segment brain tissue
MRI images was 26 s, and the highest accuracy was 97.86%,
which was much better than other algorithms (P< 0.05).
+is is because the introduction of the level set method in the
FLICM algorithm reduces the defect of constantly initial-
izing the contour of the curve [17] and increases its seg-
mentation speed and segmentation accuracy. Zavala
Bojorquez et al. [18] used wavelet coefficients as the features
vector of the image, adopted the principal component
analysis (PCA) to reduce the dimensionality of the features
vector, and segmented the MRI image after optimizing the
parameters of the support vector machine using the genetic
algorithm PSO; it was found that the segmentation accuracy
was 91.33%. Pereira et al. [19] used the optimized CNN
model to segment brain MRI images and found that the
segmentation accuracy was 94.2%. +e segmentation ac-
curacy of the optimized FLICM algorithm in this study was
visibly better than that of these algorithms.

+e results of this study indicated that age and history of
hypertension are risk factors for LCI restroke (P< 0.05). +e
location of the lesion, lateral paraventricular WML score
greater than 2 points, and deep WML score 2 points showed
no correlation with LCI restroke (P> 0.05). Li et al. [20]
pointed out that age and hypertension are risk factors for
small vascular disease in patients with LCI, which were
similar to the results of this study. WMLs are related to small
blood vessel stenosis or occlusion [21], and they are related
to factors such as age, genetics, and environmental factors.
+e WMLs increase the risk of ischemic stroke [22].

5. Conclusions

+e FLICM algorithm was optimized and applied to the
diagnosis and prognosis analysis of LCI patients in this
study. +e result was that the optimized FLICM algorithm
improved the accuracy and speed of MRI image segmen-
tation and age and history of hypertension were risk factors
for LCI restroke. However, there were still some

shortcomings in this study. +ere were few cases included in
this study, and there may be errors in the analysis of MRI
image features. In future work, we will increase the sample
size and further analyze the correlation between MRI image
features and LCI restroke. In summary, the optimized
FLICM algorithm can effectively segment MRI images, and
age and history of hypertension were risk factors for LCI
restroke. +e results of this study could provide a reference
for the diagnosis and prognosis of LCI.
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