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MicroRNA-21 regulates T-cell apoptosis by directly
targeting the tumor suppressor gene Tipe2

Q Ruan*,1,2, P Wang2, T Wang2,3, J Qi2, M Wei2, S Wang1, T Fan1, D Johnson2, X Wan1, W Shi3, H Sun2 and YH Chen*,2

MicroRNAs (MiRs) are short noncoding RNAs that can regulate gene expression. It has been reported that miR-21 suppresses
apoptosis in activated T cells, but the molecular mechanism remains undefined. Tumor suppressor Tipe2 (or tumor necrosis
factor-a-induced protein 8 (TNFAIP8)-like 2 (TNFAIP8L2)) is a newly identified anti-inflammatory protein of the TNFAIP8 family
that is essential for maintaining immune homeostasis. We report here that miR-21 is a direct target of nuclear factor-jB and could
regulate Tipe2 expression in a Tipe2 coding region-dependent manner. In activated T cells and macrophages, Tipe2 expression
was markedly downregulated, whereas miR-21 expression was upregulated. Importantly, Tipe2-deficient T cells were
significantly less sensitive to apoptosis. Conversely, overexpression of Tipe2 in EL-4 T cells increased their susceptibility
to activation-induced apoptosis. Therefore, Tipe2 provides a molecular bridge between miR-21 and cell apoptosis; miR-21
suppresses apoptosis in activated T cells at least in part through directly targeting tumor suppressor gene Tipe2.
Cell Death and Disease (2014) 5, e1095; doi:10.1038/cddis.2014.47; published online 27 February 2014
Subject Category: Immunity

Over the past decade, the importance of microRNAs
(miRNAs) in the regulation of cell functions has become more
and more apparent. These small but potent regulators have
important roles in a range of processes, including hemato-
poietic cell development, immunity, and carcinogenesis.1–7

MiRNAs are small (B22 nucleotide), noncoding RNAs that
can pair with complementary sequences within mRNA
molecules. Its binding can trigger mRNA destabilization
and/or translational repression, leading to a decrease in the
protein encoded by their cognate mRNAs.8,9 One of the
miRNAs, namely miR-21, was identified as being significantly
overexpressed in a wide range of solid tumors such as breast,
lung, colon, gastric, and pancreatic cancers.10–20 In addition,
miR-21 upregulation is associated with the development of a
variety of inflammatory diseases including colitis and
psoriasis.21,22 MiR-21 acts as an antiapoptotic agent in a
variety of cell types.23,24 Recently, it was reported that miR-21
suppresses apoptosis of murine and human primary T cells
and modulates cytokine production.25–28

Proliferative expansion of lymphoid cells is required for
effective immune responses against invading microorganisms,
but the expanded effector cells must be eliminated
to prevent overaccumulation of cells after the infection
is controlled.29 The cell number, repertoire diversity, and
self-tolerance of mature T lymphocytes are tightly controlled

by a process called programmed cell death or apoptosis.
Apoptosis of mature T lymphocytes is regulated by extensive
networks of signal-transduction pathways. This ensures
controlled activation and expansion of cells during immune
responses and apoptotic deletion of lymphoid cells that are no
longer needed at the end of immune responses.30 T-cell
apoptosis occurs in at least two major forms: antigen-driven
and lymphokine withdrawal-induced. Active antigen-driven
death is mediated by the expression of death molecules such
as Fas ligand. The transcription factor nuclear factor-kB
(NF-kB) is activated by survival factors and cytokines such as
tumor necrosis factor-a (TNF-a).31 In most cell types, NF-kB
strongly inhibits apoptosis.32 Genetic deficiencies of the
NF-kB transcription factor increase spontaneous and
TNF-a-induced lymphocyte apoptosis.33 How this transcrip-
tion factor promotes cell survival is not fully understood, but it
presumably relates to the induction of survival genes or the
inhibition of death genes.

Tipe2, or TNF-a-induced protein 8 (TNFAIP8)-like 2
(TNFAIP8L2), is a member of the TNFAIP8 family, which
is preferentially expressed in hematopoietic cells.34,35 It is
significantly downregulated in patients with infectious or
autoimmune disorders and its expression inversely correlates
with disease progression.36 Germline deletion of Tipe2 results
in fetal inflammation and hypersensitivity to Toll-like receptor
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and T-cell receptor stimulation.37 Tipe2 overexpression
induced cell death and significantly inhibited Ras-induced
tumorigenesis in mice.38

We report here that the three aforementioned factors,
NF-kB, miR-21, and Tipe2, form a unique regulatory axis that
controls T-lymphocyte apoptosis. This axis is involved in
NF-kB-mediated inhibition of T-cell death and may serve as a
unique target for the regulation of immune responses.

Results

Tipe2 expression is downregulated in T cells and
macrophages after activation. Tipe2 is expressed preferen-
tially by immune cells. To test the expression of Tipe2 in T
cells, quantitative reverse-transcription PCR (qRT-PCR)
analysis of Tipe2 mRNA level was performed for CD4þ T
cells either untreated or treated with anti-CD3 plus anti-CD28
for various times (Figure 1a). We found that Tipe2 mRNA level
in T cells was decreased by threefold as early as 4 h after
activation. To test the expression of Tipe2 protein in
T cells, western blot analysis were performed for naive
CD4þ T cells either untreated or treated with anti-CD3 plus
anti-CD28 for 5 h. Tipe2 protein level was markedly decreased
in T cells after treatment (Figure 1b). In addition, blocking
NF-kB activation with Bay 11-7082 in T cells treated with
anti-CD3 plus anti-CD28 completely rescued the defect in
Tipe2 expression (Figure 1c), indicating that TCR stimulation
downregulates Tipe2 by NF-kB activation.

NF-jB regulates miR-21 expression. Consistent with
published data that miR-21 is a potential target of
NF-kB,39–41 we found that miR-21 expression was induced
by anti-CD3 plus anti-CD28 treatment in CD4þ T cells

(Figure 2a) and LPS treatment in macrophages (Figure 2b),
but was partially blocked by the NF-kB inhibitor Bay 11-7082
(Figures 2a and b). A close examination of miR-21 promoter
region using the Transcription Element Search System
(TESS, University of Pennsylvania, Philadelphia, PA, USA)
software revealed two putative NF-kB binding sites (NF-kB
no. 1, � 20 to � 12, and NF-kB no. 2, � 205 to � 196).
Because data from several groups including ours showed
that LPS resulted in the induction of miR-21 via NF-kB,
macrophages were used to determine the roles of NF-kB
during the induction of miR-21. Luciferase reporter assay
was used to determine whether the two NF-kB sites were
required for NF-kB action. Our data showed that while
LPS induced miR-21 promoter activity, mutation of either
NF-kB binding site almost completely diminished
it (Figure 2c). These data indicate that both NF-kB no. 1
and NF-kB no. 2 sites were required for the NF-kB response.

To directly test NF-kB binding to the identified sequences of
the miR-21 promoter, we performed nucleotide pull-down
analyses using both wild-type (WT) and mutant nucleotides.
We found that p65, one of the NF-kB family members, readily
bound to the nucleotides of both NF-kB sites, but not their
mutants (Figure 2d). To establish whether NF-kB binds to the
miR-21 promoter in live cells, we performed chromatin
immunoprecipitation (ChIP) analysis. The miR-21 DNA–
protein complexes were precipitated using specific antibodies
to p65 and RNA polymerase II in bone marrow-derived
macrophages either untreated or treated for 2 h with LPS.
The nature of the precipitated DNA was then defined by PCR
using primers specific for NF-kB no. 1 site. We found that in
untreated macrophages, the miR-21 promoter exhibited weak
p65 or RNA polymerase II binding. At 2 h after LPS treatment,
p65 and RNA polymerase II binding to the miR-21 promoter
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Figure 1 NF-kB-dependent downregulation of Tipe2 in T cells and myeloid cells. (a) Murine naive CD4þ T cells were either untreated or treated with plate-bound anti-
CD3 (1 mg/ml) and soluble anti-CD28 (1 mg/ml) for the indicated times, and Tipe2 mRNA levels were determined by quantitative PCR. (b) Murine naive CD4þ T cells were
either untreated or treated with plate-bound anti-CD3 (1mg/ml) and soluble anti-CD28 (1 mg/ml) for 5 h, Tipe2 protein levels were determined by western blot analysis.
(c) Murine naive CD4þ T cells were treated as in (a) for 4 h in the absence or presence of NF-kB inhibitor Bay 11-7082. Tipe2 mRNA levels were determined by quantitative
PCR. *Po0.02. The results are representative of three independent experiments
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was noticeably increased (Figure 2e). These results are
consistent with published data that miR-21 is transcribed by
RNA polymerase II and indicate that miR-21 is a direct target
of NF-kB.

Tipe2 is a direct target of miR-21. Our data presented
above showed an inverse correlation between miR-21 and
tumor suppressor Tipe2 expression in activated immune
cells, which appears to be NF-kB dependent. This prompted
us to speculate that Tipe2 could be a target of miR-21.
A sequential three-step approach was used to test this

possibility. First, putative miR-21 binding sites were identified
by bioinformatic analysis; second, functional implications of
miR-21 binding to Tipe2 mRNA was validated by luciferase
reporter assay; and finally, the relationship between
miR-21 and Tipe2 mRNA expression was examined in
overexpression systems.

The potential miR-21 binding sites were predicted using
MiRecords. However, we did not detect any putative miR-21
binding site within the 30-untranslated region (30-UTR)
of TIPE2 mRNA. Instead, putative miR-21 binding site
(þ 396 to þ 417), as well as miR-155 (þ 499 to þ 511) and
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Figure 2 NF-kB binds to and activates the miR-21 promoter. (a) Murine naive CD4þ T cells were either untreated or treated with plate-bound anti-CD3 (1 mg/ml) and
soluble anti-CD28 (1 mg/ml) for 6 h in the absence or presence of NF-kB inhibitor Bay 117-82, and miR-21 levels were determined by quantitative PCR. *Po0.01. (b) Murine
bone marrow-derived macrophages were either untreated or treated with LPS (100 ng/ml) for 4 h in the absence or presence of NF-kB inhibitor Bay 117-82. MiR-21 levels
were determined by quantitative PCR. *Po0.02. (c) RAW264.7 cells were transiently transfected with WT or NF-kB site-mutated murine miR-21 promoter luciferase
construct. After 24 h, cells were either untreated or treated with LPS (100 ng/ml) for 6 h, and the luciferase activities measured. The promoter activity is presented as fold
increase over untreated cells transfected with NF-kB site no. 2 mutated construct. To normalize the transfection efficiency across samples, the Renilla luciferase expression
vector pRL-TK was included as an internal control. *Po0.01. (d) Nuclear extracts were prepared from mouse bone marrow-derived macrophages after stimulation for 2 h with
LPS. Biotinylated miR-21 oligonucleotides containing NF-kB binding site nos. 1 or 2 or their mutants were absorbed by streptavidin–agarose beads, and then added to the
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miR-23b (þ 592 to þ 612) binding sites, was identified in the
coding region of Tipe2. Like miR-21, miR-155 and miR-23b
are also NF-kB target genes.

We next examined whether the coding region of Tipe2
(þ 307 to þ 644) could downregulate protein expression
using Dual Luciferase Reporter Assay System (Promega,
Madison, WI, USA). The luciferase reporter vectors contained
either the 30-UTR or Tipe2 coding region (þ 307 to þ 644)
downstream of the firefly luciferase gene. Consistent with the
bioinformatic result, Tipe2 coding region (þ 307 to þ 644), but
not 30-UTR, resulted in a significant downregulation of
luciferase activity (Figure 3a). Co-transfection of p65 over-
expression construct resulted in further downregulation of
luciferase activity (Figure 3b). These data indicate that a
regulatory element present in the Tipe2 coding region (þ 307
to þ 644) could downregulate Tipe2 gene expression. To
narrow down the responsive region, we performed deletional
analysis. We found that nucleotides þ 389 to þ 432 were
required for the downregulation of luciferase activity, which
contains the predicted miR-21 binding site (Figure 4a).

To validate the miRNA–target interactions, WT and miR-21
binding site-mutated Tipe2 (Figure 4b) were cloned into
luciferase reporter plasmid downstream of the firefly lucife-
rase gene. As shown in Figure 4c, miR-21 binding site-mutated
Tipe2 coding region (þ 307 to þ 644) was unable to down-
regulate luciferase activity. These data further confirm that
miR-21 targets Tipe2 in a coding region-dependent manner.

mRNA degradation is regarded as a major mechanism for
miRNA regulation of target gene expression. To determine

whether miR-21 suppresses endogenous Tipe2 expression
through mRNA degradation, EL4 (Figure 5a) and RAW264.7
(Figure 5b) cells were transfected with miR-21 mimic, and the
expression of Tipe2 and programmed cell death protein
4 (Pdcd4) mRNA was examined by qRT-PCR. We found that
overexpression of miR-21 could significantly reduce the
expression of both Tipe2 and Pdcd4 mRNA. These data
suggest that miR-21 negatively regulates endogenous Tipe2
mRNA expression through mRNA degradation.

MiR-21 regulates T-cell apoptosis through Tipe2.
Homeostatic balance within the immune system is main-
tained by a myriad of mechanisms, which include
the regulation of immune cell activation and programmed
cell death. Tipe2 is a new death-inducing protein that
governs both apoptosis and immune cell function. Tipe2
binds to caspase-8 and inhibits activator protein-1 (AP-1) and
NF-kB activation while promoting Fas-induced apoptosis.37

We found that Tipe2-deficient CD4þ T cells were resistant
to apoptosis induced by TCR activation (Figure 6a).

To explore the relevance of Tipe2 to miR-21-related
functions, we performed a functional rescue experiment by
overexpressing Tipe2 in cells ectopically expressing miR-21.
As shown in Figure 5b, overexpression of Tipe2 reduced,
but not fully eliminated, the antiapoptotic role of miR-21
(Figure 6b). These data indicate that although other possible
mediators exist, one possible downstream target of miR-21
that has a role in activation-induced T-cell apoptosis is Tipe2.

Discussion

Tipe2 is expressed preferentially in lymphoid tissues and a
small number of non-lymphoid tissues. Within the lymphoid
compartment, T cells appear to express high level of Tipe2
protein. High levels of Tipe2 were also detected in monocyte/
macrophage-derived cell lines.34,35 Our data showed that
Tipe2 expression is downregulated in T cells and macro-
phages after activation. This is consistent with reports that
Tipe2 is downregulated in patients with chronic inflammatory
diseases such as systemic lupus erythematosus and hepa-
titis, and its expression inversely correlates with disease
progression.

Annotation of miRNA genes has revealed that the majority
of the miRNAs are intergenic. Pri-miR-21 is one of the first
human miRNA genes whose regulation was extensively
studied. Pri-miR-21 has its own promoter region and miR-21
was one of the first miRNAs to be identified as transcribed by
RNA polymerase II. Potential promoter regions of pri-miR-21
have been thoroughly studied. The actual size of pri-miR-21,
the transcriptional start site and minimal promoter region
of pri-miR-21 are still subjects of debate. It has been shown
that multiple transcription factors such as STAT3, NF-kB, and
AP-1 can regulate miR-21 expression.39–45 Our data indicate
that NF-kB regulates miR-21 expression by directly binding to
its promoter.

MiRNAs are small (B22 nt) non-coding RNAs that regulate
protein-coding genes through post-transcriptional gene silen-
cing. A protein complex known as the RNA-induced silencing
complex is guided to mRNAs with partial complementarity to
the miRNA, leading to a reduced translation rate and/or
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luciferase activities measured. The promoter activity is presented as fold increase
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increased mRNA degradation. To date, a large body of
literature has provided evidence that the expression of
miRNAs is dysregulated in cancer. MiR-21 is referred to as
an ‘oncomiR’ because it downregulates tumor suppressor
genes, such as Pdcd4, phosphatase and tensin homolog
deleted on chromosome 10 (PTEN), transforming growth
factor-b-induced (also known as Big-h3), BTG family member
2 (Btg2) and reversion-inducing-cysteine-rich protein with
kazal motifs (Reck).46–55 Our data showed that Tipe2 is a new
direct target of miR-21. The identification of miR-21 binding
site within Tipe2 coding region instead of 30-UTR is
not surprising because it has been reported that some miRNA
species regulate gene expression by targeting coding
regions.56,57

MiR-21 acts as an antiapoptotic agent in a variety of cell
types. Recently, it has been reported that miR-21 suppresses
apoptosis of murine and human primary T cells and modulates
cytokine production. Specific inhibition of miR-21 increased
the apoptosis rate of activated T cells.26,28,58,59 However, the
molecular pathway by which miR-21 regulates T-cell apoptosis
is still elusive. It has been shown that PTEN, a validated miR-
21 target in various malignancies, was not involved in this
process.28 T-cell apoptosis has an important role after antigen
activation in governing immune homeostasis and tolerance.
Identification of novel miR-21-regulated targets is a necessary
step to understand miR-21 functions in activation-induced

T-cell apoptosis. Our data indicate that miR-21 suppresses
apoptosis in activated T cells at least in part through directly
targeting tumor suppressor gene Tipe2, although it is possible
that they could still act independent of each other.

In summary, we have shown that miR-21 could directly
target tumor suppressor gene Tipe2, and NF-kB inhibits
activation-induced T-cell apoptosis through the miR-21–Tipe2
axis (Figure 7). A large number of diseases such as diabetes,
rheumatoid arthritis, and multiple sclerosis appear to have a
T-cell component. Better understanding the molecular
mechanism of activation-induced T-cell apoptosis may aid in
the development of antigen-induced apoptosis therapies that
reduce or eliminate pathogenic T cells.

Materials and Methods
Mice. C57BL/6J (B6) mice that carry a Tipe2 gene null mutation were generated
by backcrossing Tipe2� /� 129 mice to B6 mice for 12 generations. WT C57BL/6J
mice and mir21� /� mice were purchased from the Jackson Laboratory
(Bar Harbor, ME, USA). Mice were housed in the University of Pennsylvania
Animal Care Facilities under pathogen-free conditions. All animal procedures used
were preapproved by the Institutional Animal Care and Use Committee of the
University of Pennsylvania.

RNA isolation and real-time PCR. Total RNA was extracted using TRIzol
(Life Technologies, Grand Island, NY, USA) according to the manufacturer’s
instructions. Reverse transcription was performed using oligo dT primers or
specific primers for miR-21 and control U6 (Life Technologies). Quantitative
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real-time PCR was carried out in the Applied Biosystems 7500 system using
Power SYBR Green PCR Master Mix (Life Technologies). Relative level of gene
expression was determined using GAPDH (for Tipe2 and Pdcd4) or U6 (for

miR-21) as the control. The primers used to amplify miR-21 and U6 were
purchased from Life Technologies. Other primers used in this study are: Tipe2-F,
50-AACATCCAAGGCCAGACTGG-30; Tipe2-R, 50-GAGATGCGCCACGGACCG
A-30. Pdcd4-F, 50-ATGGATATAGAAAATGAGCAGAC-30; Pdcd4-R, 50-AAGAGTC
TGGACCGCCTATC-30. Gapdh-F, 50-AGTATGACTCCACTCACGGCAA-30;
Gapdh-R, 50-TCTCGCTCCTGGAAGATGGT-30.

Flow cytometry and antibodies. Flow cytometric analyses were used to
determine the rate of apoptosis of T cells. After treatment, cells were stained with
annexin V and 7-aminoactinomycin D as per the manufacturer’s instruction
(BD Biosciences, San Jose, CA, USA). Stained cells were analyzed on a
FACSCalibur flow cytometer (BD Biosciences). Data were analyzed with FlowJo
software (TreeStar Inc, Ashland, OR, USA).

Transient transfection. MiR-21 (miR-21 mimic; Life Technologies) and
Tipe2 plasmid transfection of EL4 cell line was carried out using Amaxa
electroporation apparatus (Amaxa Biosystems, Gaithersburg, MD, USA), as per
the manufacturer’s protocols, for the cell line (Amaxa Cell Line Nucleofector
Kit L, Amaxa Biosystems). Cells were collected 24 h later and subjected to further
treatments.

Cell culture. Naive CD4þ T cells were isolated from the spleen of WT and
Tipe2-deficient mice using MagCellect Mouse Naive CD4þ T Cell Isolation Kit
(R&D Systems, Minneapolis, MN, USA). The purity of CD4þ T cells is about
95%. Cells were stimulated with plate-bound anti-CD3 (1 mg/ml) plus soluble anti-
CD28 (1 mg/ml) with or without NF-kB inhibitor Bay 11-7082. Cells were collected
at various time points and either used for RNA extraction or apoptosis analysis.
Bone marrow-derived macrophages were stimulated with 100 ng/ml LPS with or
without NF-kB inhibitor Bay 11-7082. After 4 h, cells were collected for RNA
extraction or protein preparation.

Preparation of cell extract and immunoblotting. The nuclear and
cytoplasmic extracts from bone marrow-derived macrophages were prepared, as
per the manufacturer’s instruction (Active Motif, Carlsbad, CA, USA). Samples
were loaded to 12% SDS-PAGE gels and subjected to electrophoresis. Proteins
were transferred to nitrocellulose membranes and subsequently probed using
antibody for Tipe2, b-actin (Sigma-Aldrich, St. Louis, MO, USA) or histone
(Cell Signaling Technology, Danvers, MA, USA).

100

80

60

40

20

0

%
 o

f l
iv

e 
ce

lls

%
 o

f l
iv

e 
ce

lls

0-
hr

4-
hr

24
-h

r
48

-h
r

Anti-(CD3+CD28)

WT
Tipe2 –/–

*
*

40

30

20

10

0

*

*

C
tr

+
T

ip
e2

C
tr

+
pR

K
5

M
iR

-2
1 

m
im

ic
+

pR
K

5

M
iR

-2
1 

m
im

ic
+

T
ip

e2

C
tr

+
T

ip
e2

C
tr

+
pR

K
5

M
iR

-2
1 

m
im

ic
+

pR
K

5

M
iR

-2
1 

m
im

ic
+

T
ip

e2

Medium Anti-(CD3+CD28)

a b

Figure 6 Tipe2 deficiency in T cells renders them resistant to death and miR-21 regulates T-cell apoptosis through Tipe2. (a) Splenic naive CD4þ T cells were isolated from
WT and Tipe2� /� mice (n¼ 3) and either untreated or treated with plate-bound anti-CD3 (1mg/ml) and soluble anti-CD28 (1mg/ml) for the indicated times. Cells were then
stained with annexin V and 7AAD, and the degree of apoptosis was analyzed by flow cytometry. (b) EL4 cells were transfected with miR-21 mimic or negative control together with
Tipe2-overexpressing construct or an empty vector. After 24 h, cells were either untreated or treated with plate-bound anti-CD3 (1mg/ml) and anti-CD28 (1mg/ml). After 48 h, cells
were stained with annexin V and 7AAD, and the degree of apoptosis was analyzed by flow cytometry. *Po0.01. Data are representative of three independent experiments
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Figure 5 MiR-21 regulates endogenous Tipe2 expression. RAW264.7 (a) and EL4
(b) cells were transfected with miR-21 mimic or negative control as indicated. At 24 h
after transfection, miR-21, Tipe2 and Pdcd4 mRNA levels were determined by real-time
RT-PCR. *Po0.02. Data are representative of three independent experiments
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ChIP assay. ChIP was performed using the ChIP assay kit, as per the
manufacturer’s instructions (Millipore, Billerica, MA, USA). In brief, cells were fixed
with 1% formaldehyde at room temperature for 10 min and lysed in lysis buffer.
DNA was then fragmented by sonication. After preclearance for 1 h at 4 1C with
salmon sperm DNA-saturated protein A-agarose, chromatin solutions were
immunoprecipitated overnight at 4 1C using 1mg of rabbit antibodies to p65,
RNA Polymerase II (Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA), or
control rabbit IgG. Input and immunoprecipitated chromatins were incubated for
4 h at 65 1C to reverse crosslinks. After proteinase K digestion, DNA was extracted
with phenol/chloroform and precipitated with ethanol. ChIP DNA was then
analyzed by PCR with the following primer set: miR-21-P-F, 50-GACACAAGCA
TAAGTCATTTC-30; miR-21-P-R, 50-GCTGAGACTGCACACTGCTG-30.

Nucleotide pull-down assay. Bone marrow-derived macrophages were
stimulated with 100 ng/ml LPS for 4 h. The cells were resuspended in lysis buffer
(20 mM HEPES, 420 mM NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 1 mM DTT and
0.1% Nonidet P-40) with protease inhibitors, and incubated on ice for 15 min.
Insoluble materials were removed by centrifugation. Hundred micrograms of lysate
protein was diluted with dilution buffer (which is the same as the aforementioned
lysis buffer, but without NaCl) and incubated with 10 mg of poly(deoxyinosinic–
deoxycytidylic acid) (Roche, Indianapolis, IN, USA) and 50 ml of streptavidin–
agarose beads (Sigma-Aldrich) carrying biotinylated oligonucleotides (as described
at the end of this section) for 3 h at 4 1C. The beads were washed two times with
dilution buffer, resuspended in 50 ml 2� SDS sample loading buffer (Bio-Rad
Laboratories, Hercules, CA, USA), and heated to 95 1C for 10 min. The eluants
were resolved by SDS-PAGE. P65 was detected by immunoblotting with specific
antibodies against p65 (Santa Cruz Biotechnology Inc.). The oligonucleotides
containing either the WT or mutated NF-kB binding sites (underlined sequences)
used in this study are as follows: miR-21-NF-kB no. 1, 50-GTGATAAATGTGGGACT
TCTCAGAAGTCAT-30; miR-21-NF-kB no. 1 mutant, 50-GTGATAAATGTATAACTT

CTCAGAAGTCAT-30; miR-21-NF-kB no. 2, 50-AGGATGACGCAGGGGTTGTCCTA
ATAAGGAC-30; miR-21-NF-kB no. 2 mutant, 50-AGGATGACGCAATAATTGTCCTA
ATAAGGAC-30.

Luciferase assay. The fragments from miR-21 promoter containing either the
WT or mutated NF-kB binding sites were cloned into the pGL3-basic
vector (Promega). RAW264.7 cells were transiently transfected with the
constructs mentioned above using Lipofectamine LTX transfection reagent
(Life Technologies). After 24 h, cells were treated with or without 100 ng/ml LPS
for 6 h, and the luciferase activities of total cell lysates were measured using the
Dual-luciferase reporter assay system (Promega). To determine that Tipe2 is a
target of miRNAs, a 500 bp fragment (� 400 to þ 100) from Tipe2 promoter was
cloned into pGL3-basic vector. Then, a 475 bp fragment from Tipe2 30-UTR
(þ 648 to þ 1122) or serial deleted fragments from Tipe2 coding region (þ 307
to þ 644) were cloned into the BglII and BamH1 site downstream of the firefly
luciferase gene but upstream of the polyA signal. EL4 cells were transiently
transfected with the constructs mentioned above using Lipofectamine LTX
transfection reagent (Life Technologies). After 24 h, cells were treated with PMA
and ionomycin for 4 h, and the luciferase activities of total cell lysates were
measured as mentioned above. Co-transfection of the Renilla luciferase
expression vector pRL-TK (Promega) was used as an internal control for all
reporter experiments. Site-directed mutagenesis of miR-21 binding site was
performed using the QuikChange kit (Agilent Technologies, Inc., Santa Clara, CA,
USA) according to the manufacturer’s instructions. DNA sequencing was used to
confirm the mutated nucleotides.

Statistical analysis. The significance of the differences in gene expression,
luciferase activity, and rate of apoptosis was determined by Student’s unpaired
t-test.
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