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ABSTRACT

It is a challenge to efficiently integrate and present
the tremendous amounts of single-cell data gen-
erated from multiple tissues of various species.
Here, we create a new database named SPEED for
single-cell pan-species atlas in the light of ecol-
ogy and evolution for development and diseases
(freely accessible at http://8.142.154.29 or http://
speedatlas.net). SPEED is an online platform with
4 data modules, 7 function modules and 2 dis-
play modules. The ‘Pan’ module is applied for
the interactive analysis of single cell sequencing
datasets from 127 species, and the ‘Evo’, ‘Devo’,
and ‘Diz’ modules provide comprehensive analy-
sis of single-cell atlases on 18 evolution datasets,
28 development datasets, and 85 disease datasets.
The ‘C2C’, ‘G2G’ and ‘S2S’ modules explore in-

tercellular communications, genetic regulatory net-
works, and cross-species molecular evolution. The
‘sSearch’, ‘sMarker’, ‘sUp’, and ‘sDown’ modules al-
low users to retrieve specific data information, obtain
common marker genes for cell types, freely upload,
and download single-cell datasets, respectively. Two
display modules (‘HOME’ and ‘HELP’) offer easier ac-
cess to the SPEED database with informative statis-
tics and detailed guidelines. All in all, SPEED is an
integrated platform for single-cell RNA sequencing
(scRNA-seq) and single-cell whole-genome sequenc-
ing (scWGS) datasets to assist the deep-mining and
understanding of heterogeneity among cells, tis-
sues, and species at multi-levels, angles, and orien-
tations, as well as provide new insights into molec-
ular mechanisms of biological development and
pathogenesis.
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INTRODUCTION

Heterogeneity is ubiquitous among cells, tissues, organs,
and species. High cellular diversity exists in the mammalian
lung (1,2). Early embryonic cells and pluripotent stem cells
are differentiated into function-specific cells within tissues
and organs by switching on/off diverse gene expression pat-
terns during the development (3–5). The interactions be-
tween gene expression and stimuli play decisive roles in
the maintenance of health status or disease development
(6). Each cell type demonstrates different transcriptome
changes in response to microbial and environmental insults
(7,8). It is critical to compare gene expression profiles of cell
types between normal and pathological tissues and clarify
the biological significance and pathogenesis mechanisms.

Methods of cell classification by cell morphology or
specific gene/protein expression panels characterize well-
known cell types, while lacking the systematicity and cor-
relation. The transcriptome or proteome at bulk cells and
tissue fails to define the gene expression profile at sin-
gle cell resolution. The scRNA-seq is an advanced high-
throughput sequencing technology to capture the transcrip-
tome of single cells on a large scale and to unbiasedly clas-
sify cell types in complex tissues and dissect the gene ex-
pression in individual cells (9). scRNA-seq provides oppor-
tunities to reliably identify novel or rare cell types (10), dis-
criminate closely related cell populations (11), and define
cell heterogeneity, differentiation, and development (12).
With rapid development, scRNA-seq offers an unprece-
dented impetus to the initiation of an ambitious interna-
tional consortium, the Human Cell Atlas (HCA) (13). In
addition, the cellular atlas in multiple tissues or organs of
other species has been accomplished by scRNA-seq in re-
cent years, e.g. tissue cells from 11 non-model animals (14),
circulating immune cells among 12 species (15), eight or-
gans and tissues of mouse embryos at different stages (12),
mice lung cells across aging stages (16,17), and pig cerebral
cortex, hypothalamus (18), and lung (2). Single-cell tran-
scriptomic data from pathologic tissues of patients and an-
imal models of diseases is generated rapidly, e.g. cells from
lower airways of asthmatic patients (19), fibrotic lungs of
mice (20), and three brain regions of the Parkinson’s disease
model mouse (21).

Fast-increasing amounts of single-cell data on multiple
tissues among different species are generated worldwide.
The challenges are the deposition of raw data in scRNA-
seq datasets and the difficulty of deep-mining the needed
information for non-bioinformatics scientists. Therefore, ef-
fective integration and presentation of scRNA-seq datasets
will facilitate and maximize the utilization by the research
community. Raw data and expression matrix datasets from
single-cell transcriptomes are submitted to several free aca-
demic websites such as Gene Expression Omnibus (22)
and ArrayExpress (23). Several websites were established
for collecting single-cell datasets across multiple species,
such as Single Cell Portal with 11 species (https://singlecell.
broadinstitute.org/single cell), Single Cell Expression At-
las with 20 species (24), and UCSC Cell Browser with 15
species (25). Some portals were created specifically to col-
lect scRNA-seq data for certain types of tissues or organs.
LungMAP was established for illustrating the human and

mouse lung molecular atlas (26), and ScdbLung for explor-
ing single-cell data from the lung of human, mouse, rat,
and pig (2). Of diseases-related scRNA-seq databases, Can-
cerSEA provides distinct functional states of single-cell ex-
pression signatures for 25 cancer types (27), and CSEA-
DB for 598 GWAS traits associated with the underlying
cell types on basis of scRNA-seq (28). SC2disease is an ac-
curate resource of gene expression profiles for 25 diseases
(29). TISCH integrates scRNA-seq profiles from 76 tumor
datasets (30). PBatlas was recently established as a versatile
website to access the pig brain atlas (18). The CellMarker
database records cell markers for human tissues and mouse
tissues (31). VThunter presents the cell expression pattern
of 107 virus receptors from 47 animal species (32).

Although some databases are focused on specific appli-
cations, there is still a practical need to construct databases
with more species and with a special focus on the hetero-
geneities among cells, tissues, organs, and species. Thus, it is
urgent to build a systematic, hierarchical, and comprehen-
sive gene expression profiling database from public scRNA-
seq data. To address those issues, we centralized multiple
scRNA-seq datasets and established a comprehensive and
freely accessible online database called SPEED.

DATA COLLECTION AND DATABASE CONTENT

A total of 5,770,427 cells from 634 datasets across
127 species were collected into the SPEED database.
The scRNA-seq datasets were downloaded from
multiple sources, including NCBI/GEO (22), EMBL-
EBI/SCEA (24), ArrayExpress (23), HCL (33), UCSC
Cell Browser (25), MCA (34), and Single Cell Portal
(https://singlecell.broadinstitute.org/single cell), priori-
tizing studies with RDS files or gene expression matrix
available. The navigation menu contains 13 modules, such
as ‘HOME’, ‘Pan’, ‘Evo’, ‘Devo’, ‘Diz’, ‘C2C’, ‘G2G’,
‘S2S’, ‘sSearch’, ‘sUp’, ‘sDown’, ‘sMarker’, and ‘HELP’
(Figure 1A). All detailed information on scRNA-seq
datasets of 122 species, is found on the ‘sDown’ module
of SPEED, including data sources, timing, technologies,
common and Latin names of species, sample tissues,
treatments, and cell numbers. In addition, we collected
the single-cell WGS (sc-WGS) datasets from 16 species
in the ‘Pan’ module (35). The whole-genome sequencing
(WGS) technology provides an in-depth description of
single nucleotide polymorphisms (SNPs), small insertions,
and deletions (INDELs).

The scRNA-seq datasets were checked manually and pro-
cessed using Seurat v4.1.1 (36). In brief, quality control was
conducted for the downstream analysis by retaining cells
with nFeature RNA between 200 and 6000. The ‘Normal-
izeData’ function in Seurat v4.1.1 was then utilized to nor-
malize gene expression matrix of the sparse single cell. The
‘FindVariableFeatures’ function was used to identify highly
variable genes. The top 2000 highly variable genes were then
dimensionally reduced using the principal component anal-
ysis (PCA). The top 30 principal components were picked
for clustering. The visualization of single cell data sets was
achieved using ShinyCell package (37). Cellular communi-
cation was analyzed in the ‘C2C’ module using CellChat
(38). In the ‘G2G’ module, putative interactions between

https://singlecell.broadinstitute.org/single_cell
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Figure 1. Overview of SPEED database. (A) Navigation menu of the SPEED website. (B) Statistics of Pan, Evo, Devo, and Diz modules in SPEED. (C)
Single-cell data collection of the four data modules.

transcriptional factors (TFs) and downstream targets were
predicted using GENIE3 (39) and GO enrichment was per-
formed using clusterProfiler (40).

USER INTERFACE

The web application and search engine in SPEED are
currently mounted on a high-performance Linux server.
Users worldwide can freely access database for in-depth
data visualization and custom analysis of 127 species and
function modules for further personalized analysis. There
are 13 modules in the navigation menu of SPEED (Fig-
ure 1A), which are grouped into three categories: display,
data, and function. The display category includes ‘HOME’
and ‘HELP’ modules. The ‘HOME’ module introduces
the statistics of datasets (Figure 1B). The ‘HELP’ module
guides users to easily understand the SPEED user inter-
face. A brief description and a frame-by-frame animation
demonstration are provided for each module to help users
to easily catch key points of the module usage.

SPEED is designed mainly for the data categories: ‘Pan’,
‘Evo’, ‘Devo’, and ‘Diz’ modules in the navigation menu

(Figure 1C). The ‘Pan’ module is one of the most core mod-
ules of SPEED, containing scRNA-seq datasets from 122
species and sc-WGS data for 16 mammalian species. On
the ‘Pan’ page, the 122 species scRNA-seq datasets were
grouped into 9 classes (i.e. mammals, birds, reptiles, fishes,
amphibians, invertebrates, protozoa, plants, and microor-
ganisms), according to different kingdoms and phyla (Fig-
ure 1C). The ‘Pan’ module allows the interactive exploration
of each individual cell-type gene expression profile. If users
wonder the cell-types-specific expression profile of a certain
gene of interest in a certain tissue of a certain species, they
can perform the following operations to obtain the desired
information as shown in Figure 2A and B. When users move
the cursor onto one species’ image (e.g. ‘Bonobo’) (41), a
sliding tab will pop up with the common species name in
black font and its Latin name in green italics (Figure 2A).
By clicking the sliding tab on the species image and the link
in the column of ‘Rds’, users can browse the basic informa-
tion of the species and the detailed information of single-
cell atlas on a new tab page. Clicking the ‘View cell atlas
in ShinyCell’ in red font guides users to a new page with
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Figure 2. Demonstration of Pan module. (A) Operation to access cell atlas in ShinyCell on the species profile page and download RDS files. (B) Illustration
of viewing multi-classified cell and gene expression information in ShinyCell. (C) Illustration of viewing gene co-expression information. (D) Operation to
view cell or gene information in Violinplot or Boxplot. (E) Operation to view the single cell composition.(F) Operation to view the gene expression pattern
in Bubbleplot/Heatmap.
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Figure 3. Overview of Evo and Devo modules. (A) Tissue types of each species in Evo module. Tissue types and species names are shown from the inner
circle to the outer circle. (B) Operation to access the datasets in Evo module. (C) Distribution of tissue types in development time points in Devo module.
(D) Operation to view the datasets in Devo module.

seven tabs on the navigation menu (Figure 2A). In doing so,
users may continue to visualize gene expression profiles and
cell-type information for genes of interest. The ‘CellInfo
vs GenExpr’ tab simultaneously visualizes cell information
and gene expression side-by-side on low-dimensional rep-
resentations. There are multiple options (e.g. ‘tSNE1’ for
X-axis and ‘tSNE2’ for Y-axis) to choose from in the drop-
down box under the X-axis and Y-axis of ‘Dimension Re-
duction’. Different dimensions of cell information are pre-
sented by switching the options (e.g. ‘celltype’) in the drop-
down box under ‘Cell Information’ (Figure 2B, left). The
cell-type gene expression profiles are visualized by choosing
gene name of interest (e.g. ‘SNAP25’) in the drop-down box

under ‘Gene Information’ (Figure 2B, right). The ‘CellInfo
vs CellInfo’ and ‘GenExpr vs GenExpr’ tabs visualize two
cell information and two gene expressions side-by-side on
low-dimensional representations, respectively (Figure S1).
Researchers can analyze the co-expression relationships be-
tween two genes on each cell-type of a certain tissue of in-
terest, which may be realized through the following steps.
The ‘Gene coexpression’ tab visualizes the cell-type co-
expression of two genes (e.g. ‘SNAP25’ and ‘PPP3CA’) on
low-dimensional representations when users choose or in-
put two genes of interest in the boxes under ‘Gene Expres-
sion’ button (Figure 2C). The ‘Violinplot/Boxplot’ tab vi-
sualizes the gene expression or continuous cell information
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Figure 4. Demonstration of Diz module. (A) Operation to search for the disease atlas by hierarchical selection. (B) Illustration of obtaining disease cell
atlas by tissue name. (C) Illustration of viewing disease cell atlas by anatomical label. (D) Illustration of obtaining disease cell atlas in the summary table.

across groups of cells when users choose the option or in-
put gene of interest in the boxes under ‘Cell information
(X-axis)’ and ‘Cell Info/Gene name (Y-axis)’ (Figure 2D).
The ‘Proportion plot’ tab shows the proportion and num-
ber of single cells (Figure 2E). The ‘Bubbleplot/Heatmap’
tab visualizes the gene expression patterns of multiple genes
which are grouped by categorical cell information (e.g. cell-
type, RNA snn res.1, and seurat clusters) (Figure 2F).

In addition to scRNA-seq datasets, sc-WGS datasets of
16 mammalian species are available in the tenth class on the
‘Pan’ module, which provide detailed information of SNPs
and INDELs (35) (Figure S2A). By clicking the sliding tab
on the species image (e.g. ‘King colobus’), a new page pops
up and shows basic information of the dataset and two link
buttons, ‘View SNP information’ and ‘View Indel informa-
tion’ (Figure S2B). When users click the two links buttons, a
new tab page appears with detailed information of the SNPs
or INDELs from sc-WGS datasets (Figure S2C-D), includ-
ing chromosomes, start and end sites, intergenic, intronic or
exonic, sequencing methods, and others.

The ‘Evo’ module displays 18 datasets of multiple tissues
from 28 species, including brain, lung, heart, bladder, ocu-
lar compartment, eye, bone marrow, intestine, kidney, liver,
embryo, and peripheral blood mononuclear cell (PBMC)
(Figure 3A). Cross-species comparisons of single-cell at-
las of mammals, reptiles, and other species provide a ref-
erence evolutionary reservoir of developmental programs
to explore potential networks among evolutionarily distant
species. When users click the dataset picture (e.g. ‘Brain data
sets (Geirsdottir et al Cell)’) on the ‘Evo’ module (Figure
3B), the current page switches to a new page to show all

species pictures and their common names linked with the
corresponding literature (42). By clicking the species pic-
ture (e.g. ‘Human’), users get more detailed information on
the scRNA-seq atlas via the link button ‘View cell atlas in
ShinyCell’ in a new tab page (Figure 3B).

The developmental single-cell atlas is critical for under-
standing of stem cell biology. The ‘Devo’ module contains
28 single-cell datasets from 10 species (Figure 3C). On the
‘Devo’ page, the scRNA-seq dataset picture at each devel-
opmental stage (e.g. ‘Week 10’ under ‘Homo sapiens’) (43)
(Figure 3D) was linked with a new tab page to show more
details of the dataset by clicking the button ‘View cell atlas
in ShinyCell’.

The ‘Diz’ module encompasses scRNA-seq datasets of 85
diseases (Figure 4A), including neurological, respiratory, di-
gestive, cardiovascular, immunological, urinary, endocrino-
logical, reproductive, and motor system diseases (Figure
4A). The disease-related scRNA-seq atlas (e.g. ‘Parkinson
disease’) (44) can be viewed via the species-system-disease
hierarchical select (Figure 4A), the disease tag (Figure 4B),
or the tissue name (Figure 4C), to direct users to a new tab
page with the basic information of the disease and dataset.
By clicking the link button (e.g. ‘Diz035) (45) in the column
of ‘DizlD’ (Figure 4D), users can obtain more detailed in-
formation on disease-related scRNA-seq atlas via the link
button ‘View cell atlas in ShinyCell’ in a new tab page.

Seven function modules in the navigation menu in-
clude ‘C2C’, ‘G2G’, ‘S2S’, ‘sSearch’, ‘sUp’, ‘sDown’, and
‘sMarker’ (Figure 1A). The ‘C2C’ module provides poten-
tial cell interaction networks and signaling pathways be-
tween cell types. The potential intercellular communication
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Figure 5. Demonstration of C2C and G2G modules. (A) Operation to search for the dataset in C2C module. (B) Intercellular communications between
one cell type and other cell types. (C) Intercellular communications for all cell types. (D) Heatmap showing the FN1 signalling pathway network among
cell types. (E) Operation to search for the dataset in G2G module. (F) Genetic regulatory networks (GRNs) of GATAD2B and its candidate target genes.
(G) Gene Ontology (GO) term enrichment analysist of GATAD2B.



Nucleic Acids Research, 2023, Vol. 51, Database issue D1157

Figure 6. Demonstration of S2S, sSearch, sUp, sDown, and sMarker modules. (A) Steps to view gene expression level for cell types of four species in
S2S module. (B) Operation to search for the dataset in sSearch module. (C) Operation to upload the dataset to SPEED in sUp module. (D) Operation to
download the dataset of four data modules in sDown module. (E) Operation to obtain marker genes of organs in sMarker module.

mediated by ligand-receptor pairs analysis is performed us-
ing R package CellChat (38). The ligand-receptor pairs are
assigned to different signaling pathways. On the ‘C2C’ page,
when users choose one species (e.g. ‘African green monkey’)
(46) under the ‘View C2C’ drop-down box via hierarchi-
cal selection and then click ‘Submit’ button (Figure 5A), a
new tab page appears and presents the basic information of
dataset, intercellular communication networks, and signal-
ing pathways. The intercellular communications of one cell
type with other cell types are shown in one image (Figure
5B), and all intercellular communications among cell types
are merged in the last image (Figure 5C). The thickness of
lines between cell types represents the strength of intercel-
lular communication. Some signaling pathways are mainly
enriched in intercellular communications between certain
cell types. Each heatmap in Figure 5D shows one signaling
pathway network among particular cell types. The table at
the bottom shows the detailed information on every ligand-

receptor interaction and related signaling pathway between
any two cell types. Users can get customized cellular infor-
mation by inputting the keywords in the ‘Search’ box.

TFs and candidate target genes in each cell type are de-
termined based on the scRNA-seq data. The ‘G2G’ mod-
ule predicts the putative GRNs between TFs and candidate
targets, to promote the understanding of the transcriptional
regulation on the cell type level. Users view GRNs of each
TF via hierarchical selection at the drop-down box of ‘View
G2G’ (46) (Figure 5E). The TF name in red font is located in
the hub of GRNs, around which candidate target genes are
scattered (Figure 5F). The ‘View GO enrichment for each
regulon’ catalogue performs GO (Gene Ontology) term en-
richment analysis on candidate target genes of each regulon.
The top GO terms for each regulon are shown under the
‘View GO enrichment for each regulon’ item (Figure 5G).

The ‘S2S’ module allows cross-species comparison of
expression patterns of transcription factor encoding gene.
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Users query the cell-type expressions of one gene (Figure
6A) by selecting the tissue, choosing four species from four
drop-down boxes, and selecting one gene and then click-
ing the ‘Plot’ button. Afterwards, a horizontal bar chart is
generated to show the gene expression on cell types across
species (14) (Figure 6A).

The ‘sSearch’ module provides an optional query
mode combination for detailed information on scRNA-seq
datasets. On the ‘sSearch’ page, users can query individu-
ally or in combination of multiple criteria (Figure 6B). Af-
ter users click the ‘Apply’ button, the searched results are
shown in the table below (Figure 6B). The RDS file of in-
terest in the ‘Table’ could be downloaded via clicking the
link in blue font of Rds (Figure 6B).

The ‘sUp’ module allows users to upload their own
datasets to SPEED database. Users need to fill in email
address, institution, species name, and tissue origin in the
columns of ‘information collection’ before uploading the
datasets (Figure 6C).

The ‘sDown’ module allows users to download all
datasets in Rds file format. On the ‘sDown’ page, users
choose one (e.g. ‘Pan’) of the ‘Pan’, ‘Evo’, ‘Devo’, and ‘Diz’
modules under the ‘Download RDS file for each module’,
followed by the appearance of a key information table with
details and download links for all Rds files in ‘Pan’ mod-
ule (Figure 6D). Users can obtain the single-cell sequencing
dataset of interest by clicking the ‘Download’ button.

Cell types in scRNA-seq data are identified by cell clus-
tering with known marker genes. The ‘sMarker’ module
gathers marker genes of different species in nine systems.
On the ‘sMarker’ page, users query and download marker
gene tables by clicking ‘Search cell markers by species’ or
‘Browse cell markers by tissue’. When users choose the
classification/species/tissue/rds options in the drop-down
box of ‘Search cell markers by species’ and press the ‘Sub-
mit’ button (Figure 6E), a new page appears with the species
image and the basic information, as well as a link ‘View
Marker Gene Table’ in red font. By clicking this link, users
are directed to a new tab page with the table of marker
genes. Users can search for any marker gene and download
marker gene tables (Figure 6E). The entire datasets with
marker gene tables are accessible via the link ‘View cell at-
las in ShinyCell’. Alternatively, users can obtain the marker
gene by choosing the tissue or organ image of interest under
the ‘Browse cell markers by tissue’ item (Figure 6E). Once
the tissue or organ image (e.g. ‘Brain’) is clicked, users will
see a dataset table with the links of Rds files on a new page.
Users can click the link to access the marker gene table.

SUMMARY AND FUTURE PERSPECTIVES

With rapid development of scRNA-seq technology, the
number of scRNA-seq datasets is growing. The valu-
able data are systematically summarized and presented
in a freely and publicly accessible database for global
researchers to optimize the utility, explore scRNA-seq
datasets, and facilitate scientific research, especially for sci-
entists who lack bioinformatics experiences. Here, we col-
lected publicly available single-cell sequencing datasets to
create the freely accessible website SPEED, which enables
researchers to easily interpret high-quality data resources.

SPEED is a powerful tool to deeply mine and define the
heterogeneity among cells, tissues, and species. We sorted
relevant scRNA-seq datasets to establish the ‘Evo’, ‘Devo’,
and ‘Diz’ modules for the convenience of researchers. Seven
function modules were built in SPEED to conveniently per-
form personalized analysis and mining of these scRNA-seq
datasets.

SPEED, with its dynamic integrations, will increase in
value and importance as more large-scale scRNA-seq stud-
ies are performed and the amount of scRNA-seq data is
growing exponentially. SPEED pays a special attention to
multidimensional cell information from genomics, DNA
methylation, chromatin accessibility sequencing, multi-
omics (e.g. metabolome and proteome), and trans-omics at
single-cell resolution. Data generated by spatial transcrip-
tomics will be integrated into SPEED to interpret the orig-
inal location of cells in the tissue. The feedbacks and sug-
gestions from researchers will improve the user experience
of SPEED.
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