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Linking functional connectivity and 
dynamic properties of resting-state 
networks
Won Hee Lee & Sophia Frangou

Spontaneous brain activity is organized into resting-state networks (RSNs) involved in internally-
guided, higher-order mental functions (default mode, central executive and salience networks) and 
externally-driven, specialized sensory and motor processing (auditory, visual and sensorimotor 
networks). RSNs are characterized by their functional connectivity in terms of within-network 
cohesion and between-network integration, and by their dynamic properties in terms of synchrony 
and metastability. We examined the relationship between functional connectivity and dynamic 
network features using fMRI data and an anatomically constrained Kuramoto model. Extrapolating 
from simulated data, synchrony and metastability across the RSNs emerged at coupling strengths of 
5 ≤ k ≤ 12. In the empirical RSNs, higher metastability and synchrony were respectively associated with 
greater cohesion and lower integration. Consistent with their dual role in supporting both sustained 
and diverse mental operations, higher-order RSNs had lower metastability and synchrony. Sensory and 
motor RSNs showed greater cohesion and metastability, likely to respectively reflect their functional 
specialization and their greater capacity for altering network states in response to multiple and diverse 
external demands. Our findings suggest that functional and dynamic RSN properties are closely linked 
and expand our understanding of the neural architectures that support optimal brain function.

Brain activity at rest is organized into functional resting-state networks (RSNs) defined by their spatiotemporal 
configuration and functional roles1–4. The default mode network (DMN)5, the central executive network (CEN)6 
and the salience network (SAL)7 support diverse and mostly internally-guided processes. The DMN is impli-
cated in self-referential and integrative processes5, the CEN is involved in goal-directed selection of stimuli and 
responses6, and the SAL processes information relating to varied forms of cognitive, affective and homeostatic 
salience7. Further networks, particularly the auditory (AN), visual (VN) and sensorimotor (SMN) networks, are 
known to support more specialized and mostly externally-driven functions8.

Using functional connectivity metrics, it is possible to characterize RSNs based on their internal cohesion 
and integration. RSNs with high within-network connectivity can be considered cohesive while those with low 
within-network connectivity can be considered incohesive9. Similarly, RSNs with high between-network con-
nectivity can be designated as connector networks while those with low between-network connectivity can be 
designated as provincial networks9. In the adult brain, the DMN has a unique role as a cohesive connector, the 
CEN and SAL behave as incohesive connectors while the AN, VN and SMN function as cohesive provincial net-
works9. These functional properties are considered essential components of the optimal functional configuration 
of the human brain.

More recently, the functional behavior of brain networks has been considered in terms of their synchrony 
and metastability that attempt to capture dynamic changes in network configuration. Synchrony is a measure 
of the synchronization of the individual network regions while metastability refers to the degree of variability in 
network states over time10,11. Optimal brain function is thought to occur at levels of synchrony and metastability 
that allow both efficient information flow and the adaptive changes to network states in response to external or 
internal demands10,12–18. Previous studies have found that synchrony and metastability differ between RSNs12,13,19. 
However, it is unclear whether such differences are associated with the functional connectivity profiles of the 
RSNs. The aim of the current paper is to test whether the functional and dynamic properties of RSNs are indeed 
linked. Specifically, we hypothesized that the role of internally-guided RSNs as connector networks would be 
associated with lower metastability and synchrony; lower metastability would enable connector networks to 
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maintain relatively stable configurations over time to sustain ongoing mental operations, consistent with the 
dynamic behavior of these networks during tasks13, while lower synchrony at rest would enable connector net-
works to adopt variable configurations in order to support diverse mental operations13. In contrast, we also 
hypothesized that the specialized and externally-driven function of provincial RSNs would be associated with 
greater synchrony and metastability that will enable them to change their dynamic states in response to variable 
and competing inputs while maintaining internal network cohesion consistent with their more circumscribed 
functional role.

Results
An overview of the study workflow is shown in Fig. 1. Resting-state functional magnetic imaging (rs-fMRI) and 
diffusion tensor imaging (DTI) data were obtained from 30 healthy participants. Six RSNs were extracted (DMN, 
CEN, SAL, SMN, VN, and AN). For each empirical RSN, we computed within- and between-network connec-
tivity, synchrony and metastability. In parallel, we used a Kuramoto oscillator model constrained by DTI-derived 
structural connectivity to compute measures of synchrony and metastability for simulated RSNs. For each RSN, 
we compared the dynamic properties of empirical and simulated data and examined the relationship between 
functional connectivity and dynamic metrics.

Empirical connectivity, synchrony and metastability of the RSNs.  The within- and between-network 
functional connectivity of each RSN, respectively reflecting cohesion and integration, are shown in Fig. 2A. The 
metastability and synchrony of each RSN are shown in Fig. 2B. The temporal fluctuation of the order parameter 
amplitude R t( ) for each empirical RSN from a single representative subject is shown in Fig. 2C. The metastability, 
synchrony and functional connectivity of all RSNs were normally distributed (all Kolmogorov–Smirnov-derived 
p > 0.1). None of these measures was significantly influenced by age, sex and IQ based on a series of multiple regres-
sion analyses with bootstrapping (all p > 0.12; for details see Supplementary Table S3).

Overall, externally-driven provincial networks (AV, VN and SMN) had numerically higher synchrony and 
metastability than internally-guided connector networks (DMN and CEN). The variance of metastability and 
synchrony was not statistically different between networks despite differences in network size (all p > 0.09 based 
on Levene’s test for equality to variance). Analyses of variance with bootstrapping (n = 1000) showed that the 
networks differed in metastability (F5 = 64.08; p < 0.0001; 95% confidence interval 0.18, 0.19) and synchrony 
(F5 = 125.44; p < 0.0001; 95% confidence interval 0.47, 0.49). The results remained significant after co-varying 
for network size (number of component regions), age, sex and IQ. Bonferroni corrected post-hoc pairwise com-
parisons showed that metastability was comparable between connector networks (DMN and CEN; p = 0.56) and 
between provincial networks (SMN, VN, AN; p > 0.09). However, connector networks (DMN, CEN) had signif-
icantly lower metastability than all other networks (all p < 0.001). Bonferroni corrected post-hoc pairwise com-
parisons showed that synchrony was comparable between connector networks (DMN and CEN; p = 0.98) but all 
other pairwise comparisons were significant (all p < 0.0001).

Correlation analyses with bootstrapping (n = 1000) revealed that network metastability was positively asso-
ciated with network cohesion (within-network connectivity) (r = 0.69, p < 0.0001, 95% confidence interval 0.61, 
0.76) and negatively associated with network integration (between-network connectivity) (r = −0.17, p = 0.02, 
95% confidence interval −0.30, −0.05). Similar analyses showed that network synchrony was positively associ-
ated with network cohesion (r = 0.93, p < 0.0001, 95% confidence interval 0.92, 0.95) and negatively associated 
with network integration (r = −0.20, p = 0.005, 95% confidence interval −0.32, −0.09). The relationship between 
the functional and dynamic properties of the empirical RSNs is visualized in Fig. 3A.

Simulated metastability and synchrony as a function of coupling strength.  The simulated met-
astability and synchrony of each RSN as a function of structural coupling strength is depicted in Fig. 4A,B while 
Fig. 4C shows a snapshot of phase relationships of the Kuramoto model at t = 390 s for each RSN at the cou-
pling strength of maximal metastability. The goodness-of-fit between the computational model and the empirical 
data for a range of coupling strengths was provided in terms of the absolute difference in metastability and syn-
chrony. The lowest absolute difference between the empirical and simulated data for each RSN, ranging from 0.3 
to 2% for metastability and from 0.02 to 0.9% for synchrony, was observed at the point of maximal metastability 
derived from the Kuramoto model. The maximal simulated metastability was observed at k = 5 in the DMN, SAL, 
and SMN, at k = 6 in the CEN and AN, and at k = 8 in the VN. These results suggest that varying the coupling 
strength k allowed us to reproduce the dynamic properties (metastability and synchrony) of the empirical RSNs. 
We examined the relationship between simulated metastability and synchrony versus empirical within- and 
between-network connectivity. We compared the empirical data to the simulated data at k equal to the maximal 
metastability of each RSN. As shown in Fig. 3B, the empirical and simulated metastability and synchrony of each 
RSN yielded comparable results with regards to their relationship to RSN cohesion and integration. These results 
demonstrate the computational model reproduced the dynamic properties of the empirical RSNs and their rela-
tionship with functional connectivity characteristics (within- and between-network connectivity).

Discussion
We examined the relationship between the functional and dynamic properties of the DMN, CEN and SAL, which 
represent internally-guided, connector networks, and the AN, VN and SMN, which represent externally-driven 
provincial networks concerned with processing specialized functions. Across RSNs, metastability and synchrony 
were positively correlated with within-network connectivity and negatively correlated with between-network 
connectivity, indicating that increased metastability and synchrony were associated with elevated cohesion and 
decreased functional integration.
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Figure 1.  Overview of the workflow. (A) Resting-state fMRI and diffusion tensor imaging (DTI) were obtained 
from healthy participants. After fMRI image preprocessing, 90 cortical and subcortical regions (45 in each 
hemisphere) were defined using the Automated Anatomical Labeling (AAL) atlas. A wavelet decomposition 
technique was applied to the regional fMRI time series to extract frequency-band specific fMRI signals (scale 4; 
0.03–0.06 Hz). Hilbert transformation was used to acquire phase representation of empirical fMRI time series. 
(B) Neural dynamics were simulated using the Kuramoto oscillator model constrained by empirical structural 
connectivity (coupling weights and fiber lengths) derived from the DTI data. (C) Six major resting-state 
networks (RSNs) were extracted (default mode network, central executive network, salience network, 
sensorimotor network, visual network, and auditory network). Measures of synchrony and metastability were 
computed using the order parameter R t( ) as the mean (blue) and standard deviation (red) of the order 
parameter amplitude across time, respectively, for both empirical and simulated phase time courses. The 
dynamic properties of the empirical and simulated data of each RSN were compared. In parallel, the empirical 
within- and between-network functional connectivity of each RSN were computed and their relationship with 
the dynamic properties of the empirical RSNs was examined.
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Functional cohesion, synchrony and metastability were higher in provincial than connector RSNs. This 
dynamic profile suggests that provincial networks show both high-levels of coordination and greater capacity 
for altering their network states in order to adapt to multiple and diverse external demands. On the other hand, 
the DMN and CEN, which are implicated mostly in internal and goal-directed processing5,20, had the lowest 
metastability and synchrony. The salience network (SAL), which is considered important in tuning neural activ-
ity from internal to salient external stimuli7, occupied an intermediate position. The lower metastability of the 
internally-guided networks may reflect their role as a stable core of mental processing while their lower synchrony 
may reflect the ability of their component regions to show asynchronous activity profiles, potentially enabling 
more diverse functions.

Figure 2.  Empirical network connectivity, synchrony and metastability. (A) The mean and standard error of 
mean (SEM) of empirical within- and between-network connectivity for each resting-state network (RSN) 
across all participants. (B) The mean and SEM of empirical metastability and synchrony for each RSN across all 
participants. (C) Temporal fluctuations of the order parameter amplitude R t( ) of the functional magnetic 
resonance imaging (fMRI) signal in each RSN from a single representative subject. DMN = default mode 
network, CEN = central executive network, SAL = salience network, SMN = sensorimotor network, 
VN = visual network, AN = auditory network.
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We used the Kuramoto model of coupled oscillators21 to investigate the alignment of simulated and empirical 
dynamic RSN properties. There are alternative computational models that could be used to simulate the dynam-
ics of both amplitudes and phases of oscillations, such as the Hopf model22–24, the Wilson-Cowan model25,26, the 
FitzHugh-Nagumo model27, and the Jansen-Rit model28. We chose the Kuramoto model because of its relative 
simplicity and ability to capture essential aspects of phase dynamics12,16,29–33. Additionally, the Kuramoto model 
has been successfully used in neuroscience research for the purpose of modeling slow29,34,35 and fast12,16,33,36–39 
cortical oscillations. Here, we sought to evaluate the performance of the model with fast local gamma-band oscil-
lations, in agreement with experimental40–43 and theoretical models of neural networks44. We found that the 
alignment between empirical and simulated metastability and synchrony occurred within anatomical coupling 
strengths (k) ranging from 5 to 12. Simulated and empirical synchrony were most closely aligned around the 
point of criticality, defined as the point of transition between asynchronous (dominated by noise that prevents 
information flow) and globally synchronized states (that are static and have no behavioral value). These findings 
confirm our previous report that empirical and simulated fMRI data align within the critical range of coupling 
strengths33, and are in line with the model of Kitzbichler and colleagues who proposed that simulated time series 
generate behaviors that most resemble those of empirical datasets when their global coupling strength reaches 
criticality45.

In summary, this study demonstrates that functional and dynamic RSN properties are connected and that 
the Kuramoto model provides a viable option for the investigation of the dynamic properties of empirical RSNs.

Materials and Methods
Participants.  Thirty healthy adults (19–47 years; mean age = 27.2 years; 16 females) were recruited fol-
lowing advertisements in the local press. They were interviewed to exclude any past or current medical disor-
der or head trauma and any psychiatric disorder based on the Mini-International Neuropsychiatric Interview 
(M.I.N.I.)46. Their mean intelligence quotient (IQ) was 119.3 (SD = 14.9) based on the Wechsler Abbreviated 
Scale of Intelligence (WASI-II)47. The study protocol was approved by the Institutional Review Board of the Icahn 
School of Medicine at Mount Sinai (ISMMS). All experimental procedures were performed in accordance with 
standard protocols for magnetic resonance imaging studies. All participants provided written informed consent.

Neuroimaging data acquisition.  All imaging data were acquired on a Siemens Magnetom Skyra 3 T 
scanner (Erlangen, Germany) at the ISMMS. Participants were asked to keep their eyes open during the scan. 
Rs-fMRI data were acquired with a multi-band accelerated gradient-echo echo-planar imaging (EPI) sequence 
(TR = 1000 ms; TE = 35 ms; FOV = 228 × 228 mm; matrix = 95 × 95; 2.1 mm isotropic voxels; FA = 60°; 70 slices). 
T1-weighted structural MRI images were obtained with a 3-D magnetization-prepared rapid gradient-echo 
(MPRAGE) (TR = 2400 ms; TE = 2.07 ms; TI = 1000 ms; FOV = 256 × 256 mm; 0.8 mm isotropic voxels; 
FA = 8°; in-plane acceleration factor = 2). DTI data were acquired using a single-shot spin-echo EPI sequence 
with a multi-band factor of 3 and monopolar gradient pulse (TR = 3650 ms; TE = 85 ms; FOV = 208 × 176 mm; 
matrix = 116 × 98; 1.8 mm isotropic voxels; FA = 80°; 75 slices). The diffusion sensitizing gradients with a b-value 
of 1200 s/mm2 were applied in 64 non-collinear directions (left-to-right phase encoding) with 5 non-diffusion 

Figure 3.  Relationship between functional connectivity and dynamic network properties. Cartographic 
representation of the cohesion (correlation-based, within-network connectivity), integration (correlation-
based, between-network connectivity) of the empirical resting-state networks with (A) empirical metastability 
and synchrony and with (B) simulated metastability and synchrony at optimal coupling strength (k), equal to 
the maximal metastability of each RSN. Each network is represented in a position defined by its average values 
for these measures. DMN = default mode network, CEN = central executive network, SAL = salience network, 
SMN = sensorimotor network, VN = visual network, AN = auditory network.
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weighted (b0) images. This scan was repeated with phase encoding gradients of reverse polarity to correct for b0- 
and eddy current-induced distortions and to improve signal-to-noise ratio.

Empirical fMRI data analyses.  Preprocessing of the rs-fMRI data was performed using Statistical 
Parametric Mapping (SPM) software (SPM12; http://www.fil.ion.ucl.ac.uk/spm/) and the Data Processing 
Assistant for rs-fMRI toolbox48. Steps included slice timing correction, re-alignment, coregistration of functional 
images to the anatomical T1-weighted images followed by spatial normalization to the Montreal Neurological 
Institute (MNI) stereotaxic standard space, and spatial smoothing with a Gaussian kernel with a full-width 
half-maximum of 6 mm. We then applied a wavelet despiking technique for denoising signal transients related 
to small amplitude head movements (<1 mm)49. In all participants, head motion was less than 2 mm of dis-
placement and 0.5 degrees of rotation in any direction. We regressed out 24 motion re-alignment parameters 
(6 motor parameters, 6 temporal derivatives, 6 quadratic terms, and 6 quadratic expansions of the derivatives 
of motion estimates) to compensate for head movement inside the MRI scanner50. Linear trends were removed 
and white matter and cerebrospinal fluid (CSF) signals were regressed out from the data using a component 
based noise reduction method (CompCor, 5 principal components)51. These preprocessing steps minimized the 
impact of head motion and physiological noise on the rs-fMRI data. Subsequently, for each subject we averaged 
the blood-oxygen-level dependent (BOLD) time series from each of 90 brain regions of interest (ROIs) (45 in 
each hemisphere) defined using the Automated Anatomical Labeling (AAL) template52 (Supplemental Table S1).

The BOLD time series from each of the 90 ROIs was filtered to extract frequency-band specific fMRI signals 
using the maximal overlap discrete wavelet transform53,54. Following the approach of Zhang et al.53, we utilized a 
wavelet filter of Daubechies Least Asymmetric with a wavelet length of 8 to extract the wavelet coefficients. We 
focused on scale 4 of the wavelet decomposition, corresponding to the frequency band of 0.03–0.06 Hz55–57. The 
Hilbert transform was applied to the wavelet-filtered fMRI signals to compute the associated analytical signals. 
The analytic signal represents a narrowband signal, s t( ), in the time domain as a rotating vector with an instanta-
neous phase, ϕ t( ), and an instantaneous amplitude, A t( ), i.e., ϕ=s t A t t( ) ( )cos( ( )). The phase and the amplitude 
are given by the argument and the modulus, respectively, of the complex signal z t( ), given by 

= + .z t s t i H s t( ) ( ) [ ( )], where i is the imaginary unit and H s t[ ( )] is the Hilbert transform of s t( )34,57,58. 

Figure 4.  Simulated metastability and synchrony as a function of coupling strength. (A) Metastability (black 
line) and (B) synchrony (black line) generated using the Kuramoto oscillator model as a function of structural 
coupling strength k and comparison with empirical metastability and synchrony for each resting-state network 
(RSN). Color-coded dashed lines and shaded bands indicate, respectively, the mean and standard deviation 
of the empirical data across all participants. (C) Color-coded phase circle diagram at t = 390 s for coupling 
strengths at which the simulated metastability is maximized. Solid lines in black represent the amplitude of 
the order parameter, R(390 s) = 0.3, 0.3, 0.1, 0.4, 0.4, and 0.6, respectively corresponding to k = 5, 6, 5, 5, 8, and 
6. The color of each oscillator represents the natural frequency deviation from the mean (in the color bar, S is 
the standard deviation of the natural frequencies). DMN = default mode network, CEN = central executive 
network, SAL = salience network, SMN = sensorimotor network, VN = visual network, AN = auditory network.

http://www.fil.ion.ucl.ac.uk/spm/


www.nature.com/scientificreports/

7Scientific REPOrTS | 7: 16610  | DOI:10.1038/s41598-017-16789-1

Subsequently, the first and last 10 time steps were discarded to avoid border effect inherent to the Hilbert trans-
form, such that in the following T = 390 seconds34.

Empirical DTI data analyses.  We analyzed the DTI data using an in-house image processing pipe-
line that combines tools from the FSL’s diffusion toolbox (FDT; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT)59, 
the DSI Studio60 and custom routines written in Matlab (Mathworks, Natick, MA, USA). Artifacts and spatial 
distortions due to eddy currents and head motion were corrected by deploying an affine registration between 
diffusion-weighted images and non-diffusion-weighted (b0) images. Non-brain tissue was removed using the 
brain extraction tool (BET) with a fractional intensity threshold of 0.1. Then, diffusion eigenvectors, eigenvalues, 
and fractional anisotropy (FA) for each voxel were computed using the dtifit function. Voxel-wise estimates of the 
angular distribution of local tract direction were calculated using the bedpostx function, which estimated a 2-fiber 
model using Markov Chain Monte Carlo sampling. Next, a total of 100,000 whole brain tracks were obtained 
using a deterministic fiber tracking algorithm60. The anisotropy threshold and step size were 0.1 and 0.9 mm, 
respectively, determined automatically in DSI Studio (http://dsi-studio.labsolver.org/). The angular threshold was 
60°. Fiber tracks with lengths less than 10 mm were discarded to prevent the tracking process from being over-
whelmed by short association fibers. The parcellation was performed by warping the subject space to a standard 
space using nonlinear registration61. For each subject, the AAL template was used to parcellate the entire brain 
into 90 ROIs identical to those used for the rs-fMRI data. We generated a symmetric weighted structural connec-
tivity matrix representing the density of white matter fiber tracts (streamline density) connecting any two ROIs 
and a tract length matrix representing the average length across all the fibers connecting them. The individual 
structural connectome data of all participants were averaged to obtain a group-averaged structural connectivity 
matrix and a tract length matrix. The edge weight of the structural connectivity matrix, representing the struc-
tural connectivity network organization of the brain, was normalized by the volume of the interconnected ROIs 
to account for different size of the ROIs62.

Computational modeling.  We simulated phase time series using the Kuramoto model constrained by the 
empirical structural connectivity. Each of the 90 AAL-defined ROIs was considered as an oscillator. The phase at 
each ROI over time θ t( )n  is described by a set of coupled differential equation16,21,38,63:

∑
θ

ω θ θ= + − −
=

d t
dt

k C t D t( ) sin( ( ) ( ))n
n

p

N

np p np n
1

where θn and ωn denote the phase and intrinsic frequency of region n. N is the total number of regions. k is the 
global coupling strength which scales all connections’ strength. Cnp is the relative coupling strength between 
region n and region p based on the empirical structural connectivity matrix. Dnp (ms) is the propagation delay 
matrix, determined using =D L v/ ,np np  with Lnp (mm) the empirical tract length matrix and v (m/s) the mean 
conduction velocity, such that τ=v mean L( )/ , i.e., the mean tract length divided by the mean delay.

We ran the Kuramoto simulations with a mean delay of τ = 6 ms, corresponding to a mean conduction veloc-
ity of 9.6 m/s (mean tract length = 57.3 mm), which is the midpoint within the range of physiologically realistic 
values estimated at 5–20 m/s64. Phases were initialized randomly. We set the intrinsic frequencies to be uniformly 
distributed with mean = 60 Hz and SD = 1 Hz, corresponding to oscillations within the gamma frequency 
range16,38,65, as gamma local field potential (LFP) power is coupled to the BOLD fMRI signal and is considered 
representative of the overall neuronal activity40–43. Simulations were run for 410 seconds (first 20 seconds were 
discarded to remove transient effects, such that T = 390 seconds identical to time lengths of empirical fMRI data) 
with a time-step of 0.1 ms for a range of global coupling strengths (1 ≤ k ≤ 25 at a resolution of 1) using an Euler 
scheme.

Functional and dynamic network properties.  In each subject, ROIs were assigned to the DMN, 
CEN, SAL, SMN, VN, and AN based on functional templates available through the Functional Imaging in 
Neuropsychiatric Disorders Lab at Stanford University, USA (https://findlab.stanford.edu/functional_ROIs.html) 
(Supplemental Table S2). Within-network functional connectivity for each RSN was computed by averaging the 
Pearson’s correlation between the time series of all the voxels of the ROIs assigned to each particular network. 
For between-network functional connectivity, we first calculated an average time series within each RSN (as 
described above) and then computed the Pearson’s correlation between the time series of each network and all 
the other networks (see also Supplementary Information (SI), section 2.3). These computations resulted in 6 
within-network and 6 between-network functional connectivity measures per participant that were then Fisher 
Z-transformed. Network cohesion (i.e., within-network connectivity) was defined as the mean strength of the 
functional connectivity between the regions of a given network and reflects functional cohesion; while network 
integration (i.e., between-network connectivity) was defined as the mean strength of the functional connectivity 
between one network and all the other networks, reflecting functional integration9.

To evaluate the dynamic properties of each RSN, we computed the order parameter R t( ), defined as

∑= ϕ

=
R t

N
e( ) 1

n

N
i t

1

( )n

where N is the total number of regions within each RSN and ϕ t( )n  is the instantaneous phase of regional mean 
BOLD time series at region n. The temporal fluctuation of the order parameter R t( ) for each participant is shown 
in Supplementary Figure S1. We considered the mean of the order parameter R t( ) across time, as an index of 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT
http://dsi-studio.labsolver.org/
https://findlab.stanford.edu/functional_ROIs.html
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synchrony and the standard deviation of the R t( ), as an index of metastability12,16,17,33. With regards to the simu-
lated data, we note that first-order Kuramoto models do not exhibit true metastability36 but we follow the conven-
tion of using the term metastability to refer to the standard deviation of R t( )16,17,19. We compared metastability and 
synchrony resulting from the Kuramoto model against the empirical data. The model error was quantified in 
terms of the absolute difference between the simulated and empirical values for a range of coupling strengths.

Reliability analyses.  We undertook a number of reliability analyses as detailed in Supplementary 
Information (SI) to examine the effect of (a) rs-fMRI scan duration (volumes/time points) on metastability and 
synchrony (SI section 2.1); (b) setting the intrinsic frequencies of the oscillators to be normally distributed with 
mean 0.045 Hz and SD = 0.01 Hz, corresponding to the center frequency of empirical fMRI signal (SI section 2.2); 
(c) using phase-locking value-based connectivity as an alternate method for defining RSN cohesion and integra-
tion conditions (SI section 2.3); (d) estimating the metastability and synchrony using rs-fMRI datasets from a 
sample of 30 participants of the Human Connectome Project (SI section 2.4) that were demographically matched 
to the original study sample. Finally, to ensure robustness of the simulation results, we conducted 5 additional 
runs of the Kuramoto simulation with varying random initial conditions (SI section 2.5).

Data availability.  The datasets generated during the current study are available from the corresponding 
author on reasonable request.
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