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Abstract: Glutamate dehydrogenase (GDH) is a ubiquitous enzyme that catalyzes the reversible
oxidative deamination of glutamate to α-ketoglutarate. It acts as an important branch-point enzyme
between carbon and nitrogen metabolisms. Due to the multifaceted roles of GDH in cancer, hyperin-
sulinism/hyperammonemia, and central nervous system development and pathologies, tight control
of its activity is necessitated. To date, several GDH structures have been solved in its closed form;
however, intrinsic structural information in its open and apo forms are still deficient. Moreover,
the allosteric communications and conformational changes taking place in the three different GDH
states are not well studied. To mitigate these drawbacks, we applied unbiased molecular dynamic
simulations (MD) and network analysis to three different GDH states i.e., apo, active, and inactive
forms, for investigating their modulatory mechanisms. In this paper, based on MD and network
analysis, crucial residues important for signal transduction, conformational changes, and maps of
information flow among the different GDH states were elucidated. Moreover, with the recent findings
of allosteric modulators, an allosteric wiring illustration of GDH intramolecular signal transductions
would be of paramount importance to obtain the process of this enzyme regulation. The structural
insights gained from this study will pave way for large-scale screening of GDH regulators and could
support researchers in the design and development of new and potent GDH ligands.

Keywords: glutamate dehydrogenase; enzyme; molecular dynamics; network analysis; allostery;
regulation; modulators

1. Introduction

Glutamate dehydrogenase (GDH) is a mitochondrial enzyme present in all organisms
and plays an important role in glutamate metabolism by catalyzing the reversible oxidative
deamination of glutamate to α-ketoglutarate (αKG) and ammonia [1–7]. Fungal GDHs
exist as homotetramers, bacterial and vertebrate GDHs are homohexamers, and plant
GDHs exist as homo- or heterohexamers [8,9]. Mammalian GDH is a homohexameric
enzyme comprising two trimers stacked on top of each other. Each monomeric subunit
consists of three major domains: (i) a substrate binding domain (Domain I), (ii) a coenzyme
binding domain (Domain II), and (iii) the antenna domain (Domain III), which is absent in
other GDH types, such as bacteria, fungi, plants, and most protists [9–16]. The antenna
domain (helix–loop–helix) provides regulation by a wide range of ligands, including ADP
(+), leucine (+), NADH (−), GTP (−), ATP (−), diethylstilbesterol (−), palmitoyl CoA (−),
and steroid hormones (−), thus showing its importance in GDH modulation [9,17]. GDH
is involved in a number of biological processes, including amino acid and carbohydrate
metabolism, ammonia management, energy production, insulin secretion, and neurotrans-
mitter recycling [18]. As a consequence, this enzyme is involved in a number of pathologies,
such as cancer, central nervous system diseases, and hyperinsulinism/hyperammonemia
syndrome; thus tight control of GDH is vital [19]. Previous studies have shown that
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this enzyme is modulated by a wide array of metabolites, including amino acids [20],
antipsychotic drugs [21], nucleotides [22], natural products [23], and steroid hormones [24].

Although many studies related to the GDH enzyme have been conducted in the
past, its modulatory mechanism remains elusive [3,5,10,11,25]. Several GDH structures
have been solved, either crystallized with coenzymes (NADH, NADPH) and nucleotides
(ADP, ATP, GTP and NADH) or mostly in its inactive form (closed state) [10,17,26,27].
Notably, crystalline or cryo-EM solved structures represent only a single snapshot, which
are captured at a specific state. Moreover, the intrinsic dynamics of GDH states involving
numerous allosteric regulators are yet to be elucidated. Additionally, intrinsic structural
information in its active (open conformation) and apo states is still lacking. Therefore, it
is necessary to study the dynamic nature of GDH complexes through molecular dynamic
(MD) simulations, which could capture the protein motions in a time-dependent manner at
an atomic scale resolution.

The conformational shift between ‘closed’ and ‘open’ GDH states is regulated by
two allosteric sites which are differentially bound by inhibitor GTP and activator ADP,
respectively. These allosteric regulators heavily regulate GDH function. ADP and GTP
may bind to opposite conformational states. GTP binds to the hinge region when the
Domain II (NAD+-binding domain) is in the closed conformation, and prevents the product
release from the catalytic site through stabilization of the closed catalytic cleft, while the
ADP-active site arises when the orthosteric site opens as Domain II pulls back towards the
antenna region [28]. ADP acts as an activator by accelerating the catalytic cleft opening,
resulting in the release of the reaction product [2–4,7,11,26,29–31].

Until now, only two computational studies on the GDH system have been pub-
lished [19,32]. Recently, Rashid et al. utilized the available cryo-EM data of apo GDH, the
open and closed states of NADH-, and GTP-bound GDH states to elucidate the allostery
behind GDH regulation [19]. The results showed that the inhibitor triggers a triangular
allosteric network linking GTP, NADH, and catalytic sites, thus regulating nucleotide-
binding domain (NBD) motion, which blocks the catalytic cleft in the GTP-triggered
inhibition dynamics. The authors combined cryo-EM data with MD (10 ns) and showed
that the cofactor NADH is indeed a potent player in GDH modulation. However, signal
communications, the key residues involved in ligand binding, allosteric communications,
and conformational changes taking place in three different states of GDH have not been
studied so far.

Here, we explored the conformational stability and mapped the signaling commu-
nications among the key residues for three different GDH states (i.e., the apo form of
GDH without bound substrate; and the nucleotide-bound GDH states: the ADP-bound
GDH state (agonist-bound GDH); and the GTP-bound GDH state without substrate and
coenzymes (antagonist-bound GDH)) using MD simulations and network analysis. We
carried out all-atom MD simulations for each GDH state (300 ns) and monitored their
conformational structural and dynamical changes. Initially, the conformational stability of
GDH complexes were assessed using MD structural analysis. Subsequently, we calculated
the map of allosteric signal flow within GDH states by using “betweenness centrality”
(CB), which is one of the most common analyses in network theory. Here, we assessed the
betweenness centrality of each residue, calculated the maps of signal flow in GDH signal-
ing, and identified hot spot residues vital for their modulatory mechanism. Interestingly,
allosteric hot spots that were identified through CB-based analysis correlated well with
previous biochemical and clinical mutation data [10,11,26,29,33–35]. Additionally, we also
conducted a correlation network analysis for elucidating GDH enzyme-correlated motions
in three different states. The structural underpinnings obtained from this study will pave
way for large-scale screening of GDH modulators and could help researchers in the design
and development of new and potent GDH ligands.
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2. Materials and Methods
2.1. Molecular Dynamic Simulations of GDH States

The bovine GDH sequence shares 98% sequence identity to human GDH and 100%
similarity in the near substrate and regulatory sites [29]. Bovine GDH serves as an excellent
substitute for human GDH; hence, we utilized its crystallographic structures. By utilizing
the X-ray crystal structures of bovine GDH states (apo form: 1NR7; agonist (ADP)-bound
form: 1NQT; antagonist (GTP)-bound form: 3JD0), MD simulations were performed using
the GROMACS package v5.1.4 [36] with a CHARMM36-jul2020 force field [37]. Since GDH
is a homohexameric enzyme, we subjected only 1 monomer per GDH state to the MD
simulations. Topology and parameter files for the ligands were generated via the CGenFF
server v1.0.0 [38]. GDH states were solvated with 43,488 (apo), 29,917 (agonist-bound), and
33,303 (antagonist-bound) water molecules using the TIP3P water model. Subsequently,
the states were neutralized by replacement of the solvent molecules with the required
counter ions. The simulation states contained 138,183 (apo), 97,510 (agonist-bound), and
107,689 (antagonist-bound) atoms, respectively. Nonbonded interactions were smoothly
switched off between 10 and 12 Å. Electrostatic interactions were handled using a particle
mesh Ewald algorithm with a cubic interpolation order of 4 and a grid spacing of 0.16 nm.

Initially, GDH states were energy minimized using the steepest descent algorithm,
where the tolerance force for convergence was set to <1000 kJ (mol nm)−1. Following
energy minimization, the states were subjected to 2 equilibration phases (NVT (constant
Number of particles, Volume, and Temperature) and NPT (constant Number of particles,
Pressure, and Temperature)): (i) gradual heating of the system from 0 to 300 K with a
0.01 K interval at each step for 10 ns using a leap-frog integrator; (ii) subsequently, the
systems were subjected to a second equilibration phase with the NVT ensemble for 10
ns using a Parrinello–Rahman barostat to reach 1 bar pressure. Upon completion of the
2-step equilibration, each system was subjected to a 300 ns production run using the NPT
ensemble. We utilized an integration timestep of 2 fs, and the simulated trajectories were
saved and sampled for every 100 ps for the analysis.

2.2. Structural Analysis

The trajectory produced for each GDH system after MD simulation was further ana-
lyzed using the built-in modules of GROMACS 5.1.4. [36,39] and plotted using matplotlib
v3.3.2. The graphical images were produced using PyMOL v2.3.0a0 [40]. The structural
analysis for each system was done using the gmx rms, gmx rmsf, gmx sasa, and gmx
hbond utilities of GROMACS package to compute RMSD, RMSF, solvent-accessible surface
area (SASA), and the number of hydrogen bonds (H-bonds). The distance criterion for the
H-bonds is d ≤ 3.5 Å between the donor and acceptor, and the angle between the donor
and acceptor is >30◦.

2.3. Essential Dynamics

Principal component analysis (PCA) of MD simulations is a popular mathematical
tool that computes the essential dynamics of a system on a low-dimensional free energy
landscape (FEL) [41,42]. Covariance matrices for GDH states were calculated using protein
backbone atomic fluctuations following the elimination of rotational and translational
motions. From diagonalization of the covariance matrix, the sum of eigenvalues for apo,
agonist-, and antagonist-bound GDH states were 66.584 nm2, 75.192 nm2, and 124.749 nm2,
correspondingly. GROMACS tools, such as gmx covar and gmx anaeig, were used for re-
trieving the eigenvalues and eigenvectors of protein backbone atoms. The first 20 projection
eigenvectors were subjected to cosine content analysis, where the principal components
(PCs) with a cosine value of ≤0.2 were utilized for FEL calculations. The gmx sham
module was used for retrieving the minimal energy configurations of each GDH state.
Two-dimensional (2D) and 3-dimensional (3D) FEL contour plots were generated using a
trial version of Wolfram Mathematica 12.2 [43].
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2.4. Construction of the Residue Interaction Network

A weighted residue interaction network was constructed by considering each amino
acid residue as a node and the number of H-bonds between two amino acid residues as a
weight. To consider the effect of side chains, we included two coarse-grained centers per
residue (the Cα backbone and the heavy atom furthest away from Cα for the side chain),
so that the cases of backbone–side chain, side chain–side chain, and backbone–backbone
contacts were encompassed. In our network model, if the distance between any 2 of the
above-defined atoms in 2 residues was <7 Å, then a contact has been established.

2.5. Calculation of Network Centralities

In this study, we computed three centralities (CD, CC, and CB) from the residue
interaction network. A brief description of each centrality is as follows: CD measures the
number of contacts of each residue with the neighboring residues.

CD(r) = deg (r) (1)

where r is the node.
Cc calculates how fast a signal is transmitted from node r to other nodes.

CC(r) =

(
K

∑
j=1

d(q, r)/(K− 1)

)−1

(2)

where K is the chain length and d(q, r) is the number of edges that join the nodes q and r.
We used Dijkstra’s algorithm to compute d(q, r).

CB measures the important residues involved in the signal transduction. We used
Brandes algorithm to compute the CB.

CB =
2

(K− 2)(K− 1)

K−1

∑
a=1

K

∑
b=a+1

τab(r)
τab

(3)

where τab is the shortest paths joining the nodes a and b, and τab is the number of shortest
paths connecting the nodes a and b through the node r.

2.6. Correlation Network Analysis

Correlation network analysis is used for detecting protein regions with correlated
motions. In this method, a weighted graph is constructed, where each residue denotes
a node and the weight of the connection between nodes i and j denotes their respective
cross-correlation value, cij, as stated by the Pearson-like form [44] or the linear mutual
information [45,46]. A detailed methodological description of computing a correlation
network analysis from MD trajectories has been provided in previous studies [47,48]. The
same procedure was implemented in Bio3D [49], which we utilized for computing the
correlation networks.

3. Results
3.1. Structural Stability of GDH States

Apo, agonist-, and antagonist-bound GDH forms were prepared and subjected to
960 ns of MD simulations in total in an explicit aqueous solution. Initially, the stability
of GDH states were evaluated using root mean square deviation (RMSD) of the protein
backbone atoms with respect to the equilibrated structure in a time-dependent manner.
Altogether, the three GDH states deviated from the equilibrated structure by 1.5 to 8 Å
during a production run. As shown in Figure 1A, the apo state depicted high structural
deviations varying from 1.5 to 7 Å, thereby depicting the structural instability of unbound
states in the physiological state. Even though ligand-bound GDH states showed large
structural deviations initially, both states reached stability after 75 ns. The agonist-bound
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GDH state (~5 Å) showed lower structural deviations than the antagonist-bound form.
This clearly shows that the protein is more flexible in the antagonist-bound state than the
agonist-bound form. Likewise, ligand RMSD was calculated for ADP (agonist) and GTP
(antagonist) molecules (Figure 1B). RMSD for ADP ranged from 0.5 to 2.5 Å, while that for
GTP ranged from 0.5 to 3.5 Å. In summary, not only the protein (agonist-bound state) but
also the agonist (ADP) showed smaller RMSD when compared with the antagonist GTP.

Figure 1. Structural stability analysis of apo, agonist-bound, and antagonist-bound GDH states. (A) The RMSD of the
protein backbone atoms with respect to the equilibrated structure, (B) the RMSD of the agonist (ADP) and antagonist (GTP)
molecules with respect to the minimized structures, and (C) the RMSF of the apo, agonist-, and antagonist-bound states
of GDH are shown. Short rectangular boxes on the top axis indicate the location of the α-helices’ secondary structural
elements. (D) Solvent-accessible surface area of the apo, agonist-, and antagonist-bound GDH states. The data for the apo,
agonist-, and antagonist-bound forms of GDH are shown in gray, dodger blue, and salmon, respectively.

Similarly, root mean square fluctuations (RMSFs) were calculated for the Cα atoms
of GDH states (Figure 1C). Interestingly, the α2 and antenna helices (α12, α13, and α14)
show high residual fluctuations. In particular, the antenna helix protein segment showed
the maximal residual fluctuations in all three GDH states, thus underscoring its large
intrinsic domain movement due to the unusual long protruding geometry, which plays
a key role in enzyme regulation [11,19,29]. The fluctuations of the antenna helix for the
antagonist-bound state (~16.5 Å) were much higher when compared with the agonist- and
apo forms. Furthermore, the helices participating in ligand binding were comparatively
stable and sustained their residual variations within 1 Å. Highly fluctuating regions for
ligand-bound states were similar; however, the residual RMSFs of the agonist-bound state
were much smaller than those of the antagonist-bound state. In one specific region (i.e.,
the loop connecting α5 and α6), the residue fluctutations of the agonist form were higher
than those of antagonist and apo forms, which correlates well with our correlation network
analysis (see Section 3.4.). Besides the α2 and antenna helices, the apo form showed residual
fluctuations in the α8 and α9 helices. In addition to the RMSD, SASA was used to evaluate
the stability of GDH states. Figure 1D shows that the agonist-bound state’s SASA is lower
than that of the antagonist- and apo states, thus depicting its thermodynamic stability. The
apo form showed higher SASA when compared with the agonist and antagonist-bound
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states. The average SASA for the apo, active, and inactive GDH states was 263.221 nm2,
260.551 nm2, and 261.953 nm2, respectively. Interestingly, the SASA values among the three
states showed only marginal differences. Overall, our SASA analysis showed that all the
three states were highly stable and did not vary over the course of the simulation.

Besides the RMSD and SASA analyses, we also checked the stability of hydrogen-
bonds (H-bonds) in the agonist- and antagonist-bound GDH states throughout the simu-
lation. In Figure 2A, it can be observed that the number of H-bonds in the ligand-bound
states varied throughout the course of the MD simulation. The average number of H-bonds
per timeframe for the ligand-bound states were 3.482 and 4.118, respectively, for the agonist-
and antagonist-bound states. The maximum number of H-bonds in ligand-bound states
were, respectively, 7 and 8 for the agonist- and antagonist-bound states. Approximately
three H-bonds were retained in the ligand-bound states throughout the simulations. More-
over, critical residues that were involved in H-bond formation for ligand recognition were
identified using H-bond occupancy. H-bond occupancy can be defined as the fraction
of time involved in H-bond formation between the ligand and protein atoms. In Figure
2B, it is shown that the Q85, R86, D119, V120, and F122 residues mainly contribute to H-
bond formation in the agonist-bound state, which is in line with the previous reports [10].
Additionally, the R459 residue contributes minorly to H-bond formation, which plays an
important role in ADP activation, as the mutant form of R459A leads to a loss in ADP
activation [10,11]. However, in the antagonist-bound state, R217, R261, Y262, R265, and
K289 are the major residues involved in H-bonding formation, which agrees with previous
studies [10,11]. Other minor residues include S213, D447, and H450. In brief, H-bond
analysis shows the prominence of polar interactions in the selective recognition of GDH
ligands.

Figure 2. Hydrogen bond (H-bond) formation of agonist- and antagonist-bound GDH states during MD simulation. (A)
Number of H-bonds formed between protein–ligand complexes during 300 ns of production time. (B) H-bond occupancy of
each interacting residue in their relevant complexes throughout the simulation. The data for the agonist- and antagonist-
bound forms of GDH are shown in dodger blue and salmon, respectively.

3.2. PCA and FEL Analysis

PCA was used for reducing the dimensionality of the data while preserving most of
the variation in the data [50]. Here, we utilized essential dynamics analysis (EDA) to study
the distribution of the structural conformations among three different GDH states from
the MD simulation trajectories. Two-dimensional projections of PC1 and PC2 between the
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largest two eigenvalues in the GDH states are mapped in Figure 3A. The conformation of
each individual GDH state over a trajectory of 300 ns is represented by dots. Notably, if
a protein showed large conformational changes, then the distribution was also scattered
in the conformational space. In our EDA analysis, the apo form’s distribution is more
widely dispersed than ligand-bound forms due to the absence of a ligand. However, the
distribution of GDH ligand-bound states in the conformational space is limited.

Figure 3. Principal component (PC)1 and PC2 projections of the different structural conformations of GDH states. (A)
Two-dimensional (2D) projection of PC1 and PC2 throughout the MD simulations for the apo, agonist-bound, and antagonist-
bound GDH states, which are represented in gray, dodger blue, and salmon, respectively. (B) The best PCs of eigenvalues
corresponding to the first 20 eigenvectors and their related cumulative fluctuations are represented by squares.

Additionally, we plotted eigenvalues against the eigenvector index and identified that
all GDH states displayed stabilization in the first eight eigenvectors, as depicted in Figure
3B. We also computed the cumulative percentages of variance in motion retrieved from
the initial 20 PCs (91%, 51%, and 56% for the apo, active, and inactive forms, respectively).
Overall, the PCA results suggested that the apo form of GDH showed a large structural
distribution when compared with the active and inactive forms. The active form showed
less structural distribution when compared with the inactive form, thereby showing the
highly stable nature of GDH upon agonist binding.

We also conducted FEL analysis to obtain the global minimum energy conformation
of GDH states. Two-dimensional and 3D FEL contour maps for the GDH states were
obtained from PC1 and PC2 (Figure 4). The 2D-FEL contour maps for ligand-bound GDH
states presented four minimal energy clusters and larger structural dispersals (Figure
4A). A single cluster was observed in the agonist-bound GDH state, thus demonstrating
the robust and stable interaction of ADP with GDH, which is in line with our structural
stability analysis. In Figure 4B, it can be observed that we extracted the most representative
conformation from the least minimal energy regions in the agonist- and antagonist-bound
GDH states to check the ligand interactions in the active site. FEL analysis of the ligand-
bound states (Figure 4C) showed that the lowest energy conformers were identified at
the 198,200 ps (agonist-bound state) and 150,200 ps (antagonist-bound state) snapshots
retrieved from the most populated free energy minimum cluster. Key ligand interactions
in the agonist- and antagonist-bound GDH states, as shown in Figure 4B, correlated well
with previous reports [10,11,17,18,29].
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Figure 4. Free energy landscape (FEL) contour plots of GDH states. (A) Two-dimensional FELs of apo (top panel), agonist-
bound (middle panel), and antagonist-bound (bottom panel) GDH states, shown as a function of two PCs that were selected
based on a cosine content value≤0.2. The minimal energy clusters in all three GDH states are shown by black arrows. (B) The
minimal energy structures of apo, ADP-bound, and GTP-bound GDH states are shown. Residues critical for ligand recognition
are depicted as blue and salmon-colored sticks and H-bonds are shown as black dashed lines. (C) Three-dimensional FEL plots
of apo (top panel), agonist-bound (middle panel), and antagonist-bound (bottom panel) GDH states.

3.3. Identification of GDH Hot Spot Residues Using Network Analysis

Choosing a representative structure from a long MD trajectory for analysis is a daunt-
ing task. However, choosing the last frame as the representative structure does not ensure
that it will be the best structure with the lowest energy score. One better alternative would
be to cluster the trajectories and subsequently consider the centroids of the most populated
cluster as the representative one. Nevertheless, the choice of a representative selection
criterion would depend on the goal of our analysis. Here, we monitored each state in
terms of total conformational energy (Figure 5A) and RMSD relative to the minimal energy
structure (Figure 5B). The representative structures for each GDH state were obtained by
plotting the total conformational energy relative to the RMSD of the backbone atoms of
the minimal energy structure (Figure 5C). The top 20 structures obtained from the con-
formational ensemble with the lowest energies were clustered for the apo, agonist-, and
antagonist-bound GDH forms. The most minimal energy structure for each state was
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chosen as the representative one, and was subjected to network analysis. GDH monomers’
structural architecture and the structural differences observed in the most minimal energy
structures of the apo, agonist-, and antagonist-bound states are shown in Figure S1.

Figure 5. Generation of minimal energy structures of GDH for network analysis. (A) Time-dependent total conformational
energy of apo, agonist-, and antagonist-bound GDH states. (B) RMSD with reference to the minimal energy structure from
the MD trajectories of GDH states. (C) Total conformational energy versus RMSD plots for apo, agonist- and antagonist-
bound GDH complexes. The minimal energy structures of GDH states are shown as black circles. The data for apo,
agonist-and antagonist-bound forms of GDH are shown in gray, dodger blue, and salmon, respectively.

Network centrality is used as a popular method for elucidating protein allostery. In
network theory, this statistical measure quantifies the degree of centralization of a node,
which could be utilized to elucidate the protein hot spot residues [51]. We computed cen-
trality measures, such as betweenness (CB), closeness (CC), and degree (CD) centralities [52],
by using the minimal energy structures of all three GDH forms (Figure 6A–C), built residue
interaction network as stated in Materials and Methods section, and calculated the GDH
states’ centralities. We considered only betweenness centrality to assess the significance of
each residue for the signal transduction in the GDH forms. The rationale for using the CB
measure has been discussed in our previous work [42].

Residues with CB ≥ 0.05 in all three GDH states were mapped onto the minimal
energy apo structure (Figure 6D). A total of 20 hot spot residues were identified, of which
six were detected in the apo state, eight in the agonist-bound state, and six in the antagonist-
bound GDH state (Table 1). Among them, a few residues were deemed to be important in
signaling, which is in line with previous studies [10,11].
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Figure 6. Network centrality analysis for GDH states. (A) Betweenness (CB), (B) closeness (Cc), and (C) degree (CD)
centralities for each residue of the GDH complexes are shown. The dotted line represents the cutoff value CB = 0.05.
(D) Residues with high CB (≥ 0.05) are depicted as spheres on the minimal energy structure of apo GDH. Gray, dodger
blue, and salmon spheres represent the residues with high CB values in the apo, agonist-, and antagonist-bound GDH
states, respectively. Other residues that are commonly present in the apo and agonist-bound GDH states, the apo and
antagonist-bound GDH states, and the agonist- and antagonist-bound GDH states are shown in pale green, wheat, and
purple, respectively.

Table 1. List of important residues satisfying the condition (CB) ≥ 0.05 are shown. Mutation data
available for residues are shown in bold. Residues with |CB

Apo − CB
Ago| ≥ 0.02 are underlined.

Residues with |CB
Apo − CB

Antag| ≥ 0.02 are italicized.

CB ≥ 0.05

CB
Apo ≥ 0.05 P167, *Y262, #E346, Y382, L397, F399

CB
Ago ≥ 0.05 R94, K114, R211, R217, #E346, N406, &A443, S451

CB
Antag ≥ 0.05 *Y262, K329, Y394, &A443, I448, S450

* Residue with CB ≥ 0.05 present in both the apo and antagonist-bound forms. # Residue with CB ≥ 0.05
present in both the apo and agonist-bound forms. & Residue with CB ≥ 0.05 present in both the agonist- and
antagonist-bound forms.

In the apo form, residues with CB ≥ 0.05 were found in the α8, α11, and α12 helices.
Similarly, residues with CB ≥ 0.05 in the antagonist-bound state were identified in the α8,
α12, and α15 helices. In the agonist-bound state, the residues with CB ≥ 0.05 were found to
be distributed in the α3, α6, α12, α14, and α15 helices. Interestingly, most of the residues
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were identified to be well distributed in the antenna region in all three states. However, in
the ligand-bound states, the residues were well dispersed in the pivot helix (α15) as well.
Overall, the residues identified through this analysis were well distributed in the α3, α6
(intermediate), α8, α11 (elongated), α12, α14 (antenna), and α15 (pivot) helices, and thus
could be deemed important for modulating GDH signaling.

Additionally, we computed the differences in CB between the apo and agonist-bound
(Figure 7A), and the apo and antagonist-bound states. In total, 28 residues that satisfied
|CB

Apo − CB
Ago| ≥ 0.02 were identified (Figure 7B) and mapped onto the minimal energy

structure of the apo form (Figure 7C). In Figure 7B,C, it is clear that the residues satisfying
the condition |CB

Apo − CB
Ago| ≥ 0.02 are primarily distributed in the α3, α6, α11, α12,

α14, and α15 alpha helices. Besides the helices, a few of the residues are well dispersed in
the loop regions, mostly in the α11–α12 loop.

Figure 7. (A) Differences in CB values calculated for the apo and agonist-bound GDH states. (B) Key residues satisfying
the condition |CB

Apo − CB
Ago| ≥ 0.02, along with their corresponding protein segments (listed in the table). Mutation

data available for residues are shown in bold. (C) Residues with |CB
Apo − CB

Ago| ≥ 0.02 are shown on the minimized apo
structure as dodger blue spheres.

In the case of the |CB
Apo − CB

Antag| ≥ 0.02 condition (Figure 8A), a total of 27
residues were identified (Figure 8B), which were mapped onto the lowest energy apo
structure (Figure 8C). Here, the residues were located in the α3, α8, α11, α12, α14, and
α15 helices. Few residues were distributed along the loop regions, mostly in the α9–α10
and α11–α12 loops. The contribution of residues satisfying both conditions were mainly
identified in the α3, α6, α8, α11, α12, α14, and α15 pivot helices, which agreed well with the
CB ≥ 0.05 condition. The predictions derived from CB-based network analysis are useful
not only for complementing mutagenesis studies but also for illuminating the modulatory
mechanisms of the GDH enzyme.
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Figure 8. (A) Differences in CB values calculated for the apo and antagonist-bound GDH states. (B) Key residues satisfying
the condition |CB

Apo − CB
Antag| ≥ 0.02, along with their corresponding protein segments (listed in the table). Mutation

data available for residues are shown in bold. (C) Residues with |CB
Apo − CB

Antag| ≥ 0.02 are shown on the minimized
apo structure as salmon spheres.

3.4. Correlation Network Analysis of GDH States

To interpret and quantify GDH state-specific couplings, correlation networks were con-
structed. This method has been successfully implemented to elucidate allosteric couplings
in several states [48,53–55]. For each GDH state, a weighted correlation network graph was
constructed from the MD simulations. Each node represented individual protein residues
and the weight of the connection between nodes represented their related cross-correlation
value. We computed correlation networks using MD simulation trajectories and applied
community analysis to cluster the networks into highly intra-correlated structural regions,
but loosely connected substructures. This analysis revealed nine, eight, and seven corre-
lated protein regions (or community groups) in the apo, agonist-, and antagonist-bound
GDH states, respectively (Figure 9A).

In the apo form, there were five main correlated protein sectors (Figure 9B), shown
as blue, red, light gray, orange, and yellow. In the agonist-bound GDH state, five main
correlated community groups (Figure 9B), shown as light gray, orange, yellow, red, and
blue, were detected. Similarly, five major correlated protein sectors were identified in the
antagonist bound GDH state (Figure 9B), shown as red, yellow, blue, orange, and dark gray.
The results suggest that the participating protein segments showed an intrinsic tendency
to demonstrate correlated motions regardless of the GDH state. In the ADP-bound form,
active site residues were distributed in major communities (blue, red, and yellow) (Figure
9B). Likewise, antagonist-bound GDH inhibitor binding site’s residues were dispersed in
the major red and yellow communities (Figure 9B).
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Figure 9. Correlation network analysis of the apo, agonist-, and antagonist-bound GDH states. (A) Community networks
of the apo, agonist-, and antagonist-bound GDH states are shown as colored circles whose radius depicts the number of
residues in a specific community. The linking lines represent the intercommunity couplings. Five major correlated protein
regions (red, light gray, orange, blue, and yellow) were identified in all three GDH states. (B) Protein regions of the apo,
agonist-and antagonist-bound states corresponding to each community are shown, and the colors match the community
partitioning. In the apo form, the five main correlated protein sectors are blue (α2, α2–α3 loop, α4–α5 loop, α5, and α9–α10
loop), red (α1, α2, α2–α3 loop, α15 (pivot helix), and α16), light gray (α7→ α9, and α9–α10 loop), orange (α2–α3 loop,
α4, α5, and α5–α6 loop), and yellow (α5–α6 loop, α10–α11 loop, α11, α14, and α15). In the agonist-bound GDH state,
the five main correlated community groups are light gray (α6→ α9, and α9–α10 loop), orange (α2–α3 loop, α4, α5, and
α5–α6 loop), yellow (α4–α5 loop, α5–α6 loop, α6, α11, and α14), red (α1, α3, α6, α10–α11 loop, α15, and α16), and blue
(α2, α2–α3 loop, α3, and α3-α4 loop). The five major correlated protein sectors in the antagonist-bound GDH state are red
(α1, α3, α5–α6 loop, α6, α7–α8 loop, α8, α10, α11, α15, and α16), yellow (α5–α6 loop, α10–α11 loop, α11, α14, and α15),
blue (α2, α2–α3 loop, α3, α3–α4 loop, α4, and α4–α5 loop), orange (α2–α3 loop, α3–α4 loop, α4, α4–α5 loop, α5, α6, and
α11), and dark gray (α2, α2–α3 loop, α3, and α16). The zoomed-in views show the participating major communities in the
ligand binding regions.
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4. Discussion

GDH is an ubiquitous enzyme that plays an important role at the branchpoint of
the nitrogen and carbon assimilation pathways [9]. Animal GDH is regulated by a wide
range of allosteric ligands, including ADP and GTP, which interact in an agonistic and
antagonistic manner, respectively. Since GDH is modulated by several metabolites, the
allosteric communication taking place within the GDH intra- or interdomain must be
elucidated. Several studies related to GDH regulation have been investigated in the past;
however, the underpinnings of GDH’s modulatory mechanism at an atomic level remain
elusive. Even though several GDH structures have been solved in the closed state, apo or
open forms have been less investigated. Hence, we applied unbiased MD simulations to
apo, active ADP-bound, and inactive GTP-bound GDH forms for elucidating the ligand
recognition mode and their modulatory mechanisms. We subjected three GDH states to
MD simulations for a total of 960 ns and inspected their trajectories utilizing structural
stability and network analyses.

Initially, we assessed the structural stability of GDH states using RMSD, RMSF, SASA,
and H-bond analysis. Our structural stability analysis identified the more stable nature
of the agonist-bound GDH state in comparison with the apo and inactive forms. RMSF
analysis identified high residue fluctuations in the α2 and antenna helices, thus indicat-
ing the importance of these regions in GDH’s modulatory process. In particular, the
antagonist-bound GDH state showed high residue fluctuations in the antenna helix region
in comparison with the other two GDH states, thus showing its significance in the regula-
tion process in a closed state. SASA analysis also supported the stable nature of the three
GDH states. Furthermore, H-bond analysis illustrated the importance of polar interactions
and identified the major and minor residues involved in ligand recognition, which agrees
well with previous studies [11,26,43,53,54]. EDA analysis also supported the stable nature
of ligand-bound GDH states in comparison with the apo form, which is in line with H-bond
analysis and previous studies [6,11,45,46,55]. PCA showed the widely scattered structural
distribution of the apo form due to the absence of ligands. Overall, our structural and
EDA analyses showed the importance of specific regions in ligand recognition and the
modulatory mechanism, and strongly supported the stable nature of GDH states.

Furthermore, we applied the CB measure to all GDH states for evaluating the signifi-
cance of each residue in mediating the signal flow. The residues identified through network
analysis correlated well with the experimental and mutation data [11,19,21,24,29,38]. We
also constructed correlation network analysis to quantify GDH-state-specific couplings
and identified that the major clusters were identified in the active site, NBD, intermediate,
extended, and pivot helices which are deemed to be important for GDH signaling [11,29].
The predictions derived from the CB-based network and correlation network analysis pro-
vides a better insight of the intricate links among allostery, protein flexibility, and function.
This study identified a few hot spot residues and important protein regions which could
be utilized in future investigations for capturing their local dynamics in the GDH signal-
ing process. For future prospects, this investigation could be extended by subjecting the
monomer or oligomer to microsecond simulations and identifying the key microswitches
which could play important roles in enzyme modulation. Our approach should be of great
use not only for investigating ligand recognition studies of the GDH state but also for
elucidating their signaling and modulatory mechanisms. This approach could be extended
for studying and capturing both the local and global dynamics of protein–ligand states and
to map their coupled signal flow.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biom11060798/s1. Figure S1. Structural architecture and superposition of the GDH monomer
structure; M1 Supporting Movie: Conformational changes observed in the apo GDH state during
300 ns of simulation time; M2 Supporting Movie: Conformational changes observed in the agonist-
bound GDH state during 300 ns of simulation time; M3 Supporting Movie: Conformational changes
observed in the antagonist-bound GDH state during 300 ns of simulation time.
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