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Abstract

Next generation RNA-sequencing (RNA-seq) is a flexible approach that can be applied to a

range of applications including global quantification of transcript expression, the characteri-

zation of RNA structure such as splicing patterns and profiling of expressed mutations.

Many RNA-seq protocols require up to microgram levels of total RNA input amounts to gen-

erate high quality data, and thus remain impractical for the limited starting material amounts

typically obtained from rare cell populations, such as those from early developmental stages

or from laser micro-dissected clinical samples. Here, we present an assessment of the con-

temporary ribosomal RNA depletion-based protocols, and identify those that are suitable for

inputs as low as 1–10 ng of intact total RNA and 100–500 ng of partially degraded RNA from

formalin-fixed paraffin-embedded tissues.

Introduction

Ribosomal RNAs (rRNAs) constitute >90% of the total RNA mass within cells [1–2]. To

enhance the sensitivity of RNA-seq to rare mRNA transcripts, methods for either enriching

for mRNAs or depletion of rRNAs have been developed. Enrichment for non-rRNA tran-

scripts can be accomplished by strategies targeting their poly(A) tails [3], as most rRNAs are

not polyadenylated [4]. However, when applied to Formalin-Fixed Paraffin-Embedded (FFPE)

tissues, or otherwise degraded RNA samples, poly(A) enrichment strategies can yield incom-

plete transcript profiles with a strong bias towards recovery of only the 3’-ends of transcripts.

Alternative strategies that address this bias are based on the specific removal of rRNAs [5–7].

These strategies have the added potential advantage of capturing non-ribosomal transcripts

that lack polyadenylated tails. A widely adopted commercial kit, illustrative of the type of strat-

egy used in rRNA depletion-based protocols, is the Ribo-Zero Gold kit (Illumina). This proto-

col uses negative selection of rRNAs via magnetic bead-based affinity purification [5]. New

England Biolabs (NEB) has also recently produced an enzyme-based rRNA depletion protocol

PLOS ONE | https://doi.org/10.1371/journal.pone.0224578 October 31, 2019 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Haile S, Corbett RD, Bilobram S, Mungall

K, Grande BM, Kirk H, et al. (2019) Evaluation of

protocols for rRNA depletion-based RNA

sequencing of nanogram inputs of mammalian

total RNA. PLoS ONE 14(10): e0224578. https://

doi.org/10.1371/journal.pone.0224578

Editor: Thomas Preiss, John Curtin School of

Medical Research, AUSTRALIA

Received: June 14, 2019

Accepted: October 16, 2019

Published: October 31, 2019

Copyright: © 2019 Haile et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: MAM acknowledges support from the

Canadian Institutes of Health Research (FDN-

143288) the BC Cancer Foundation, Genome

Canada (212SEQ) and Genome British Columbia

(202SEQ). We are grateful for support from the

Canada Foundation for Innovation and the National

Cancer Institute, National Institutes of Health,

under Contract No. HHSN261200800001E. The

http://orcid.org/0000-0002-9092-4391
http://orcid.org/0000-0001-7146-7175
https://doi.org/10.1371/journal.pone.0224578
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224578&domain=pdf&date_stamp=2019-10-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224578&domain=pdf&date_stamp=2019-10-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224578&domain=pdf&date_stamp=2019-10-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224578&domain=pdf&date_stamp=2019-10-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224578&domain=pdf&date_stamp=2019-10-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224578&domain=pdf&date_stamp=2019-10-31
https://doi.org/10.1371/journal.pone.0224578
https://doi.org/10.1371/journal.pone.0224578
http://creativecommons.org/licenses/by/4.0/


[6]. Of note, the utility of these commercially available kits is limited to RNA samples from cer-

tain species. Alternative protocols that use custom probes, such as the enzymatic probe-

directed degradation approach [8] which targets rRNA-derived cDNAs, provide cost-effective

options for non-mammalian applications.

Several studies have compared RNA-seq protocols representing the two commercial kits or

similar non-commercial protocols [5–15]. The most comprehensive among these studies for

nanogram ranges of total RNA inputs considered intact and non-FFPE degraded RNA samples

only [15]. Here, we compare two available rRNA depletion kits using intact and FFPE RNA

samples across a range of total RNA input amounts. Importantly, we also demonstrate the suit-

ability of FFPE RNA-seq for quantitative gene expression analysis by comparing FFPE-derived

data with data derived from a large cohort (n = 39) of matched fresh-frozen tissues.

Methods and materials

Samples

Universal Human Reference (UHR) total RNA (Stratagene catalog #740000) was quantified

using the RNA 6000 Nano Kit (Agilent, catalog #5067–1511). The External RNA Controls

Consortium (ERCC) spike-in mix 1 (Ambion catalog #4456740) was added to UHR total RNA

to allow for accuracy and sensitivity assessments. 0.02 μL of the spike-in mix was used per 1 μg

UHR total RNA.

Data from 72 samples were analysed for this study. Of these, two of the human FFPE sam-

ples were previously reported on [16]. Other FFPE samples, as well as matched fresh-frozen

tissue samples, were obtained as part of the National Cancer Institute Office of Cancer Geno-

mic’s Burkitt Lymphoma Genome Sequencing Project (BLGSP) [17]. In general, FFPE tissue

samples were ~100 mm2 in size (in 2–5 scrolls of 10 μm thickness). Total nucleic acids (DNA

and RNA) were extracted from FFPE tissue scrolls using the Agencourt FormaPure (Beckman

Coulter) protocol or a combined AllPrep (Qiagen) and High Pure (Roche) protocol, as previ-

ously reported [16].

Ethics statement

Approved by BC Cancer Research Ethics Board, University of British Columbia (Certificate

number = H16-02279). Consent was not obtained as data was analysed anonymously.

Sample preparation for RNA-seq

RNase H-based rRNA depletion. The NEB’s RNase H-based rRNA depletion (cat.no.

E6310X) was applied to 25–1000 ng total RNA as we previously described [16]. For total RNA

inputs in the 1–10 ng range, the volume of the rRNA depletion probe reagent was reduced to

0.5 μL and upstream DNase I treatment was omitted, as the DNase treatment step, which is

integral to probe removal in the rRNA depletion kit, was judged to be sufficient to remove

residual gDNA contamination.

Following rRNA depletion, cDNA synthesis and library construction steps were performed

as described [18]. Thirteen and 15 cycles of PCR were applied for 25–500 ng and 1–10 ng total

RNA input amounts, respectively.

Ribo-Zero Gold. The Ribo-Zero Gold (Human/Mouse/Rat) kit (cat. no. MRZG126) was

purchased from Illumina/Epicentre. rRNA removal and subsequent purification were per-

formed following the manufacturer’s instructions using 2 μL of probe. Subsequent cDNA syn-

thesis and library construction steps were performed as described above for the RNase H-

based protocol.

rRNA depletion protocols
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Sequencing and bioinformatic analyses

RNA-seq libraries were sequenced using paired-end 75 base (PE75) sequencing chemistry on

HiSeq 2500 instruments following the manufacturer’s protocols (Illumina). Sequencing data

from the BLGSP samples were deposited under phs000527 of the database of Genotypes and

Phenotypes (dbGAP) and data from other FFPE samples and UHR were deposited under

EGAS00001003849 of European Genome-phenome Archive (EGA).

Alignment-based sequence analysis was performed as described [16, 18]. Briefly, we

employed junction-aware BWA [19] alignment to the hg19 reference genome in combination

with Ensembl 69 gene models. This process was performed using the JAGuaR junction-aware

alignment pipeline [20] which generates BAM [21] files that can be profiled for expression and

quality indicators. To control for variable sequence depth, the BAM files were down-sampled

and duplicate-marked with sambamba [22] to obtain near-equal numbers of reads suitable for

comparing depth dependant results (i.e. duplicate rates and gene detection). Read alignments

were subsequently enumerated to generate an expression matrix of sample-by-gene Reads Per

Kilobases of transcript per Million mapped reads (RPKM) estimates to allow the evaluation of

the similarities in expression profiles between samples. These RPKM values were generated by

counting the reads that aligned to annotated gene models and normalizing the counts by the

known gene length as well as the total reads aligned to coding regions.

To compare the expression profiles between the matched FFPE and fresh samples, read

counts were further corrected for library size using the estimateSizeFactors function in the

DESeq2 R package (version 1.14.1) and R version 3.3.2. The corrected read counts were vari-

ance-stabilized using the vst function in DESeq2. The pheatmap R package (version 1.0.8) and

the 1,000 most variably expressed genes across all samples were used to hierarchically cluster

samples using Pearson correlation as the distance metric.

UHR qPCR data for 1000 genes from the MicroArray Quality Control project (GSE5350)

[23] were downloaded for comparison to our expression estimates. qPCR values were com-

pared to RPKM values generated with the methods described above. Using samples

GSM129638-GSM129641, expression estimates were matched by gene name to allow compari-

son of our RPKM values and the published qPCR estimates. Each sample was correlated with

all four replicate qPCR data sets, from which a median Pearson correlation was calculated.

Structural variant (SV) analysis (i.e. fusion transcript profiling) was performed by combing

SV calls generated from multiple methods and combining the results to create consensus calls.

The first set of candidate SVs was generated by aligning transcripts generated with Trans-

ABySS [24]. These assembled transcripts were created with ABySS1.3.4 [25] employing kmers

from k38-k74. Additional candidate SVs were identified by running ChimeraScan [26] and

deFuse [27] after which final consensus SVs were reported by MAVIS [28].

ERCC alignments were performed by aligning all reads against the ERCC reference

[29] sequences. As these known transcripts do not contain any splicing events alignments

were done using BWA [19] mem 0.7.4 with -k set to 40 to ensure specific alignments. As

with RPKM calculations for the mammalian data, the read counts were divided by the tran-

script lengths and total transcript aligned reads before comparing to the known expression

values.

Results and discussion

Previous studies have shown that rRNA depletion protocols are more robust than poly (A)-

based protocols for use in applications with lower total RNA amounts or degraded RNA [5–

14]. We performed analyses to identify an optimal method for such applications, comparing

selected commercially available rRNA depletion protocols.

rRNA depletion protocols
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Comparison of rRNA depletion protocols for nanogram ranges of intact

total RNA input amounts

One class of rRNA depletion protocols involves negative affinity purification, employing

magnetic bead-based removal of nuclear and mitochondrial rRNAs using rRNA probes as

baits [5]. Another class of protocols involves the enzymatic removal of rRNAs, using RNase

H to selectively remove the nuclear and mitochondrial rRNAs that are pre-hybridized to

rRNA DNA probes [5–6]. These two classes of protocols are represented commercially in

Illumina’s Ribo-Zero Gold (RZG) kit and NEB’s rRNA depletion kit (RNase H), respectively.

Here, we sought to compare both protocols across input amounts that ranged from 25–500

ng. For these experiments, we used Universal Human Reference (UHR) total RNA as input.

We had initially planned to also include Qiagen’s GeneRead rRNA depletion kit in our com-

parisons, but discontinued our experiments with it after observing unsatisfactory cDNA

yield (S1A Fig). cDNA yields from the RZG and RNase H protocols were comparable for

100–500 ng total RNA input amounts (S1B Fig). RNA-seq libraries were made from 25–500

ng total RNA input amounts to assess rRNA content and other metrics including transcript

diversity.

rRNA depletion efficiency. Both protocols are designed to remove nuclear-encoded

rRNAs (18S, 28S, 5S and 5.8S) as well as mitochondrially-encoded rRNAs (12S and 16S). Our

analysis revealed that reads mapping to 18S and 28S were observed to be ~ 0.1% of total reads

for the RZG protocol, with no such reads detected in data from the RNase H protocol (Fig

1A). No reads from either protocol aligned to 5S and 5.8S sequences. We also quantified reads

mapping to the 45S precursor rRNA, which is comprised of 18S, 5.8S, 28S and internal and

external rRNA spacer regions. Both protocols generated 0.5–3.5% of reads mapping to 45S

(Fig 1B). In contrast to reads mapping to the mature rRNA species, reads mapping to 45S were

~2% higher when using the RNase H protocol for all total RNA input amounts except 25 ng,

where the proportion of 45S reads were comparable (Fig 1B). One possible reason for the dis-

crepancy in the relative abundance of precursor versus mature rRNA reads may be that the

RZG protocol depletes the entire precursor rRNA, as it is a rRNA probe-tagged affinity purifi-

cation-based protocol. In contrast, the RNase H protocol, being a probe-targeted enzymatic

degradation approach, is expected to only deplete regions of RNAs hybridizing to the probes

to form RNA:DNA hybrids. These probes do not blanket the entire precursor 45S RNA,

instead specifically targeting mature rRNAs.

The proportion of mitochondrial transcripts out of total number of reads, including mito-

chondrial rRNAs and mitochondrial mRNAs, was 1–4% for the RNase H protocol and was

positively correlated with RNA input amounts, whereas the RZG data displayed <0.3% for all

input amounts (Fig 1C). The higher proportional mitochondrial RNA content seen in the

RNase H data was not due to its inefficiency in removing the targeted mitochondrial rRNAs

(12S and 16S rRNAs). Instead, the RNase H protocol was more efficient in that regard for all

input amounts (Fig 1D). In contrast, the RZG protocol resulted in a significantly lower propor-

tion of non-ribosomal mitochondrial transcripts (p<0.05) suggesting an off-target depletion

effect for this protocol (Fig 1D); i.e. non-target sequences that did not hybridize to the probe

sequences were depleted when using the RZG protocol.

One explanation for this may be found in the polycistronic transcription of the mitochon-

drial genome, which forms a long precursor RNA that is subsequently processed to yield

mature rRNAs, tRNAs and mRNAs. It is conceivable that the RZG protocol, unlike the RNa-

seH protocol, depletes the precursor mitochondrial RNAs in addition to the mature rRNAs,

leading to a general decrease in abundance of all mitochondrially encoded transcripts. How-

ever, this is cannot explain the depletion of ND6 RNA, which is encoded by the light DNA

rRNA depletion protocols
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strand separately from the heavy strand that encodes mitochondrial rRNAs, is also partially

depleted in the RZG libraries (Fig 1D).

Diversity and expression correlation across input amounts. We compared the duplicate

read prevalence between libraries generated using both rRNA depletion protocols and found

that the RNase H protocol yielded libraries that had lower duplicate rates for 25 and 100 ng

input amounts (Fig 2A). The comparable duplicate rates across these input amounts appears

to be unique to rRNA depletion protocols; poly (A)-based libraries do show differences in this

input range [18]. The two rRNA depletion protocols yielded comparable proportions (>30%)

of reads mapping to intronic regions (Fig 2B), which we expected to recover using both proto-

cols. In contrast, we previously observed that poly (A)-based libraries from similar input

amounts of UHR total RNA yielded 7–9% of reads mapping to intronic regions [18].

Expression of>24,000 UHR genes was highly correlated across varying input amounts in

both protocols (r>0.95) with the RZG showing slightly higher correlation of expression

between the lowest and highest input amounts (0.98 for RZG vs. 0.96 for RNase H based on

the 500 ng vs. 25 ng total RNA input comparison) (Fig 2C).

Fig 1. rRNA and mitochondrial transcript content. Ribo-zero Gold (RZG) vs. NEB RNase H-based rRNA depletion protocol (RNase H). Input

was UHR total RNA at the indicated total RNA input amounts. (A) Reads aligning to 18S and 28S rRNA. (B) Reads aligning to 45S rRNA. (C)

Mitochondrial RNA content. (D) Relative levels of each of the mitochondrial mRNAs between the two protocols as compared to the levels of

mitochondrial rRNAs.

https://doi.org/10.1371/journal.pone.0224578.g001
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Validation of expression accuracy and dynamics. UHR transcript expression levels of

1,000 genes were previously quantified using TaqMan qPCR assays [23]. We compared the

expression values derived from this data set with those of the RNA-seq libraries that were gener-

ated using the RNase H and RZG protocols. As shown in Fig 3A, all of the RNA-seq libraries dis-

played r>0.84, with the RNase H libraries showing slightly higher correlation values (p = 0.0074).

Further assessment of the accuracy of quantitative gene expression was obtained by exploit-

ing the ERCC spike-in RNA mix that has been established as a standard for RNA-seq platform

evaluation [29–30]. This mix contains 92 synthetic RNAs of known and diverse lengths and

sequences at predefined varying concentrations, which we added to the UHR RNA prior to per-

forming rRNA depletion. We compared the performance of both protocols, across the range of

inputs, in detecting ERCC RNAs and showed that both protocols allowed the detection of 63–

76% of the ERCC RNAs. To compare the sensitivity of the two protocols in detecting ERCC

RNAs, we determined the concentration of ERCC RNA concentration that allowed a 50% prob-

ability of detection using a logistical regression approach that was described previously [31] (S2

Fig). Such assessment did not reveal a significant difference in the sensitivity of detection

between the two protocols across the various total RNA input levels (p = 0.7884).

For comparison of the accuracy of the measurement ERCC RNA levels, we compared the

observed yield to the expected yield of ERCCs and found that both the RZG and RNase H

Fig 2. Diversity, regional mapping and expression correlations. Ribo-zero Gold (RZG) vs NEB RNase H-based rRNA depletion protocol (RNase

H). Input was UHR total RNA at the indicated total RNA input amounts. (A) Proportions of duplicate reads. (B) Proportions of exonic, intronic

and intergenic reads. (C) Expression correlations across RNA input amounts. Pearson’s correlation coefficient was calculated pair-wise for all

transcripts.

https://doi.org/10.1371/journal.pone.0224578.g002

rRNA depletion protocols

PLOS ONE | https://doi.org/10.1371/journal.pone.0224578 October 31, 2019 6 / 15

https://doi.org/10.1371/journal.pone.0224578.g002
https://doi.org/10.1371/journal.pone.0224578


protocols resulted in high ERCC correlation values (r>0.98) with the RZG data exhibiting

slightly higher correlation values (p = 0.049) (Fig 3B and 3C).

Comparison of rRNA depletion protocols for nanogram amounts of total

RNA derived from FFPE tissues

We next compared the performance of the two protocols using formalin fixed paraffin embed-

ded (FFPE) RNA as input, such as what one might purify from clinically obtained patient sam-

ples. For this, we used two FFPE blocks; one that was prepared 19 years prior to RNA

extraction from a tumor sample of a patient with the diagnosis of follicular small cleaved—

grade1 lymphoma (FFPE-1). The other block was prepared 5 years prior to RNA extraction

from a tumor sample of a patient diagnosed with diffuse large B-cell lymphoma (FFPE-2). We

used total RNA input amounts ranging from 120 ng to 960 ng. cDNA yields from FFPE-1,

using the RZG protocol with 13 cycles of PCR, were relatively high, ranging from 8–80 nM,

which was 4 to 8-fold higher than yields obtained using the RNase H protocol (S3A Fig). For

Fig 3. Validation of expression quantification accuracy. Ribo-zero Gold (RZG) vs NEB RNase H-based rRNA depletion protocol (RNase

H). Input was UHR total RNA at the indicated total RNA input amounts. (A) qPCR data for ~1,000 mRNAs [23] compared to RNA-seq data.

(B) Correlation of observed versus expected ERCC spike-in levels. (C) Log-log plots of observed versus expected ERCC RNAs. Blue dots

represent amounts of individual spike-in RNAs, the number of which is variable between libraries depending on the detection sensitivity of

the protocol.

https://doi.org/10.1371/journal.pone.0224578.g003

rRNA depletion protocols
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FFPE-2, the library yield was higher than that obtained for FFPE-1 and the library yield

achieved using the RZG protocol was 1.5 to 3.3-fold higher than that obtained using the RNase

H protocol (S3A and S3B Fig). The differences in library yield may reflect the quality of the

respective RNA used to make the libraries (Fig 4; right panel), which may be related to the age

of the clinical materials from which the RNA was extracted.

All libraries were pooled and sequenced in a single MiSeq run, resulting in at least one mil-

lion paired end reads per library. Analysis of these data revealed that the proportion of reads

classified as “intergenic” were higher at lower input amounts in the libraries prepared using

the RZG protocol (S4A Fig). For both protocols, the percentage of duplicate reads strongly

and positively correlated with the percentage of ‘intergenic” reads (r = 0.96–1.00) (S4B Fig).

Up to 40% of the apparently intergenic duplicate reads actually aligned to the 3’-end of the

chromosomally non-localised contig, GPL220.1 of build GRCh38 (S5 Fig). This contig harbors

the 3’-external spacer (3’-ES) region of the 45S precursor rRNA (down-stream of the 28S

sequence), which is not included in the ensembl annotation, resulting in our mis-classification

of such reads as “intergenic”. We enumerated the reads that mapped to the 3’-ES region in all

libraries and found that the libraries generated using the RZG protocol had a much higher pro-

portion (up to 2000-fold) of such reads, especially at lower input amounts (Fig 4; left panels),

mirroring the trend observed at the library yield and duplicate read levels. These results are in

contrast to the data obtained for UHR libraries, in which the difference between the two proto-

cols in terms of the proportion of reads mapping to the 3’-ES region was relatively small (0.1%

to 2.4%; S6 Fig). We note that the 3’-ES read content was generally higher for FFPE-1 (Fig 4;

left panels), which had lower quality RNA (Fig 4; right panels).

Fig 4. rRNA content comparisons using FFPE samples. Ribo-zero Gold (RZG) vs NEB RNase H-based rRNA depletion protocol

(RNase H). Input was FFPE total RNA at the indicated total RNA input amounts. The two samples, FFPE-1 and FFPE-2, are described in

the text. Reads mapping to the 3’-external spacer (3’ES) are shown in the left panels (top and bottom) and reads mapping to other regions of

the 45S precursor RNA are shown in the middle panels (top and bottom). RNA size profiles from Agilent RNA Nano assays are shown in the

right panels. In red are the profiles for the RNA input before DNase I treatment (Input) and in blue are profiles for RNA after DNase I

treatment (Post-DNase). Vertical arrows delineate indicated sizes in nucleotides (nt) and the proportions of fragments between 200 and

5000 nt are indicated in the insets.

https://doi.org/10.1371/journal.pone.0224578.g004
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Although NEB (the manufacturer of the RNase H kit) explicitly states that the mature

nuclear and mitochondrial-encoded rRNAs are targeted for depletion, they do not state in

their product description that the kit includes probes targeting the 3’-ES. Our results are com-

patible with the notion that the 3’-ES region is, in fact, targeted for removal in the RNase H

protocol but not in the RZG protocol. Consistent with our results, another study [5] that

employed the RNase H protocol (but not the NEB reagents) reported that the RNase H proto-

col was better at removing rRNAs (including 3’-ES) than the RZG protocol, with the percent-

age of 3’-ES reads being 46% for RZG and 0.06% for RNase H. However, this study used only

one FFPE sample at only one total RNA input amount (1,000 ng). At a comparable input

amount (960 ng), we observed 3.6% 3’-ES reads for RZG and 0.01% for RNase H, a difference

that perhaps reflects input RNA quality, the exact rRNA depletion protocol applied, or other

differences between the two protocols.

Comparison of fresh-frozen and FFPE libraries prepared using the RNase

H-based rRNA depletion protocol

Given the improved performance of the RNase H protocol compared to the RZG protocol in

our preliminary FFPE analyses, we next evaluated the FFPE RNase H protocol for use at scale,

comparing the data with those obtained from matching fresh frozen (FF) samples from the

same patients. We used tumor samples from 39 patients diagnosed with Burkitt’s lymphoma,

obtained as part of the Burkitt Lymphoma Genome Sequencing Project (BLGSP) [17]. Input

amounts ranged from 120 ng to 1000 ng DNase I-treated RNA for FFPE RNA, and 200–300

ng for fresh RNAs. Libraries from fresh frozen samples were generated using a protocol we

described previously [16, 18]. We found that the abundance of duplicate sequencing reads was

comparable between FFPE and FF libraries and was correlated with the amount of input used

Fig 5. Expression correlation and hierarchical clustering of data from matched fresh-frozen and FFPE- derived samples (n = 39). (A) Pearson’s

correlation of transcript levels between fresh-frozen and FFPE samples (Y-axis) for various total RNA input amounts (X-axis). (B) Hierarchical clustering.

Variance-stabilized expression values for 1,000 genes whose expression was most variable were chosen for clustering. Samples were hierarchically clustered

based on inter-sample Pearson correlation values. The results indicate that FFPE preparation of samples does not result in a dominant batch effect that

occludes the biological source of the material (i.e., the patient’s tumour).

https://doi.org/10.1371/journal.pone.0224578.g005

rRNA depletion protocols

PLOS ONE | https://doi.org/10.1371/journal.pone.0224578 October 31, 2019 9 / 15

https://doi.org/10.1371/journal.pone.0224578.g005
https://doi.org/10.1371/journal.pone.0224578


rRNA depletion protocols

PLOS ONE | https://doi.org/10.1371/journal.pone.0224578 October 31, 2019 10 / 15

https://doi.org/10.1371/journal.pone.0224578


(S7A Fig). Read coverage of annotated transcripts tended to be less uniform in the FFPE librar-

ies compared to the FF tissue libraries (S7B Fig) and exon to intron ratios were lower for FFPE

(S7C Fig), consistent with previous reports for libraries prepared using the RNase H [14] or

the RZG protocols [32]. Despite these differences, the expression correlation between matched

FFPE and FF samples was high (r = 0.923–0.994) (Fig 5A) and all libraries clustered according

to patient source and not based on whether they were derived from FFPE or FF tissue (Fig 5B).

Thus, using a substantial sample cohort of matched FFPE and FF tissue data, our analyses

indicate that the RNAse H protocol for rRNA depletion exhibits improved performance for

expression analysis of FFPE samples, such as those typically obtained for clinical purposes,

which typically suffer from partially degraded RNA. Given the better performance of the RNa-

seH protocol on FFPE samples, we focused on this protocol for further assessment as described

below.

Fig 6. Analysis of fusion transcripts in the RNase H protocol. 25 ng and 100 ng UHR total RNA input libraries were

evaluated for the detection of events that were previously validated using qPCR [33]. Filled gray boxes indicate that

events were positively identified. qPCR cycle threshold (Ct) data are from [33].

https://doi.org/10.1371/journal.pone.0224578.g006

Fig 7. Effects of lowering input amounts using the RNase H protocol. The input was UHR total RNA at indicated total RNA input amounts. (A)

Proportion of aligned reads achieved using 1–100 ng of total RNA input. (B) Genes identified as a function of input amount. Blue indicates genes identified

with greater than 0 RPKM values; red indicates genes identified with greater than 1 RPKM values, and green indicate genes identified with greater than 5

RPKM values (indicative of more abundant transcripts). (C) Expression correlations across UHR RNA input amounts, indicated by numbers on both axes.

Pearson’s correlation coefficient was calculated pair-wise for all transcripts. (D) Orthogonal validation of expression accuracy. Previous qPCR data for ~1000

mRNAs was compared with RNA-seq data [23].

https://doi.org/10.1371/journal.pone.0224578.g007
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Sensitivity of fusion RNA detection

In addition to quantification of canonical transcripts, RNA-seq has been used for assessment

of fusion transcripts arising from rearrangements in the genome that affect coding sequences

(e.g. [33–34]). To evaluate the RNase H protocol for detection of gene fusions, we sequenced

libraries from 25 and 100 ng UHR total RNA input amounts to a depth of ~300 million

paired-end reads in one lane of an Illumina HiSeq 2000 instrument. After applying a combina-

tion of assembly and various alignment-based fusion detection methods, data were evaluated

for the presence of known UHR gene fusion and rearrangement events that were previously

validated using qPCR [33]. Of the 21 different events evaluated, 7 were positively identified in

the 25 ng and/or 100 ng libraries (Fig 6). The majority of the events that were not supported in

the two libraries were only border-line detected by qPCR [33]) (Fig 6).

Evaluation of the RNase H-based rRNA depletion protocol for lower

nanogram range of intact total RNA input amounts

We next wanted to determine the suitability of the RNase H protocol for 1 ng to 100 ng intact

total RNA input amounts. Proportions of aligning reads for the lower total RNA input amounts

(1–2 ng) libraries (87–95%) were lower than for those obtained for the higher input (5–500 ng)

libraries (94–97%) (Fig 7A). Library diversity was also lower for the lower input libraries (Fig 7B).

Despite these differences, correlation of levels of UHR transcripts among the different input

libraries was high (r = 0.969–0.997), although there was a trend for the lower input libraries to

show slightly lower correlations with the higher input libraries (Fig 7C). Similar input dependency

of correlation values was observed when UHR data was compared with qPCR data (Fig 7D).

Overall, the data described above indicate that the RNase H-based and Ribozero Gold

rRNA depletion protocols can be used for as little as 10 ng intact total RNA input amount

without significant loss of sequencing data quality. We further show that, using the RNase H

protocol, libraries of acceptable data quality can be generated from as low as 1 ng of intact total

RNA, and that the RNAse H protocol appears to have generally superior performance for the

analysis of partially degraded RNA.
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(TIF)
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(TIF)
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(TIF)

S5 Fig. Demonstration of the levels of reads mapping to the 45S 3’-ES region using IGV in

FFPE samples.
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S6 Fig. Proportion of the reads mapping to the 45S 3’-ES region in UHR.
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S7 Fig. Comparisons of sequencing quality between FFPE and FF libraries.
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