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Abstract: Determining which patients with early-stage breast cancer should receive chemotherapy
is an important clinical issue. Chemotherapy has several adverse side effects, impacting on quality
of life, along with significant economic consequences. There are a number of multi-gene prognostic
signatures for breast cancer recurrence but there is less evidence that these prognostic signatures
are predictive of therapy benefit. Biomarkers that can predict patient response to chemotherapy
can help avoid ineffective over-treatment. The aim of this work was to assess if the OncoMasTR
prognostic signature can predict pathological complete response (pCR) to neoadjuvant chemotherapy,
and to compare its predictive value with other prognostic signatures: EndoPredict, Oncotype DX
and Tumor Infiltrating Leukocytes. Gene expression datasets from ER-positive, HER2-negative
breast cancer patients that had pre-treatment biopsies, received neoadjuvant chemotherapy and an
assessment of pCR were obtained from the Gene Expression Omnibus repository. A total of 813
patients with 66 pCR events were included in the analysis. OncoMasTR, EndoPredict, Oncotype
DX and Tumor Infiltrating Leukocytes numeric risk scores were approximated by applying the
gene coefficients to the corresponding mean probe expression values. OncoMasTR, EndoPredict
and Oncotype DX prognostic scores were moderately well correlated according to the Pearson’s
correlation coefficient. Association with pCR was estimated using logistic regression. The odds ratio
for a 1 standard deviation increase in risk score, adjusted for cohort, were similar in magnitude for all
four signatures. Additionally, the four signatures were significant predictors of pCR. OncoMasTR
added significant predictive value to Tumor Infiltrating Leukocytes signatures as determined by
bivariable and trivariable analysis. In this in silico analysis, OncoMasTR, EndoPredict, Oncotype DX,
and Tumor Infiltrating Leukocytes were significantly predictive of pCR to neoadjuvant chemotherapy
in ER-positive and HER2-negative breast cancer patients.
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1. Introduction

Breast cancer is the most frequently diagnosed cancer in women, with more than 2.1 million new
diagnoses worldwide every year, and the second leading cause of cancer death. The American Cancer
Society and the International Agency for Research on Cancer reported that mortality rates are on the
decline in certain regions of the world as a result of earlier diagnosis and improved therapies [1,2].
Accurate tools to help with optimal treatment decisions for individual patients to improve their
prognosis, survival and quality of life are needed, whilst also reducing associated healthcare costs [3].
Breast cancer patients who receive chemotherapy can experience several side effects and symptoms
that have a negative effect on their quality of life during and after the completion of treatment [4].
Biomarkers that can predict patient response to chemotherapy can help identify which patients are
likely to benefit from chemotherapy, thereby potentially reducing the adverse effects of over-treatment.

Multi-gene prognostic signatures may be used to estimate risk of recurrence following surgery
and endocrine treatment to make decisions about the suitability of chemotherapy. A patient who
is predicted to be at low risk of breast cancer recurrence can safely forego aggressive treatment
plans such as chemotherapy. OncoMasTR (OM) is a new 6-gene assay (3 prognostic genes plus 3
reference genes) discovered using a novel transcriptional network analysis approach that identified
genes—Master Transcriptional Regulators (MTRs)—that putatively regulate previously known
prognostic signatures [5,6]. OM has been analytically validated [7] in terms of assay robustness
and clinically validated [8,9] in terms of accurate risk stratification, providing significant additional
prognostic value to clinical information. The Oncotype DX Recurrence Score (RS) is a 21-gene
prognostic assay that is widely used to predict risk of recurrence [10]. The EndoPredict assay (EP) is a
12-gene prognostic assay which incorporates tumor size and nodal status [11]. The Tumor Infiltrating
Leukocytes (TILs) signature [12] determines risk of recurrence using expression correlates of 60
genes representing 15 immune cell sub-populations. Elevated TILs levels have been associated with
better survival in patients with either ER-positive, HER2-positive disease or Triple-Negative Breast
Cancer (TNBC) [13–17]. Furthermore, high TILs levels are associated with increased sensitivity to
chemotherapy, reflected by higher pCR rates to neoadjuvant chemotherapy [18,19]. Indeed, a critical
question remains as to whether one can predict a particular benefit from chemotherapy, as opposed to
solely prognostic information, in breast cancer patients using multi-gene signatures.

The focus of this work is on ER-positive, HER2-negative breast cancer patients as the pCR to
neoadjuvant chemotherapy is normally quite low in these patients compared to other breast cancer
subtypes. We present an approach to expand on previous in silico analyses of other multi-gene
prognostic signatures [20]. We assessed if OM could predict pCR of early-stage breast cancer patients
to neoadjuvant chemotherapy and subsequently compared its predictive performance with EP, RS and
TILs. Additionally, we assessed if TILs added significant predictive value to RS, EP and OM using
univariable, bivariable and trivariable logistic regression analysis.

2. Method

First, a systematic search was carried out to select the datasets for this study. Following this,
the relationship between OM, RS, EP, and TILs standardised risk scores was assessed by the Pearson’s
correlation coefficient [21,22]. Finally, logistic regression [23] was used to estimate the associations
between the signatures and pCR.

2.1. Systematic Search

The following sources were used to identify relevant breast cancer datasets: (i) dataset engines
such as the Gene Expression Omnibus (GEO) repository [24], ArrayExpress [25], GDC data portal [26]
and EGAS [27]; (ii) related papers and similar studies, as well as peer reviewed papers that performed
a systematic search for gene expression datasets in breast cancer.
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After the resources were specified, the following key words were selected: breast cancer, early,
Homo sapiens, ER+, and HER2-. Particularly in GEO, there are many keywords and hierarchical orders
that may be used in a systematic search resulting in different results. Furthermore, including the
synonyms of the keywords or GEO’s query fields may alter the results obtained. Additional constraints
were applied according to our project’s need: (i) including FOXM1, PTTG1, and ZNF367 genes;
(ii) endpoint or outcome (e.g., pCR, distant recurrence, death, response to therapy); (iii) number of
endpoint events; (iv) lymph node status; (v) therapy/treatment (e.g., none, endocrine, chemotherapy)
(vi) platform; and (vii) public access. Figure 1 shows the flow diagram according to the project’s
objectives after different search criteria. Finally, joining the results from the systematic search and
the reference-work presented in [28], seven datasets (GSE16716, GSE20271, GSE25066, GSE32646,
GSE34138, GSE41998, and GSE22226) were identified (see Table 1).

Table 1. GEO datasets included in the analysis *.

GEO Dataset Platform Patients (N) pCR (N)
Missing Genes

EP RS TILs OM

GSE16716 Affymetrix
Human Genome
U133A Array

140 7 PTRPC,
KLRK1,
EOMES,
KIR3DL2,
XCL2, CD8B

ZNF367

GSE20271 Affymetrix
Human Genome
U133A Array

89 6 PTRPC,
KLRK1,
EOMES,
KIR3DL2,
XCL2, CD8B

ZNF367

GSE25066 Affymetrix
Human Genome
U133A Array

278 30 PTRPC,
KLRK1,
EOMES,
KIR3DL2,
XCL2, CD8B

ZNF367

GSE32646 Affymetrix
Human Genome
U133A Plus 2.0
Array

55 5 PTRPC,
KLRK1,
KIR3DL2,
XCL2

GSE34138 Illumina Human
WG 6 v3.0
expression bead
chip

119 4 MYBL2 PTRPC,
KLRK1,
TPSB2, XCL2,
NCR1, FOXP3

ZNF367

GSE41998 Affymetrix
Human U133A
2.0 Array

93 10 PTRPC,
KLRK1,
EOMES,
KIR3DL2,
XCL2, CD8B

ZNF367

GSE22226
GPL1708

Agilent 012391
Whole Human
Genome Oligo
Microarray
G4112A (Feature
Number
version)

39 4 CCNB1 MYBL2 PTRPC,
EOMES,
TPSB2, TPSB1,
MS4A2,
KIR3DL2,
CD3E

813 66

* OM corresponds to the OncoMasTR score, RS corresponds to the Oncotype DX Recurrence Score, EP
corresponds to the EndoPredict score and TILs corresponds to the Tumor Infiltrating Leukocytes signature.
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Figure 1. A systematic search for breast cancer datasets. Left path corresponds to GEO search.
Right path corresponds to related papers search.
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2.2. Dataset

Seven GEO dataset were used—GSE16716, GSE20271, GSE25066, GSE32646, GSE34138, GSE41998,
and GSE22226. OM, EP and RS numeric risk scores were approximated by applying the signatures’
gene coefficients to the mean of the corresponding probe expression values. TILs scores is computed
as the simple average log expression of their marker genes. Risk scores were standardised within each
dataset to have a mean of 0 and a standard deviation of 1. This allowed us to compare different risk
scores from different datasets on a similar scale. A total of 813 patients with 66 pCR events (8.1%) were
analysed. All the datasets except GSE32646 were missing at least one gene from at least one signature
(see Table 1).

2.3. Predicting Probability of pCR Using Logistic Regression Analysis

Logistic regression is a statistical model that uses a logistic function to model a binary dependent
variable. Logistic regression is used for different scenarios; in this case to estimate the probability
that an event will occur, the outcome, using information thought to influence or be related to such
events called predictors [23]. The outcome is a binary variable (1/0, Yes/No, True/False). The odds
are defined as the probability that the event will occur divided by the probability that the event
will not occur. Odds > 1 shows an association or correlation between risk scores and pCR, in our
case. The 95% Confidence Interval (CI) is used to estimate the precision of the odds. Additionally,
a p-value is used as probability measure. The smaller the p-value (p) is the more significant the result
is considered to be. 0.05 is chosen as an arbitrary threshold where p> 0.05 is considered not to be
significant. Univariable analysis was used to examine the relationship between pCR and each risk
score while multivariable analysis was used to examine the relationship between pCR and each risk
score, adjusted for cohort/GSE dataset or signature.

3. Results

3.1. Correlation Analysis

A Pearson’s correlation coefficient was used to assess the linear relationship between the
standardised scores from the four signatures. We evaluated the correlation between six pairs of
the four signatures: OM vs. RS, OM vs. EP, RS vs. EP, TILs vs. OM, TILs vs. EP, and TILs vs. RS for the
seven datasets combined (Table 2).

Table 2. Correlation coefficient r among the four signatures * **.

Signatures Overall r Lowest r (Dataset) Highest r (Dataset)

OM vs. RS 0.65 0.34 (GSE20271) 0.79 (GSE41998)
OM vs. EP 0.68 0.44 (GSE20271) 0.82 (GSE41998)
RS vs. EP 0.80 0.55 (GSE20271) 0.90 (GSE32646)

OM vs. TILs 0.07 0.01 (GSE20271) 0.17 (GSE32646)
EP vs. TILs 0.21 0.09 (GSE41998) 0.33 (GSE20271)
RS vs. TILs 0.18 0.12 (GSE41998) 0.28 (GSE20271)

* Overall corresponds to the average of the seven datasets; Lowest and Highest correspond to the minimum
and maximum, respectively. ** OM corresponds to the OncoMasTR score, RS corresponds to the Oncotype
DX Recurrence Score, EP corresponds to the EndoPredict score and TILs corresponds to the Tumor Infiltrating
Leukocytes signature.

OM, RS and EP were moderately well correlated. However, there was very low correlation
between TILs and the other three signatures. The GSE20271 dataset provided the lowest correlation
in most cases. Figure 2 shows the results of the correlation analysis between risk score in the seven
datasets combined.
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Figure 2. Correlation between risk scores by dataset. (a) OM vs. RS; (b) OM vs. EP; (c) RS vs. EP;
(d) OM vs. TILs; (e) EP vs. TILs; (f) RS vs. TILs.

3.2. Predicted Probability of pCR

Univariable, bivariable and trivariable logistic regression was used to estimate the relationship
of OM, RS, EP and TILs with pCR. Table 3 contains a summary of the odds ratio (for a 1 standard
deviation in risk score), 95% confidence intervals, and p-values for the relationship between risk scores
and pCR.

Table 3 shows that the odds ratios of the signatures were similar in magnitude. OM, RS, EP and
TILs were significant predictors of pCR, with TILs being less predictive. OM had an odds ratio of 1.66
with a 95% confidence interval of 1.29 to 2.16. EP had an odds ratio of 1.76 with a 95% confidence
interval of 1.37 to 2.27. RS had an odds ratio of 1.84 with 95% confidence interval of 1.44 to 2.35. TILs
had an odds ratio of 1.36 with a 95% confidence interval of 1.07 to 1.72.

The univariable odds ratios for OM, RS, EP and TILs were similar when controlled for dataset
and/or other signatures (bivariable and trivariable models). Accordingly, we based our predicted
probabilities on univariable odds ratio for clarity of presentation. Plots of the predicted probability
(Figures 3–5) are derived from the univariable odds ratios in Table 3 and show that the probabilities of
pCR increase as the risk scores increase, indicating that the risk scores predict response to chemotherapy.
Figure 4 shows that signatures with fewer genes are more likely to be impacted by missing genes.
As hypothesised, the predictive performance of OM is better in datasets with complete OM genes
(Figure 5).
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Table 3. Odds ratio (95% confidence intervals) for pCR by risk score * **.

Signature Odds Ratio (95% CI) p-Value Model

Univariable Analysis

OM 1.66 (1.29–2.16) 0.0001 OM

RS 1.84 (1.44–2.35) <0.0001 RS

EP 1.76 (1.37–2.27) <0.0001 EP

TILs 1.36 (1.07–1.72) 0.0099 TILs

Bivariable Analysis (adjusted for dataset or TILs)

OM 1.68 (1.30–2.18) <0.0001 OM + Dataset

RS 1.85 (1.45–2.37) <0.0001 RS + Dataset

EP 1.77 (1.37–2.30) <0.0001 EP + Dataset

TILs 1.37 (1.08–1.73) 0.0095 TILs + Dataset

OM 1.63 (1.26–2.12) 0.0002 OM + TILsTILs 1.32 (1.04–1.66) 0.0226

RS 1.80 (1.40–2.31) <0.0001 RS + TILsTILs 1.26 (0.98–1.60) 0.0630

EP 1.69 (1.31–2.20) <0.0001 EP + TILsTILs 1.23 (0.96–1.56) 0.0886

Trivariable Analysis (adjusted for dataset and TILs)

OM 1.65 (1.28–2.14) 0.0002 OM + TILs + DatasetTILs 1.33 (1.04–1.69) 0.0199

RS 1.81 (1.41–2.33) <0.0001 RS + TILs + DatasetTILs 1.27 (0.99 − 1.62) 0.0546

EP 1.71 (1.32–2.23) <0.0001 EP + TILs + DatasetTILs 1.25 (0.97–1.59) 0.0748

* Odds ratio is for a 1 standard deviation increase in risk score. ** OM corresponds to the OncoMasTR score,
RS corresponds to the Oncotype DX Recurrence Score, EP corresponds to the EndoPredict score and TILs
corresponds to the Tumor Infiltrating Leukocytes signature.

Figure 3. Predicted probability of pCR by risk score in 7 datasets (5 datasets missing ZNF367).
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Figure 4. Predicted probability of pCR by risk score in (a) datasets with complete OM genes (2 datasets);
(b) datasets with incomplete OM genes (5 datasets missing ZNF367).

Figure 5. Predicted probability of pCR by OM risk score using different dataset groups. Green line
complete OM genes (2 datasets); Orange line incomplete OM genes (5 datasets missing ZNF367); Blue
line combined datasets (7 datasets).

Residual deviance was used to assess how much TILs added to the other three risk scores.
Residual deviance is a measure of goodness of fit of a model, a lower deviance means a better fit model
and a 0 deviance is a perfect model. TILs added significant predictive value if the residual deviance
decreased by >3.84 when TILs was added to a model (p(chi-sq > 3.84, d f = 1) < 0.05) (see Table 4).

TILs added significant predictive value to OM and vice versa and the significant predictive values
are increased when the model is adjusted by dataset. TILs does not add significant predictive value to
RS and EP (p = 0.0630 and 0.0886 respectively). However, RS and EP added significant predictive value
to TILs. Controlling for the differences between the datasets further decrease the residual deviance
of OM + TILs, RS + TILs and EP + TILs. The results show that the models adjusted for dataset are a
better fit than unadjusted models. Finally, the best fit model was RS + TILs + Dataset with a residual
deviance of 419.60.
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Table 4. Deviance statistic by model *.

Model Null Deviance df Null LogLik AIC BIC Deviance df Residual

Univariable Analysis

OM 457.95 812 −221.16 446.33 455.73 442.33 811
RS 457.95 812 −216.89 437.79 447.19 433.79 811
EP 457.95 812 −219.27 442.53 451.93 438.53 811

TILs 457.95 812 −225.80 455.59 464.99 451.59 811

Bivariable Analysis (adjusted for dataset or TILs)

OM + Dataset 457.95 812 −215.84 447.68 485.29 431.68 805
RS + Dataset 457.95 812 −211.59 439.18 476.78 423.18 805
EP + Dataset 457.95 812 −213.94 443.89 481.49 427.89 805

TILs + Dataset 457.95 812 −220.55 457.09 494.70 441.09 805
OM + TILs 457.95 812 −218.65 443.30 457.41 437.30 810
RS + TILs 457.95 812 −215.22 436.44 450.55 430.44 810
EP + TILs 457.95 812 −217.86 441.71 455.82 435.71 810

Trivariable Analysis (adjusted for dataset and TILs)

OM + TILs + Dataset 457.95 812 −213.21 444.43 486.73 426.43 804
RS + TILs + Dataset 457.95 812 −209.80 437.60 479.90 419.60 804
EP + TILs + Dataset 457.95 812 −212.40 442.80 485.11 424.80 804

* OM corresponds to the OncoMasTR score, RS corresponds to the Oncotype DX Recurrence Score, EP
corresponds to the EndoPredict score and TILs corresponds to the Tumor Infiltrating. Leukocytes signature.

4. Discussion

Multi-gene expression prognostic assays are commonly used to aid clinical decision-making
in early-stage ER-positive, HER2-negative breast cancer as they provide complementary prognostic
information to clinico-pathologic features [3]. There are many assays available, including RS, EP,
TILs, MammaPrint [29], PAM50 [30], Breast Cancer Index (BCI) [31], along with the IHC4 test that is
immunohistochemically based [32]. The amount of prognostic information provided in relation to
risk of recurrence at an early (0–5 years) and late (beyond five years) time-point varies across these
tests [33]. While the majority of data regarding these signatures focuses on prognostic value in the
context of a background of adjuvant hormone therapy, there is comparatively little data available
relating to their use in predicting benefit to neoadjuvant chemotherapy.

In this paper, we evaluated a new multi-gene prognostic signature, OM. We compared three other
multi-gene expression prognostic signatures (RS, EP and TILs) with OM and evaluated the correlation
between the four signatures (OM, RS, EP and TILs). Furthermore, we assessed if OM can predict pCR
to neoadjuvant chemotherapy, and we compared the OM predictive performance with RS, EP and
TILs. Finally, we evaluated if TILs added significant predictive value to OM, RS and EP.

Our findings suggest that OM, RS, and EP are moderately well correlated across the seven datasets
assessed, with an average Pearson’s correlation coefficient r ≥ 0.65 between each pair of signatures
(OM vs RS, OM vs EP, and RS vs EP). TILs demonstrated a lower correlation for all datasets with an
average r ≤ 0.21. Our results suggest that OM, RS, EP and TILs were significant predictors of pCR to
neoadjuvant chemotherapy in ER+, HER2- breast cancer, with odds ratios ≥ 1.36.

TILs added significant predictive value to OM with a residual deviance decrease. OM, RS and
EP added significant predictive value to TILs and controlling for the differences between the datasets
further decreased the residual deviance. The best fit model was RS+TILs+Dataset demonstrating that
including additional features provide a better fit to the data.

However, the predicted probability of pCR of the four signatures is affected by missing genes.
It is important to highlight that OM is a significant pCR predictor even when only two of its prognostic
genes are used (excluding missing genes). Our hypothesis is that if more datasets with complete genes
were available then the performance of OM could be improved.
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5. Conclusions and Future Work

OM has been clinically validated in the TransATAC cohort and a subset of the TAILORx cohort
and has shown superior prognostic performance to RS [7–9]. Here, we show that the signature is
predictive of treatment response (i.e., pCR response to neoadjuvant chemotherapy treatment). Some of
the main differences between OM, RS, EP, and TILs are the number of genes in the assay (60−genes
TILs, 21−genes RS, 12−genes EP, 6−genes OM, when normalization genes are included) and the
resulting cost. Some limitations of this study are the approximation of risk scores in micro-array data,
the small number of pCR events in the dataset, and the missing genes effect.

Biomarkers that predict patient response to neoadjuvant chemotherapy offer the opportunity for
personalised care, improved therapy response rates, reduced adverse effects and decreased costs of
unnecessary treatment. In the future, we will extend this work by following two lines of investigation:
(i) using more datasets thereby increasing the number of subjects evaluated and reducing the number
of missing genes; and (ii) exploring new techniques which combine images with genetic information.
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