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Abstract

Background: Deregulated c-Abl activity has been intensively studied in a variety of solid tumors and leukemia.
The class-I carcinogen Helicobacter pylori (Hp) activates the non-receptor tyrosine kinase c-Abl to phosphorylate the
oncoprotein cytotoxin-associated gene A (CagA). The role of c-Abl in CagA-dependent pathways is well established;
however, the knowledge of CagA-independent c-Abl processes is scarce.

Methods: c-Abl phosphorylation and localization were analyzed by immunostaining and immunofluorescence.
Interaction partners were identified by tandem-affinity purification. Cell elongation and migration were analyzed in
transwell-filter experiments. Apoptosis and cell survival were examined by FACS analyses and MTT assays. In mice
experiments and human biopsies, the involvement of c-Abl in Hp pathogenesis was investigated.

Results: Here, we investigated the activity and subcellular localization of c-Abl in vitro and in vivo and unraveled the
contribution of c-Abl in CagA-dependent and -independent pathways to gastric Hp pathogenesis. We report a novel
mechanism and identified strong c-Abl threonine 735 phosphorylation (pAbl'”*%) mediated by the type-IV secretion
system (T4SS) effector D-glycero-3-D-manno-heptose-1,7-bisphosphate (3HBP) and protein kinase C (PKC) as a new c-
Abl kinase. pAbl"”3® interacted with 14-3-3 proteins, which caused cytoplasmic retention of c-Abl, where it potentiated
Hp-mediated cell elongation and migration. Further, the nuclear exclusion of pAbl'”** attenuated caspase-8 and
caspase-9-dependent apoptosis. Importantly, in human patients suffering from Hp-mediated gastritis c-Abl expression
and pAbl'”** phosphorylation were drastically enhanced as compared to type C gastritis patients or healthy individuals.
Pharmacological inhibition using the selective c-Abl kinase inhibitor Gleevec confirmed that c-Abl plays an important
role in Hp pathogenesis in a murine in vivo model.

Conclusions: In this study, we identified a novel regulatory mechanism in Hp-infected gastric epithelial cells by which

Hp determines the subcellular localization of activated c-Abl to control Hp-mediated EMT-like processes while
decreasing cell death.
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Background

Helicobacter pylori (Hp) is a human class-I carcinogen
that exclusively colonizes the gastric epithelium of ap-
proximately 50% of the world’s population. Successful
Hp colonization requires sophisticated strategies to sur-
vive the hostile gastric environment and to prevent
clearance by the immune system. Persistent infections
with Hp are considered as the main factor responsible
for chronic gastritis, ulceration, lymphoma of the MALT
system and gastric cancer [1, 2]. While MALT lymph-
oma can be treated by antibiotics as the first line ther-
apy, the prognosis of gastric cancer is still poor and
represents one of the leading causes for cancer-related
deaths worldwide. Surgery is the only curative treatment,
since chemo-, radiation-, or targeted therapies are not
efficient in advanced stages of gastric cancer and fail to
prevent epithelial-mesenchymal transition (EMT)-driven
tumor spreading [3]. Gastric cancer can be distinguished
in cardia (gastro-esophageal junction) and non-cardia
adenocarcinomas caused by altered cell proliferation, sur-
vival, apoptosis and (epigenetic) modifications of tumor
suppressor genes (cdhl, tp53, kras, etc.) [3, 4]. Hence,
Hp-mediated tumorigenesis and gastric cancer progres-
sion involve a complex network of signaling cascades
which allows persistent colonization and causes the induc-
tion of inflammatory and carcinogenic responses.

The genome of highly virulent Hp strains harbors a
cag pathogenicity island (cagPAI), which encodes a spe-
cialized type-4 secretion system (T4SS). Via the T4SS pi-
lus, Hp translocates the effector protein CagA into the
cytoplasm of gastric epithelial cells [5, 6]. CagA is initially
tyrosine phosphorylated (pCagA) in its Glu-Pro-Ile-Tyr-Ala
(EPIYA) motifs by members of the Src kinase family [7, 8]
followed by phosphorylation through c-Abl to maintain
pCagA in later phases of Hp infections [9, 10]. In fact,
pCagA is considered as an important driver of oncogenic
processes. Transgenic mice systemically expressing CagA
suffer from gastric epithelial hyperplasia, gastric polyps,
hematological malignancies and adenocarcinomas. This re-
port provides a direct and causative link between pCagA
and the development of Hp-associated neoplasms [11].

The pathogenic function of CagA has been demon-
strated in vivo in animal models [12, 13] and in cultured
gastric epithelial cells in vitro [14—16]. Hp-infected AGS
cells display a strongly elongated cell morphology resem-
bling the cell scattering phenotype in response to
hepatocyte growth factor (HGF) [17, 18]. Hp-mediated
cell elongation is strictly dependent on Src- and
c-Abl-mediated CagA phosphorylation [9, 10] and is as-
sociated with the CagA-independent loss of intercellular
adhesion and enhanced cell migration. These processes
are implicated in the development of an EMT-like
phenotype, which represents a critical step during
metastasis [19].
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The non-receptor tyrosine kinase c-Abl exhibits mani-
fold cellular functions and its structure and regulation
have been well studied [20, 21]. It contains
protein-protein  interaction domains, DNA- and
actin-binding motifs, nuclear localization signals (NLS)
and nuclear export signals (NES). The kinase activity
can be activated by numerous pathways including
platelet-derived growth factor receptor (PDGFR), epider-
mal growth factor receptor (EGFR) or through substrate
interaction [22] and is accompanied by phosphorylation
at tyrosine 245 (pAbl">**) and tyrosine 412 (pAbl**'?)
[21, 23]. The consequences of kinase activation range
from cytoskeleton rearrangements, cell motility, and
proliferation to DNA damage response and apoptotic
pathways [24, 25]. These opposing effects are mainly
regulated via the subcellular localization of the kinase.
NLS and NES sequences regulate shuttling of c-Abl be-
tween the cytoplasm and the nucleus. In the cytoplasm,
c-Abl is involved in the regulation of actin dynamics and
proliferation. Accordingly, many of the identified kinase
substrates (e.g. Crk proteins, cortactin, Wave, etc.) are
closely associated with cell morphology and migration
[22, 26]. In contrast, nuclear c-Abl contributes to the
DNA damage response [24] and apoptosis [27, 28].
Therefore, a balanced nucleo-cytoplasmic transport of
c-Abl is a tightly regulated process in normal cells. c-Abl
expression, activity and localization are frequently
deregulated in human leukemia, but also in solid tu-
mors, and is implicated in neoplastic transformation and
cancer progression [29, 30]. It has been shown that cyto-
plasmic localization is mainly regulated by interaction
with members of the 14—3-3 protein family, which prefer-
entially bind to phosphorylated threonine 735 (pAbl™7%°)
and thereby mask the NLS motifs [31, 32]. The drastic
consequences of cytoplasmic Abl kinase activity are dis-
played by the oncogenic breakpoint cluster region
(BCR)-ADl fusion protein. A vast majority of chronic mye-
loid leukemia (CML) cases are caused by the Philadelphia
translocation, which results in a constitutively active
BCR-ADbI representing the paradigm of therapeutic inter-
vention using specific kinase inhibitors [20, 33].

Gastric cancer cells can leave the primary tumor, in-
vade the surrounding extracellular matrix (ECM), and
metastasize to distal sites; however, it is not fully under-
stood how these invasive cells survive in a foreign envir-
onment. These processes likely involve the inactivation
of apoptotic mechanisms and uncontrolled proliferation.
In our previous work, we identified c-Abl as a crucial
molecule for CagA functions in Hp-infected gastric
epithelial cells [9, 10]. Besides its influence on CagA,
the cellular consequences of activated c-Abl are
largely unknown. Hence, we analyzed how Hp con-
trols c-Abl subcellular localization and influences cell
fate in vitro and in vivo.
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Methods

Cell and bacterial culture

The gastric epithelial cancer cell lines AGS (ECACC, no.
89090402) and MKN-28 (MPI for Infection Biology in
Berlin, JCRB, no. 0253) were cultured in RPMI-1640
(Sigma Aldrich, Vienna, Austria) containing 10% FCS
(Sigma Aldrich, Austria) and 2 mM L-glutamine (Bio-
west, France) at 37°C in a humidified 5% CO, atmos-
phere. MCE-7 cells (ATCC, no. HTB-22) were cultured
in DMEM medium (Sigma Aldrich, Austria) containing
10% ECS and 2 mM L-glutamine at 37 °C in a humidified
10% CO, atmosphere. Hp P12 wildtype was cultured on
horse serum agar plates for 24 to 48 h at 37°C under
microaerophilic conditions using the CampyGen system
(Oxoid, Austria). Hp P12 wt, APAI, ACagA, AVacA,
ARfaE, ACagl. and ACagL/CagL isogenic mutant strains
have been described previously [34—37]. Additional West-
ern (P1, Hp26695, and B8) and East Asian isolates (42GX,
48GX) of Hp has been reported elsewhere [38—41]. Hp
was harvested in PBS, pH 7.4 (Sigma Aldrich, Austria) and
added to host cells at a multiplicity of infection (MOI) as
indicated. Cells were routinely serum starved for one hour
before infection. Where indicated, cells were stimulated
with 100 nM phorbol-12-myristat-13-acetat (PMA, Sigma
Aldrich, Austria), 10 pkM H50,/100 uM sodium vanadate,
10uM of the 14-3-3 inhibitor BV02 (Sigma-Aldrich,
Austria), or pretreated with 10 pM STI-571 (LC Labora-
tories, MA, USA) to block c-Abl. To inhibit protein kinase
A (PKA) activity, 10 uM PKI (Sigma Aldrich, Austria) was
used. PKC inhibitors G66983 and BIM have been de-
scribed elsewhere [42] and were obtained from Sigma Al-
drich (Austria).

DNA constructs and transfection

The plasmids pSGT-AbI™, pSGT-AbI*P (K290R) and
pSGT—AblPP (P242E, P249E) have been described previ-
ously [43]. The constructs pSGT-Abl™, pSGT-AbI¥**F,
pSGT-AbIY**?E, pNTAP-AbI*, and pNTAP-AbI™ have
been generated by site directed mutagenesis (Quik-
change Lightning, Agilent Technologies, Germany). All
constructs were verified by sequencing.

Transient transfection, siRNA and generation of stable cell
lines

Cells were transfected with 5 pg plasmid using polyethyle-
nimine (Polysciences Europe, Germany). For the gener-
ation of stable cell lines, AGS cells were transfected with
linearized pNTAP-AbI"* and pNTAP-AbI™ plasmids and
selected using G418 (Sigma-Aldrich, Austria). Generation
of stable shAbl knock-down cells and the corresponding
negative control (sh control) has been described previ-
ously [10]. For siRNA knock-down experiments, siTTK,
siPKC (further information in the Additional file 1) and
control siRNA oligonucleotides (Santa Cruz Biotechnology,
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Germany) were co-transfected with pSGT-AbI™". After
3 days, cells were infected with Hp and analyzed by
Western blotting.

SDS PAGE and Western blot

Cells were lysed in 20mM Tris pH7.5, 1 mM EDTA,
100 mM NacCl, 1% Triton X-100, 0.1% SDS, 1 x complete
protease inhibitor tablets (Roche Diagnostics, Germany),
1 mM sodium molybdate, 20 mM NaF, 10 mM sodium
pyrophosphate, 20 mM p-glycerophosphate, 1 mM so-
dium vanadate. Equal protein amounts were separated by
SDS PAGE and transferred onto nitrocellulose. Following
antibodies were used: anti-c-Abl (AB3, Merck Biosciences,
Germany), anti-pAbl’7?°, anti-pCrkII"**' (both New Eng-
land Biolabs, Germany), anti-pAbl¥***, anti-B-actin (both
Sigma Aldrich, Germany), anti-pAbl**'?, anti-GAPDH
(both Abcam, UK), anti-CagA [44], anti-GST (Biomol
Germany), anti-14-3-3 H8, anti-phospho-tyrosine (pY99),
anti-TTK, and anti-PKC (all Santa Cruz Biotechnology,
Germany). Membranes were imaged using the Molecular
Imager ChemiDoc XRS system (BioRad, Germany).
Where indicated, signals of protein bands were quantified
using the ImageLab software (BioRad, Germany).

Immunoprecipitation, in vitro kinase reaction and TAP
pull down experiments

c-Abl was precipitated from 500 ug whole cell lysates
using 3pg anti-c-Abl (AB3, Merck Biosciences,
Germany). The in vitro kinase reaction was performed
in 20 mM HEPES pH 7.4, 10 mM MgCl,, 10 mM MnCl,,
250 uM ATP using 250 ng purified GST-Crk aa 120-225
[26] for 30 min at 30 °C. PKC-mediated c-Abl phosphor-
ylation was performed using 10ng/pl recombinant
PKCafy (Merck Millipore, Germany), 100 ng/ul recom-
binant c-Abl (Merck Millipore, Germany) and 250 uM
ATP for 10 min at 30°C in an assay dilution buffer II
reaction buffer (Merck Millipore, Germany). To activate
PKC activity, a PKC lipid activator (Merck Millipore,
Germany) has been added to the reaction as recommend
by manufacturer’s instructions. TAP pull-downs were
performed using the Interplay Mammalian TAP System
(Agilent Technologies, Austria) according to the manu-
facturer’s manual.

Immunofluorescence

Cells were grown on coverslips, transfected with
pSGT-AbI™ or pSGT-AbI™ and infected for the indi-
cated periods of time. Cells were washed twice with PBS,
fixed in 4% paraformaldehyde, permeabilized with 0.2%
Triton X-100, followed by blocking in 1% bovine serum
albumin (BSA). Cells were stained using 0.5 pg/ml
anti-c-Abl (AB3, Merck Biosciences, Germany). Cells
were counterstained with phalloidin-Alexa-Fluor546
(ThermoFisher Scientific, Austria) and DAPI (Sigma
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Aldrich, Austria). Imaging was performed using an
AxioObserver Z1 (Zeiss, Austria). Cell elongation was
determined by measuring the largest cell diameter using
ZEN2 (Zeiss) and Fiji software. c-Abl-positive cells were
measured in 4—-6 random frames per experiment from
four independent infection experiments. Nuclear and
cytoplasmic localization of c-Abl was quantitated by
measuring the integrated intensities of the nuclear and
cytoplasmic areas stained by DAPI and phalloidin in 4-6
random frames per experiment from four independent
infection experiments. The cytoplasmic c-Abl was calcu-
lated as total cell c-Abl intensity (set as 100%) minus nu-
clear c-Abl intensity.

Quantification of cell migration

AGS cells stably expressing TAP-AbI** or TAP-AbI™
were seeded in 8 um transwell filter inserts (BD Biosci-
ences, Austria). Next day, the medium was replaced by
RPMI supplemented with 1% FCS. After 24 h, cells were
infected with Hp at a MOI 50 for 8 h. Non-migrating
cells were removed and migrating cells were stained by
Giemsa and counted.

Apoptosis and MTT assay

Apoptosis was measured using PE annexin V Apoptosis
Detection Kit I (BD Biosciences, Austria). Caspase-8 and
caspase-9 activation was determined using the Milliplex
human early apoptosis kit (Millipore, Germany). For
MTT assays, cells were incubated with 0.5 mg/ml
3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium brom-
ide (Sigma-Aldrich, Austria) for 1h at 37°C in the dark.
Cells were lysed using isopropylalcohol containing 0.1%
NP-40 and 0.04N HCIl. Absorbance was read at 565 nm in
a Tecan M200 plate reader.

Mouse colonization experiments

C57BL/6 mice were infected with 10” Hp strain PMSS1
for two months. Mice were either left untreated or were
treated with 75 mg/kg per day STI-571 in the drinking
water. Colony-forming units (cfu) were determined by
plating and colony counting. Paraffin sections were
stained with hematoxylin and eosin (H&E) for grading
of histopathological changes. Details can be found in the
Additional file 1.

Immunohistochemistry

Immunohistochemical staining of human gastric biop-
sies for c-Abl and pAbl"”®* was performed on routinely
FFPE tissue, using a standardized automated platform
(AutostainerPlus, Dako, DN) in combination with Envi-
sion polymer detection system (Agilent Technologies,
Austria). Details can be found in the Additional file 1.
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Statistics

Statistical evaluations for cell culture experiments were
calculated using Student’s ¢-test with GraphPad Prism 5.
For the animal experiments statistics was calculated
using Wilcoxon-Mann-Whitney test with GraphPad
Prism 5. Statistics for the human gastric biopsy speci-
men was calculated using Bonferroni corrected least sig-
nificant difference test using SPSS software.

Results

Hp regulates c-Abl tyrosine and threonine
phosphorylation via different signaling pathways
Although c-Abl plays a well documented crucial role in
Hp pathogenesis, the complex network of kinase regula-
tion has not been investigated in detail. To analyze the
regulatory phosphorylation sites, c-Abl was transiently
transfected to facilitate the detection of phospho-c-Abl.
For the first time, we could show pAbl’”> phosphoryl-
ation in Hp-infected cells, which was weak in
non-infected AGS cells, but strongly induced after 4 and
6h of Hp infection. Concomitantly, Hp induced the
phosphorylation of pAbl¥**> and pAbI™*'?, but also a
slight increase of c-Abl protein amount was observed
(Fig. 1a), which has been previously reported and was at-
tributed to miRNA-203 silencing [45]. The amounts of
c-Abl and pAbI™”®* in Hp-infected cells were quantified
and correlated with non-infected cells. A drastic increase
in pAbl"”®* phosphorylation was observed, which outba-
lanced the minor effects of c-Abl accumulation (Add-
itional file 2: Figure S1A), underlining that Hp effectively
induced pAbl™”3> phosphorylation. This could also be
detected in MKN28 (Additional file 2: Figure S1B) and
MCE-7 cells (Additional file 2: Fig. S1C), which have
been established as suitable Hp infection models [46].
MKN?28 cells, which express higher levels of endogenous
c-Abl [47], were analyzed by immunoprecipitation to de-
tect endogenous pAbl’”3> upon Hp infection (Additional
file 2: Figure S1D). We further analyzed multiple West-
ern and East Asian Hp isolates and observed a robust
pAbI™”?* phosphorylation (Additional file 2: Figure S1E).
In line with the detected tyrosine phosphorylation pat-
tern, c-Abl kinase activity was strongly activated at later
time points after Hp infection as reflected by the phos-
phorylation of the c-Abl substrate GST-Crk in in vitro
phosphorylation assays (Fig. 1b). A set of various iso-
genic Hp deletion mutants was analyzed, which Hp fac-
tors are involved in the regulation of c-Abl. CagA is
encoded by the cag pathogenicity island (cagPAI) which
also harbors the genes important for the structure and
function of the T4SS including the T4SS adhesin CagL
[5]. The vacuolating toxin VacA has been described as
an inducer of vacuolization and apoptosis [48]. In com-
parison to Hp wildtype (wt), a AcagPAl-deficient strain
failed to mediate pAbI****> or pAbI¥*!* phosphorylation.
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This is in contrast to pAbl™”%, which was only partially

affected by the deletion of the cagPAI (Fig. 1c). There-
fore, we investigated whether the T4SS adhesin CagL
triggers pAbl'”**> phosphorylation. CagL. expression in
Hp wildtype and the complemented ACagl. mutant was
necessary for phosphorylation of pAbl*>** or pAbI¥*!?,
but not for pAbl'”** (Additional file 3: Figure S2A-B). In
addition, CagA deficiency resulted in a slight decrease in
c-Abl tyrosine phosphorylation, but exhibited no effect
on the pAbl’”3> phosphorylation. Finally, loss of VacA
expression did not influence pAbl'”** phosphorylation,

but increased pAbl¥*** or pAblI¥*'? phosphorylation. De-
tection of CagA and translocated pCagA validated Hp
mutants (Fig. 1c). Recently, PHBP was identified as a
new T4SS effector [37, 49]. The rfaE-deficient Hp mu-
tant exhibits a defect in the HBP biosynthesis and did
not mediate pAbl’”*®> phosphorylation while pAbl¥**®
was still induced (Fig. 1d and Additional file 3: Figure
S2C). Additionally, cells were stimulated with PMA or
H,O,/vanadate serving as positive controls for phos-
phorylation of pAbl*”®, pAbI**** and pAbI**'%, respect-
ively (Fig. 1lc-d). These data suggest that the
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T4SS-dependent BHBP effector is implicated in the con-
trol of c-Abl threonine phosphorylation while tyrosine
phosphorylation and activation of c-Abl is CagL/
CagA-dependent.

To analyze whether phosphorylation of pAbI™”® is
linked to pAbI™*** or pAbI™'?, a panel of c-Abl mutants
targeting kinase activity and phosphorylation sites was
generated for a detailed characterization of their potential
mutual regulation. We created phosphorylation-resistant
mutants of threonine 735 (Abl™), tyrosine 245 (ABIY?%5F)
and tyrosine 412 (AbI™?F) and analyzed them together
with constitutively active (AbI’?) and a kinase-dead ver-
sion of c-Abl (AbI¥P) in Western blot and densitometric
analyses (Additional file 4: Figure S3A-D). Compared to
AbI™, neither AbI"**F nor AbI¥*"*F or AbI* significantly
affected pAbl"”3> phosphorylation. As expected, Abl™ ex-
pression completely abrogated pAbl’”>> phosphorylation
signals (Additional file 4: Figure S3A, right panel and
S3B). Corresponding to the AbI****F or Abl¥***" mutants,
treatment of AGS cells with STI-571 efficiently blocked
pADbI"**> phosphorylation, but did not change pAbl'”
phosphorylation (Additional file 4: Figure S3E). The ana-
lyses of pAbl**** or pAbl**!? phosphorylation verified the
functionality of the respective mutants. The lack tyrosine
245 phosphorylation of AbI™" is due to the exchange of
the prolines 242 and 249 to glutamates, which interferes
with pAbI"** phosphorylation (Additional file 4: Figure
S3A, left panel). Importantly, pAbl****> and pAbl**'* were
hyper-phosphorylated in cells transfected with the Abl™
construct (Additional file 4: Figure S3A, left panel and
S3C-D). Interestingly, pAbl¥**> was also abrogated in the
AbI*? mutant pointing to a hierarchical phosphoryl-
ation of these sites. In contrast, pAbl***? was unaffected
by the Abl"***F mutant (Additional file 4: Figure S3A, left
panel and Additional file 4: Figure S3C-D). Further, over-
expression of AbI"* induced an increase in CagA phos-
phorylation, while cells expressing Abl™ exhibited an
attenuated pCagA signal (Additional file 4: Figure S3A,
right panel). Unsurprisingly, constitutive active AbI™"
strongly increased pCagA, whereas AbI“®, AbI"**f, and
AbI*'?F clearly reduced pCagA signals (Additional file 4:
Fig. S3A, right panel). The data imply that pAbl*”*> and
pADbIY**> phosphorylations are induced by different Hp
factors and upstream signal transduction pathways.

PKC is a novel kinase for phosphorylation of pAbl'’3*
which causes cytoplasmic retention, increases cell
migration and limits apoptosis

In previous studies TTK/Mps1 has been proposed to me-
diate phosphorylation of pAbl*”%* [32]. In addition, online
kinase prediction tools (NetPhos, http://www.cbs.dtu.dk/
services/NetPhos/) yielded PKC as putative pAbl™”>”
kinase. Therefore, we tested the influence of both, TTK
and PKC by knock-down of protein expression using
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specific siRNA. TTK-targeting siRNA resulted in efficient
down-regulation of TTK expression; however, Hp-induced
pAbI"73> was not affected as compared to control siRNA
(Fig. 2a). In contrast, PKC knock-down strongly inhibited
the phosphorylation of pAbI*”*> (Fig. 2a). PKC activation
has previously been shown to play a crucial role in
Hp-mediated cell elongation and scattering [42]. In fact,
Hp induced a robust PKC activation (Fig. 2b). To confirm
that PKC plays a direct role in the upstream signaling of
pAbI™7®, PKC activity was blocked using G66983 and
BIM. In contrast to the protein kinase A inhibitor (PKI)
used as a negative control, G66983 slightly affected phos-
phorylation of pAbl'”?>, while bis(indolyl)maleimide
(BIM) drastically reduced the phosphorylation of pAbl*”3
(Fig. 2¢). Even though the inhibitors G66983 and BIM en-
hanced the basal level of PKC phosphorylation, which has
been observed previously [42], Hp did not further stimu-
late an increase in pPKC (Fig. 2¢). In an in vitro kinase
assay, recombinant PKCa/p/y (rPKC) directly phosphory-
lated recombinant c-Abl (rAbl), which was again blocked
by BIM, but not by the PKCS-specific inhibitor rottlerin
(Fig. 2d). Since PKCy expression is restricted to neuronal
cells [50], these data point to PKCa/[} as Hp-regulated ki-
nases that directly phosphorylate pAbl™”®* in gastric epi-
thelial cells.

To identify potential interaction partners of c-Abl in
Hp-infected cells tandem-affinity purification (TAP) ex-
periments were performed. Differential Hp-dependent
binding patterns were observed in TAP-AbI*- and
TAP-Abl™-expressing cells (Fig. 3a). Phosphorylation of
TAP-AbI"* and TAP-AbI™ was verified by Western
blotting (Additional file 5: Figure S4A). Candidate pro-
teins were then analyzed by mass-spectrometry and
members of the 14—3-3 family were identified (Table 1).
In line with pAbl'”?® signals, a weak interaction of
c-AbI™ with 14—3-3 was observed in non-infected cells
and binding was drastically increased upon infection
with Hp. This interaction was completely abolished in
cells expressing c-Abl™ (Fig. 3b).

14-3-3 interaction can cause cytoplasmic retention of
c-Abl through binding to the phosphorylated threonine
residue 735 and thus masking the NLS sequences. This
interaction was shown to hinder the nuclear import of
c-Abl in response to genotoxic or oxidative stress [32,
51]. Therefore, we analyzed the subcellular localization
of c-Abl in Hp-infected cells. Immunofluorescence mi-
croscopy of AGS cells expressing c-Abl** (Fig. 4a) or
c-Abl™ (Fig. 4b) was performed. Both, non-infected
c-AbI™* and c-Abl™ expressing cells showed no distinct
localization and c-Abl was distributed in the cytoplasmic
and nuclear compartment. This picture changed after
infection with Hp. Here, c-AbI** showed nuclear exclu-
sion and preferentially localized to perinuclear regions
(Fig. 4a). In contrast, c-Abl™ was mainly localized in
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the nuclei of infected cells (Fig. 4b). Quantification of
nuclear c-Abl localization verified the retention of AbI™*
in the cytoplasm compared to Abl™ (Additional file 4:
Figure S3F). In Hp infections, the differential localization
pattern was also accompanied by a reduced elongation
phenotype, which was quantified by evaluating elong-
ation of c-Abl-positive cells. Cells expressing c-AbI"*
exhibited the typical elongated cell morphology, which
was drastically reduced in c-Abl™-positive cells (Fig. 4c
and Additional file 5: Figure S4B). This observation was
further confirmed by the finding that c-Abl™ ex-
pression led to a drastic decrease in Hp-induced cell
migration as compared to c-AbI*' expressing cells
(Fig. 4d) implying that cytoplasmic localization of
c-Abl is involved in actin cytoskeleton reorganization
leading to cell elongation and motility. Importantly,
the 14-3-3 antagonist BV02 clearly inhibited cell
elongation (Additional file 4: Figure S3G), which un-
derlines the significance of 14-3-3 binding in the

regulation of cytoplasmic Abl functions in Hp-in-
fected cells.

c-Abl is implicated in the DNA damage response by
supporting G1 arrest and DNA repair and it also con-
tributes to programmed cell death via p73- and presum-
ably p63-dependent mechanisms [52, 53]. Hp is known
to induce significant levels of apoptosis in vitro [54] and
in vivo [55]. Therefore, we analyzed whether c-Abl con-
tributes to the Hp-mediated apoptotic response. As
expected, Hp induced apoptosis in a MOI-dependent
manner (Fig. 5a). To analyze the role of c-Abl in cell sur-
vival, a c-Abl-deficient AGS cell line using stable
shRNA-mediated RNA interference and a control cell
line was employed [10] (Fig. 5b). In line with our
hypothesis, c-Abl knock-down (shAbl) resulted in a
significantly reduced apoptosis as compared to the con-
trol shRNA (shCtr) as monitored by MTT experiments
(Fig. 5b) and apoptosis assays (Additional file 5: Figure
S4E). Interestingly, this observation was also independent
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of CagA suggesting that the pro-apoptotic effect is
mediated directly via c-Abl (Fig. 5b). Concomitantly with
reduced cell death, we could also show decreased
caspase-8 (Fig. 5¢) and caspase-9 activation (Fig. 5d) in
shAbl cells. Efficient knockdown of endogenous c-Abl
expression in AGS cells was verified by Western blot-
ting and the decrease in Hp-mediated cell elongation
(Additional file 5: Figure S4C-D). Consequently, the
observation that mutational disruption of the c-Abl/
14-3-3 interaction resulted in increased nuclear
localization of the AbI™ mutant in Hp infected cells
led to the question whether this also causes increased
apoptosis. Ectopic TAP-AbI™ expression rendered the
cells more sensitive to apoptosis than TAP-AbI*" after

Table 1 Identified c-Abl interaction partners in Hp-infected cells

Hp infection (Fig. 6a), which was accompanied by an
increased activation of caspase-8 (Fig. 6b) and caspase-9
(Fig. 6¢) downstream of nuclear c-Abl processes [56].
These data support our conclusion that increased nuclear
localization of AbI™ correlates with increased apoptosis,
while cell migration is inhibited.

Increased c-Abl expression and phosphorylation in Hp
pathologies in vivo

To investigate whether Hp exhibited similar effects on
c-Abl expression and phosphorylation in vivo, we ana-
lyzed gastric tissue samples obtained from patients diag-
nosed with type C (chemically induced) gastritis or
Hp-associated B gastritis and compared them to healthy

Sample # Accession Description Score # Peptides
1 P35579 Myosin-9 148,23 50
2 P00519 Tyrosine-protein kinase ABL1 842,98 47
3 P00519 Tyrosine-protein kinase ABL1 300,10 30
4 P00519 Tyrosine-protein kinase ABL1 21943 34
5 Q01082 Spectrin beta chain, non-erythrocytic 1 544,78 95
6 P46940 Ras GTPase-activating-like protein IQGAP1 315,66 62
7 P00519 Tyrosine-protein kinase ABL1 624,71 38
8 B4DVQO cDNA FLJ58286, highly similar to Actin, cytoplasmic 2 90,94 8
9 P61981 14-3-3 protein gamma 18,73 5
Q04917 14-3-3 protein eta 24,49 9
P31946 14-3-3 protein beta/alpha 21,49 7
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controls. Hp-associated gastritis specimens displayed a
considerable tissue infiltrate with lymphocytes. Con-
comitantly, a strong increase in the expression of c-Abl
was observed. Importantly, an increased phosphorylation
of pAbl’”3* was detected in the Hp-positive samples, but

not in type C gastritis (Fig. 7a). Histological scoring of
c-Abl and pAbl'”?* resulted in a significant association
between Hp infections, enhanced c-Abl expression and
phosphorylation of pAbl™3 in the gastric epithelium
and gastric glands (Fig. 7b).
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Next, we addressed the role of c-Abl in Hp-associated
pathogenesis using a murine infection model. The kinase
activity of c-Abl was pharmacologically inhibited using
Gleevec (STI-571), which did not induce gastric patholo-
gies in uninfected mice [45]. C57BL/6 mice were in-
fected with Hp for two months and were analyzed for
successful colonization (Fig. 7c, right panel) and disease
parameters were quantified by histology (Fig. 7c, left
panel and Additional file 6: Figure S5). Despite the
long-term treatment with Gleevec, we observed a similar
level of colonization and inflammation in both groups.
Apart from inflammation all disease parameters were
decreased in the Gleevec-treated animals. In particular
reduction of hyperplasia was highly significant (p =
0.0091) (Fig. 7c and Additional file 6: Figure S5). This
further underlines the critical contribution of the c-Abl
signaling axis in the onset and progression of
Hp-induced pathology.

Discussion

The implication of c-Abl in Hp pathogenesis is well
established and a multifaceted deregulation of host
cell signaling has been demonstrated in Hp-infected
cells in vitro and animal models [9, 10, 45].

Importantly, c-Abl is responsible for sustained CagA
phosphorylation after inactivation of Src kinases in
gastric epithelial cells and significantly contributes
to cytoskeletal rearrangement and cell motility
resulting in an EMT-like scatter-phenotype [9, 10].
However, little is known about the regulation of
c-Abl in this complex network of signaling cascades.
Here, we report a novel mechanism of c-Abl regula-
tion in Hp-infected cells and demonstrate that
pAbI'7?* functions as decisive switch for the subcel-
lular localization of c-Abl. This reinforces cytoplas-
mic processes facilitating cell migration and
elongation, while pro-apoptotic effects in the nu-
cleus are prevented (Fig. 8).

The nuclear functions of c-Abl have been inten-
sively investigated and include DNA damage response,
inhibition of cell growth and apoptosis [57]. In our
experiments, we found that nuclear localization of
c-Abl™ increases apoptosis and caspase activation.
These data are supported by findings that nuclear
c-Abl  promotes apoptosis in a p73- and
p63-dependent manner, and eventually activates the
intrinsic apoptosis pathway and initiator caspases in a
feedback loop [52, 56, 58]. The cytoplasmic functions
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of c-Abl are less well defined. Interestingly, in Hp-in-
fected cells, endogenous c-Abl mainly localizes in the
cytoplasm and was also detected in focal adhesion
contacts [10] suggesting that deregulated c-Abl pro-
motes cell elongation and migration. A similar subcel-
lular distribution was observed in cells ectopically
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expressing c-Abl and we identified pAbl’”**> phos-

phorylation as a critical regulator of its subcellular
localization (Fig. 8). The discovery of Hp-mediated
pAblI"™”®* adds an important novel aspect in the
c-Abl-mediated regulation of cytoplasmic and nuclear
processes in Hp-infected epithelial cells. Mechanistic-
ally, we showed that 14-3-3 binds to c-Abl in a
phospho-threonine 735-dependent manner and thus
forces cytoplasmic localization [31]. Hence, activated
c-Abl in the cytoplasm potentiates cytoskeletal rear-
rangements, which are implicated in cell elongation
and migration, while nuclear depletion attenuated
apoptosis in response to Hp (Fig. 8).

Recent publications suggested that TTK/Mpsl can
directly phosphorylate pAbl™”> upon oxidative stress
[32]. Instead of TTK, we identified Hp-activated PKCs
as novel kinases that directly phosphorylate pAbl*”3?
(Fig. 8). Hp induces a wide range of conventional,
novel and atypical PKCs; therefore, PKCs are interest-
ing targets per se in Hp pathogenesis since they are
involved in proliferation, cell scattering and cellular
invasion [42, 59]. Hence, the identification of c-Abl as
a novel PKC substrate might represent a missing link
between PKC activation and the aforementioned cel-
lular responses. pAbl'”*®> was induced independently
of CagA, but required a functional T4SS. This is in
agreement with a study of Sokolova et al. showing
that PKC activation is mediated by T4SS-dependent
and T4SS-independent factors [59]. This points to the
hypothesis that CagL could trigger pAbl'”** possibly
via Bl-integrin activation, since it has been suggested
that c-Abl activation and its nuclear export is regu-
lated via integrin signaling [60]. In fact, tyrosine
phosphorylation ~ of  c¢c-Abl is  CagA-  and
CagL-dependent, and both factors were shown to
activate [Bl-integrin signaling [15, 36]. However, in
our experiments Cagl was not solely responsible for
pAbI'”*, but we detected a significant influence of
the newly identified T4SS effector fHBP. fHBP is de-
livered independently of CagA into host cells where it
activates the ALPKI1-TIFAsome-NF-kB pathway [37,
49]. Therefore, we propose a model that PHBP links
the T4SS to the anti-apoptotic function of cytoplas-
mic c-Abl and that different signal transduction path-
ways are involved to control phospho-tyrosine-
dependent c-Abl activity and phospho-threonine-
dependent subcellular localization.

Importantly, c-Abl is a disease-promoting factor in
Hp-associated gastric pathologies in vivo. First, a sig-
nificant increase in c-Abl levels was observed in the
gastric epithelium and glands in patients suffering
from Hp-associated gastritis, but not in type-C gas-
tritis. The elevated expression levels were accompan-
ied by a drastic phosphorylation of pAbl’”** and a
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preferential cytoplasmic localization in analyzed
specimens. Second, in murine infection models we
demonstrated that continuous inhibition of c-Abl
kinase activity alleviated Hp-induced gastric disease

parameters, particularly mucus pit cell/epithelial

hyperplasia. Together, the in vivo experiments indi-
cate that the observed effects of c-Abl are crucially
involved in lasting and chronic Hp infections, which
exceed the time frames typically covered in in vitro
settings.
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proteins. Cytoplasmic retention of activated c-Abl promotes cell elongation and migration contributing to the EMT-like phenotype and attenuates

Conclusions

In previous studies we have shown that Hp activates
c-Abl kinase to maintain CagA phosphorylation [9, 10].
The finding that Hp infections do not only induce c-Abl
kinase activity, but also forces cytoplasmic localization
of the activated kinase, where it promotes cell migration
and elongation and actively prevents apoptosis (Fig. 8)
adds an important new aspect to the complex mechan-

ism of Hp-mediated carcinogenesis.

Additional file

Additional file 1: Supplementary Information. (DOCX 32 kb)

Additional file 2: Figure S1. c-Abl threonine phosphorylation in AGS,
MKN28 and MCF-7 cells. (A) AGS cells were transfected with pSGT-Abl"* and
either left untreated or infected with Hp wt for the indicated periods of
time. Levels of pAbl"”* (white bars) and total Abl (black bars) were quanti-
fied by blot densitometry and normalized to GAPDH. Fold changes com-
pared to uninfected cells are shown. (B) MKN28 and (C) MCF-7 cells were
transfected with pSGT-Abl and either left untreated or infected with Hp for
the indicated periods of time. Levels of pAbl'”**, total c-Abl and GAPDH are
shown. (D) Lysates of uninfected (-) and Hp-infected (+) MKN28 cells were
subjected to immunoprecipitation (IP) using a specific c-Abl antibody.
Lysates before IP (pre IP), the precipitates (IP) and lysates after IP (post IP)
were analyzed by Western blotting to detect pAbl'”*> and c-Abl. (E) Trans-
fected AGS cells were infected with several Western (P12, P1, Hp26695 and
B8) and East Asian Hp isolates (42GX and 48GX) and analyzed by Western
blotting to detect pAbl™?*, c-Abl and GAPDH. (DOCX 180 kb)

Additional file 3: Figure S2. Tyrosine phosphorylation, but not
threonine phosphorylation of c-Abl depends on CagL. (A) AGS cells were
transfected with pSGT-AbI"" and remained uninfected or were infected
with isogenic Hp wt, ACagL, or ACaglL/CagL strains for 6 h. Whole cell
lysates were subjected to Western blotting to analyze pAbl™**, pAbl**
and pAb™'?. c-Abl and B-actin were shown as loading controls. Infec-
tions were further analyzed for pCagA and CagA. (B) Quantification of
PAbIT73%, pAbI¥** and pAbl™'? was performed by Western blot

densitometry, which was normalized to corresponding B-actin levels.
Graphs show mean + SD of three independent experiments. (C) Cells
were infected with Hp wt, ARfaE or APAI pAbl™°, Abl"**, pCagA, CagA
and GAPDH were detected using specific antibodies. (DOCX 2290 kb)

Additional file 4: Figure S3. Differential phosphorylation patterns in c-
Abl mutants. (A) AGS cell were transfected with pSGT-AbI™, pSGT-Abl™
PSGT-AbI™, pSGT-AbIF®, pSGT-AbI****F, pSGT-cAbI™'*, or empty vector
(ut) and either left untreated, infected with Hp wt or stimulated with
H,0,/vanadate (H/V, left panel) or PMA (right panel) for 6 h. Whole cell
lysates were analyzed by Western blotting for pAbl'”°, pAbl¥** or
PADbI™'2, pCagA, CagA, GAPDH and B-actin. Quantification of pAbl™** (B)
PADI"?* (C) and pAbI™'? (D) were performed by blot densitometry and
normalized to the corresponding B-actin levels. Graphs present mean +
SD of three independent experiments. (E) Transfected AGS cells were
pretreated with 10 uM STI-571 and infected with Hp for 6 h as indicated.
Whole cell lysates were analyzed by Western blotting for pAbl™”®,
p/—\bIYMS, Abl and GAPDH. (F) AGS cells were transfected with pSGT-Abl™*
or pSGT-Abl™ and then infected with Hp for 4 h. Nuclear and cytoplasmic
localization was quantified from four independent experiments. (G) AGS
stably transfected with pNTAP AbI" were pretreated with a 14-3-3
inhibitor (BV02) or vehicle control (DMSO) and infected with Hp for 8 h.
Cell elongation was determined by measuring the largest cell diameter
of individual cells from three independent experiments. (DOCX 310 kb)

Additional file 5: Figure S4. Generation of stable AGS cell lines. (A)
Untreated AGS cells and AGS cells transfected with TAP-AbI** or TAP-AbI™
were either left untreated (mock) or infected with Hp at a MOI 100 for 6 h and
analyzed by Western blot for pAbl™** and c-Abl. B-actin served as loading
control. (B) Untreated AGS cells and AGS cells expressing TAP-AbI™* or TAP-
AbI™ were either left untreated (mock) or infected with Hp at a MOI 100.

The scattering phenotype was documented using phase contrast microscopy.
(@) Untreated AGS cells and AGS cells stably transfected with control shRNA
(shCtrl) or c-Abl shRNA (shAbl) were lysed and analyzed by Western blotting
for c-Abl and GAPDH expression (D) AGS cells stably transfected with control
shRNA (shCtrl) or c-Abl shRNA (shAbl) were either left untreated (mock) or in-
fected with Hp at a MOI 100 for 6 h. Scattering phenotype was documented
using phase contrast microscopy. (E) AGS cells stably transfected with control
(shCtr) or Abl shRNA (shAbl) were left untreated (—) or infected with Hp wt
for 48 h. Percent apoptosis was calculated by analyzing annexin
single-positive and annexin/7AAD positive cells. (DOCX 276 kb)
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Additional file 6: Figure S5. Gleevec decreases Hp pathology. C57BL/6
mice were infected with Hp PMSS1 for two months, were supplied with
STI-571 or remained untreated (control). Representative sections of the
gastric tissues are shown. (DOCX 261 kb)
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CagA: Cytotoxin-associated gene A; Hp: Helicobacter pylori; PKC: Protein
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