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Abstract

Motivation: Alignments are correspondences between sequences. How reliable are alignments of amino acid
sequences of proteins, and what inferences about protein relationships can be drawn? Using techniques not previ-
ously applied to these questions, by weighting every possible sequence alignment by its posterior probability we de-
rive a formal mathematical expectation, and develop an efficient algorithm for computation of the distance between
alternative alignments allowing quantitative comparisons of sequence-based alignments with corresponding refer-
ence structure alignments.

Results: By analyzing the sequences and structures of 1 million protein domain pairs, we report the variation of the
expected distance between sequence-based and structure-based alignments, as a function of (Markov time of) se-
quence divergence. Our results clearly demarcate the ‘daylight’, ‘twilight’ and ‘midnight’ zones for interpreting resi-

due-residue correspondences from sequence information alone.

Contact: arun.konagurthu@monash.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Evolution introduces mutations, insertions and deletions at the level
of individual protein domains. These changes flow down, in varying
degrees, causing perturbations in observed three-dimensional struc-
tures. The effect that these perturbations have on the biological
functions of proteins influences the fitness and evolutionary selec-
tion of these changes. This mechanism of heritable changes is a
driver of the Darwinian descent of species through modification
(Lesk, 2016; Zuckerkandl and Pauling, 1965).

Comparing related proteins by means of their alignment helps
scientists understand the cumulative evolutionary events on extant
proteins and gain insights into the patterns of conservation and
divergences of sequences and their effect on structure and function.
Therefore, it is common to see protein alignments as a first step sup-
porting subsequent downstream analyses in biology (Doolittle,
1986).

An alignment is simply a hypothesis of a residue—residue corres-
pondence between protein sequences. The corresponding amino acid
residues can imply they likely descended from the same locus in the
genome of their common ancestor (Konagurthu ez al., 2006).
Sequence-based alignments use the amino acid sequence information
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to assert a residue-residue relationship, whereas structure align-
ments use the (x, y, z) atomic coordinates of their corresponding
three-dimensional structures.

Inferring reliable residue—residue relationships for proteins using
sequence-based alignments is a challenging problem even when the
sequences have diverged only moderately in evolution (Do et al.,
2006; Doolittle, 1992; Rivas and Eddy, 2015; Sumanaweera et al.,
2019). In contrast, relationships derived from structure alignments
are significantly more reliable, as structure is far more conserved in
evolution than sequence (Konagurthu et al., 2006; Lesk, 2016). The
reliability of structure alignments has helped the curation of struc-
tural classification databases, such as SCOP (Murzin et al., 1995),
where homology between protein domains can be reliably asserted
even when their amino acid sequences have changed beyond recog-
nition. However, in the absence of structural information, sequence
alignments remain the main port of call to understand evolutionary
relationships.

Nevertheless, popular sequence alignment programs have cav-
eats resulting from their underlying assumptions and models of com-
putation. It is thus important for users of these programs to
understand that these caveats exist and, as a result, the generated
alignments should not be seen as a definitive statement of a
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relationship between proteins. This is particularly important for pro-
grams that generate a single alignment as a statement of the pro-
posed residue-residue relationship. The effect of these caveats is
reflected in the contradictory nature of the sequence alignments gen-
erated by modern programs, as highlighted by several comparative
surveys (Do et al., 2006; Rivas and Eddy, 2015; Sumanaweera et al.,
2019; Vingron and Waterman, 1994). This problem is exacerbated
by the sensitivity of these programs to ‘tunable’ parameters that
allow users to select some fixed amino acid substitution matrix
(used to score the matched amino acid correspondences) and corre-
sponding gap parameters (used to penalize the unmatched amino
acids within the sequences). Such parameter-tinkering has significant
effects on the reliability of sequence alignments, as clearly demon-
strated by comparative surveys (Barton and Sternberg, 1987; Blake
and Cohen, 2001; Fitch and Smith, 1983; Sumanaweera et al.,
2019; Vingron and Waterman, 1994). All these issues affect the
trustworthiness of resultant sequence alignments.

But even if none of these issues occurred, there is a natural limit
of inference to deciphering a residue-level alignment relationship
based on pairs of protein sequences alone. Doolittle (1986) coined
the term fwilight zone of protein pairwise sequence relationships
and defined it as a range of divergence where any single statement of
a residue-residue correspondence becomes tenuous and highly un-
trustworthy (Chung and Subbiah, 1996; Do et al., 2006;
Jaroszewski et al., 2000; Rost, 1999; Sumanaweera et al., 2019).
Subsequent studies have extended this metaphor to suggest the term
midnight zone of sequence relationships, where the pairs of sequen-
ces being aligned have mutated beyond any feasible recognition
using sequence information alone (Bujnicki, 2003; Meier and
Soding, 2015; Reid et al., 2007).

Therefore, to reliable use pairwise sequence alignments, it is ne-
cessary to understand their ‘safe operating ranges’ and the natural
limits of their inference. That is, understand when the sequence and
structure alignments of pairs produce consistent answers (the ‘day-
light” zone of protein sequence relationships), when the reliability of
sequence alignments gives diminishing returns compared to struc-
tures (the twilight zone) and hence handled with caution for subse-
quent downstream studies, and finally when the evidence of
residue—residue relationships become untenable and sequence-based
alignments are best ignored (the midnight zone).

Chothia and Lesk (1986) and Rost (1999) discuss the relation-
ship between divergence of sequence and structure. Chothia and
Lesk (1986) were the first to quantify this relation. Based on their
concept of the ‘common core’ between pairs of protein structures,
they fit a curve with an ability to predict the root-mean-square devi-
ation (rmsd) of least-squares superposition of common cores from
the fraction f of amino acids strictly conserved within the core, that
generalizes to domains of different structural types:
rmsd = 0.4 x exp(1.87(1 — f)).

Rost (1999), in his subsequent analysis of a larger data set, relied
on the use of the Smith-Waterman method (and BLAST) with ‘fixed’
sequence alignment parameters and a binary {true, false} notion of
structure relationship. He did not consider the relationship between
divergence of sequence and structure at a residue level. Nevertheless,
Rost (1999) showed that the ability to distinguish, coarsely, between
similar and non-similar pairs of protein structures diminished (un-
surprisingly) as sequence identity decreased, with an explosion of
false positives when the sequence identity between proteins fell be-
tween [20%, 35%].

A more thorough assessment of the consistency of residue-resi-
due relationships derived from sequences and structures requires
modeling the deteriorating quality of sequence alignments as pro-
teins diverge. Further, the utility of any systematic assessment is
enhanced if it stands on a sound mathematical foundation and is
based on effective and consistent statistical models, whose parame-
ters are not prespecified or frozen, but rather automatically inferred
as a part of the statistical framework of comparison.

This issue motivates our current work, which attempts to study
more systematically how sequences and structures diverge in evolu-
tion using, to the best of our knowledge, techniques not previously
explored. We build on top of our recently developed Bayesian

framework for protein sequence comparison (Sumanaweera et al.,
2019), which uses the powerful statistical inductive inference criter-
ion of Minimum Message Length (MML) (Allison, 2018; Wallace,
2005; Wallace and Boulton, 1968). This framework infers automat-
ically (i.e. unsupervised) how far the sequences have diverged, by
statistically estimating the ‘time’ parameter associated with the
underlying stochastic Markov matrix of amino acid substitutions.
This (Markov) time parameter can be converted to a theoretical
expectation of the fraction of amino acids that can change under
that model of relationship. Further, it provides a powerful method
to decipher distant sequence relationships between proteins when no
singular alignment relationship is significant, by computing the mar-
ginal probability over all possible alignments between the sequence
pair, to adjudicate their relationship (see Section 2).

Building on this framework, the current work introduces a nat-
ural and intuitive distance measure between any two given align-
ments for any protein pair. Here, we avoid using this measure of
distance to compare a single biased sequence alignment against its
structural counterpart. Instead, we compute the exact mathematical
expectation of the distance between sequence and structure align-
ments, by integrating over all possible sequence alignments for any
given protein pair, weighted by their individual marginal
probabilities.

Note that despite the number of total possible alignments be-
tween any pair of sequences growing factorially large as a function
of their sequence lengths, we provide an exact quadratic-time algo-
rithm (in sequence length) to calculate this mathematical expect-
ation of the inter-alignment distance between sequence and
structure alignments, using probabilities estimated by our Bayesian
and MML framework.

Further, to validate the above exact computation, we also com-
pute an empirical expectation of the distance to compare against.
This empirical expectation is achieved by randomly sampling not a
single, but thousands of alignments over the marginal probability
matrices that are generated as a part of the MML framework.

Finally, we evaluate the sequence and structure alignments of 1
million pairs of protein domains and analyze their lossless compres-
sion statistics, the inferred (Markov) time parameter of sequence di-
vergence, the expected fraction of amino acid changes and the
expected and empirical inter-alignment distance with respect to their
reference structure alignments. Our analysis reveals the distinct
ranges of amino acid divergences where pairwise sequence align-
ments could be trusted, the ranges where they should be handled
with caution, and those where they should be ignored.

2 Background

We briefly summarize the main features of the protein sequence
comparison framework (Sumanaweera et al., 2019) central to this
work.

2.1 MML framework

The MML criterion (Allison, 2018; Wallace, 2005; Wallace and
Boulton, 1968) is a Bayesian and information-theoretic method of
unsupervised parameter estimation and hypothesis selection. This
method can be understood as a lossless communication process be-
tween an imaginary transmitter and receiver. The goal of the com-
munication is to transmit the observed data D losslessly and
economically to the receiver. The transmission comes in two parts:
the first explains the hypothesis H on the data, the lossless encoding
length of which is denoted as I(H); the second explains the details of
the data D not already covered by the hypothesis (which was al-
ready been communicated in the first part), the lossless encoding
length of which is denoted by I(D|H). This two-part message length
can thus be formalized as

I(H, D) = I(H) + I(D|H) = I(D) + I(H|D).

From the Bayesian point of view, the two-part message length
I(H, D) is an information-theoretic restatement of the product
axiom of probability, Pr(H, D) = Pr(H)Pr(D|H) = Pr(D)Pr(H|D),
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after applying Shannon’s measure of information content (Shannon,
1948), where the optimal bound on the length of the lossless encod-
ing of any event E with a probability Pr(E) is given by
I(E) = —log(Pr(E)). Note that when the logarithm is in base-2, the
length is measured in bits.

The MML criterion can therefore be used to compare any two
competing hypotheses, H and H’, for explaining the same data D,
since the difference in their message lengths of lossless encoding,
I(H,D) — I(H', D), gives a log-odds posterior ratio test of their rela-
tive significance:

. Pr(D)Pr(H|D)\ , (Pr(H'D)
104.0)107.) = (g i)~ (v )

Therefore, over the space of all possible hypotheses H, a best hy-
pothesis H* € H is one that gives the minimum value for I(H*,D):

H* = gLrgerierI}I I(H) + I(D|H).

This defines the MML criterion for hypothesis selection.

Further, implicit within the MML framework is a natural null
hypotbhesis test. This test relies on the null model message, i.e. the ef-
ficient lossless encoding of the data D without the aid of any hy-
pothesis, the length of which is denoted by NULL(D). If any
hypothesis H does not beat the null model message length, i.e. if
NULL(D) —I(H,D) < 0 then H is rejected, else it is accepted.

2.2 Protein sequence comparison using MML
Sumanaweera et al. (2019) describe an MML framework for protein
sequence comparison. Any alignment A between a pair of amino
acid sequences (S, T) specifies a hypothesis of their residue—residue
relationship. The complexity of this alignment relationship [denoted
by I(A)] together with its fidelity to explain losslessly all the
observed amino acids within the sequence pair (I((S, T)|.4)) can be
used to differentiate between hypotheses and select an optimal one.
Specifically, the first part of the message losslessly encodes the align-
ment as a three-state string generated from a (Markov) time-
parameterized finite-state machine over three states: match, insert
and delete. The second part of the message then encodes losslessly
the details of the amino acid symbols of the sequences S and T with
the aid of the alignment relationship A specified in the first part,
while using a (Markov) time-parameterized stochastic matrix to en-
code amino acids corresponding to the matched columns in A and a
20-nomial model to encode amino acids that are unmatched. An op-
timal alignment (and its internal time parameter) is automatically
inferred by minimizing the two-part message length

1A, (S.T) = 1(A) +1((S, T)|4) bis. (1)
First part Second part

Recall, from the general introduction to MML above, that the
two-part message length of any alignment is the negative logarithm
of the joint probability of the alignment and the sequences

I(A, (S, T)) = —log(Pr(A, (S, T))).

Joint probability

Further, the framework described in Sumanaweera et al. (2019) also
allows the estimation of the marginal probability Pracginal ((S, T)) of
the two sequences being related. Importantly, this estimation of
marginal probability provides a reliable way to identify a distant re-
lationship between sequences even when any single alignment A
(even an optimal alignment, A") is not statistically significant. That
is, in the MML framework, this implies
I(A, (S, T)) > NULL((S, T)) = NULL(S) + NULL(T).

The marginal probability is estimated by summing the joint
probabilities Pr(A, (S, T)) over all possible alignments (V.A € A) be-
tween the sequence pair (S, T):

Pr ((S,T))= ) Pr(APr((S,T)[A) (2)

marginal VAcA

and its negative logarithm is denoted as

Lnargnal(8, 7)) = —log2(_ Pr ((8,7))) bits. (3

marginal

Note that the number of all possible alignments A € A between any
sequence pair (S, T) grows factorially as a function of the sequence
lengths (denoted by |S| and | T|) as follows:

[SIHIT] Al

1A= (AT TSDVAT — [T)ST + [T — AN

[Al=max(|S],|T])

Despite this growth, the estimation of marginal probability can be
implemented over a two-dimensional dynamic programming algo-
rithm that runs in time proportional to O(|S||T|), as described in
Sumanaweera et al. (2019).

The program implementing the above MML framework for pair-
wise sequence comparison, ssqMMLigner, allows the efficient com-
putation of an optimal alignment A" of any given sequence pair [by
minimizing Equation (1)] and also estimates the marginal probabil-
ity that the pair is related [Equation (3)]. In doing this,
seqMMLigner yields key statistics on the relationship between the
two sequences. Specifically, when computing an optimal alignment
A*, the program also reports its lossless encoding length
I(A%, (S, T)), the amount of compression gained (>0) or lost (< 0)
with respect to the null encoding via
Aoptimal = NULL((S, T)) —I(A", (S, T)), and a biased Markov time
parameter time,pima Which gives an estimate of the inferred diver-
gence of any sequence pair based on the single optimal alignment.
When estimating the marginal probability of the two sequences
being related, the program also reports the amount of compression
gained (>0) or lost (< 0) with respect to the null encoding via
Anmarginal = NULL({S, T)) — Imarginal ((S, T)), an wunbiased Markov
time parameter timem,eginag Which considers all possible alignment
relationships between the two sequences, and a marginal probability
landscape (e.g. refer to the landscape plots in Section 4, Figure 4).
Each landscape is denoted by an ((|S| + 1) x (|T| + 1))-order ma-
trix, where each cell (i,7),v0 < i < |S],0 <j < |T|, stores the
negative logarithm of the product of marginal probabilities of their
prefixes (S1_;, T1.;) being related (i.e. Pryargina((S1.i, T1..;))), and
their suffixes (Siis Tioyrp) being related (i.e.
Prmarginal(<si...\5\’ T/\Tl)))

These key statistics form the basis of the methods presented in
our current work.

3 Materials and methods

3.1 Distance between alignments

Considering a very large data set of homologous protein domain
pairs with known sequences and structures, our aim is to quantify
the qualitative differences between sequence alignments and their
structural counterparts. At a fundamental level, this requires some
reliable measure of distance between two alignments (in our case, a
sequence alignment and the reference structure alignment). The
most basic measure of distance between two alignments can be
obtained by counting the fraction of columns in the two alignments
that are concordant with each other, i.e. the fraction of identically
aligned columns (including insertions and deletions) between them.
However, this distance measure is not very informative as it only
provides a binary yes (‘columns are identical’) or no (‘columns are
not identical’) measure of distance, which can render very closely
related alignments as fully distant from each other.

To overcome this issue, we define below a better and more intui-
tive way to measure the distance between any two alignments for
any protein pair. We then use this measure to compute the mathem-
atical expectation of the distance between the sequence and struc-
ture alignments over all possible alignment relationships between



S.Rajapaksa et al.

i258
T
+1 0 +2 1 +3 2 +4 3 +5 4 +6 3 6
soyrce
1 0 o1 {0.2) (0,3) (0,4) (0,5) (0,6) 7
(1 11) (12) 3) (1;4) (L,5) (1,6) 8
S -2 Alignmeht path Al
(2,0 [ ( (22) > = ) | (2.6) 9
Ali@%nent pgth A
3o | Gy | ‘ pan L
sink
skew-diagonal Al A2
index (k) proper-diagonal  proper-diagonal
index (m (k)  index (ma(k)) |my(k) — ma (k)|
0 0 0 0
1 1 1 2
2 2 1 3
3 2 1 3
4 2 1 3
5 1 -1 2
6 2 0 2
7 3 1 2
8 3 2 1
9 3 3 0
dist(.Al,.A2) = 18

Fig. 1. An illustration of the distance between two alignments measured as the area
between two source-to-sink paths

the two amino acid sequences, weighted by their posterior
probabilities.

3.1.1 Inter-alignment distance

Any alignment between two proteins can be expressed as a source-
to-sink path in a matrix indexed by their sequences. Figure 1 illus-
trates two alignment source-to-sink paths. Notice that at each cell (4,
j), any alignment path traverses either horizontally to the right [i.e.
(#,7) = (i,j + 1)], vertically below [i.e. (7,7) — (i + 1,)] or diagonal-
ly across [i.e. (i,j) — (i + 1,j + 1)]. Therefore, a natural measure of
distance between alignments can simply be expressed as a function
of the space (or area) between the two paths. This not only captures
all the identities in the alignments, but also their ‘closeness’ when
columns between the two alignments are not identical.

For ease of computation, we quantify this space as follows. As
shown on the upper section of Figure 1, each alignment path crosses
each skew diagonal of the matrix (indexed in green) exactly once.
This is exploited to define the distance between two alignment paths
as a summation of the width between the two alignments at each
skew diagonal, where the width is simply the absolute difference in
the corresponding proper-diagonal indices (in red) of the matrix
through which the alignment paths pass.

The lower section of Figure 1 shows a worked out example for
this computation. For each of the two alignments A1 and A2, the
skew-diagonal indices run in the range [0, |S| + |T|]—for any cell (i,
j), its skew-diagonal index is given by i+j. The signed proper-
diagonal index fall in the range [—|S|, +|T|]—for any cell (4, j), its
corresponding proper-diagonal is given by j—i. If m,(-) defines a
mapping from a skew-diagonal index (that the alignment path cuts
through) to its corresponding proper-diagonal index for an align-
ment Ak, then the measure of distance between the two paths of
alignments A1 and A2 can be formulated as

IS4T] IS+
distance(A1,A2) = >~ (k) = Y [mi(k) —m(k)].  (4)
k=0 k=0

3.2 Expected inter-alignment distance with respect to a

reference alignment

Since the reliability of any single sequence alignment between two
protein sequences deteriorates as the proteins diverge, we propose
here a novel extension to the way the alignment distance can be esti-
mated using the MML framework.

Instead of measuring the distance of any single (optimal) se-
quence alignment with respect to its structure alignment, we propose
the computation of the mathematical expectation of the inter-
alignment distance (relative to a reference structure alignment)
weighted by the posterior probabilities of all sequence alignments
between the two proteins.

Let A denote the set of all possible alignments between the pair
of sequences (S, T). The expected inter-alignment distance with re-
spect to any reference alignment A, can be formulated as

E[distance(A, Awf)] = Y Pr(A[(S,T)) xdistance(A, Aws), (5)
VAeA ST~
posterior probability

where the posterior probability is the joint probability normalized by
the marginal: Pr(A[(S, T)) = Pr(A, (S, T))/ Prmarginal ((S1..i, T1..j))-

Note that we need to calibrate the resulting expected distances
to permit comparison across sequence pairs with different lengths.
An approach is to divide E[distance(A, A,)] by the product of their
lengths, |S||T| (i.e. worst-case distance). Although this bounds the
distance between [0,1], in practice this divisor dominates the
observed values, making it difficult to discriminate distances across
pairs. To make the comparison more intuitive our analysis uses as
divisor the sum of the sequence lengths, |S| + |T|, which is the max-
imum possible length of any alignment.

3.2.1 Computation of the expected inter-alignment distance using a

two-dimensional dynamic programming algorithm

Although the cardinality of the set of all possible alignments grows
factorially in the lengths of the sequences, the computation of the
mathematical expectation can be achieved in both time and space
that is proportional to O(|S||T)).

Three matrices denoted by EAD™, EAD* and EAD? of order
((IS| + 1) x (|]T| 4+ 1)) memoize the expected distance statistic of all
possible subproblems. Specifically, any cell (i,7),V0 < i < |§[,0 <
j < |T|, across each of the three matrices stores the expected dis-
tance over all possible sequence alignments of the prefixes of the
two sequences (S1._;, T1. ;) ending at the cell (4, /) in a match (m), in-
sert (i) or delete (d) states, respectively, weighted by their unnormal-
ized joint probabilities.

By exploiting the Bellman condition for this problem, the follow-
ing dynamic programming recurrence can be formulated over the
three memoized subproblem matrices (see Supplemenary Section S1
for a derivation of these recurrences)

EAD"(i,j) = EAD™(i — 1,j — 1)Pr(m|m)Pr(s;, t ;)
+EAD*(i — 1,j — 1)Pr(m|1i)Pr(si, t5)
+EAD%(i — 1,j — 1)Pr(m|d)Pr(sy, t5)

(

+ maIr;rina.(<51...,-,T1.../>\ match@(,j)) x {(}Sir;ij;i;)} ©

EAD"(i,j) = EAD™(i — 1,j)Pr(i|m)Pr(s; )
+EAD*(i — 1,j)Pr(1]1)Pr(s;)
+ EAD®(i — 1,/)Pr(i|d)Pr(s;)
+ Pr ((81.4,Ti.j)| insert@(i,j)) x o(i +j), (7)

marginal

EADA(i,j) = EAD™(i,j — 1)Pr(d]m)Pr(t)

+EAD?(i,j — 1)Pr(d|1)Pr(t;)

+EADA(i,j — 1)Pr(d]d)Pr(t)

+ma?grinal((S1m,-, Ti. ;)| delete@(i,j)) x (i + ). (8)
In the recurrence 6, the term Proargina((S1..i; T1..j)| match@(i,j))
denotes the component marginal probability of all alignments of the
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prefixes of the two sequences ending in a match at the cell (i, j).
(Similar definitions hold the other two component marginal prob-
ability terms in 7-8.) Running seqMMLigner in its marginal mode
generates three matrices (one for each state) containing these compo-
nent marginal probability terms. In other words, the marginal prob-
ability matrices of the two sequences as described in Sumanaweera
et al. (2019) are first computed, before the dynamic program shown
above is run. The terms Pr(m|m), Pr(d|m), Pr(i|m) in the recurrence 6
are the respective probabilities of a (Markov) time-parameterized
three-state alignment machine transitioning from {match, insert, dele-
te} states in the cell (i — 1,7 — 1) to a match state in the cell (3, j),
using the inferred timemarinal- (Similar terms in recurrences 7-8 deal
with respective transitions to insert and delete states.)

The Pr(s;, ¢j) term in recurrence 6 gives the joint probability of
the pair of amino acids being in the match state in the alignment.
This probability comes from the underlying time-parameterized sto-
chastic Markov matrix of amino acid interchanges, at the inferred
timemarginal- On the other hand, the terms Pr(s;) and Pr(#;) in recur-
rence 7-8 are the time-independent 20-nomial probabilities of
amino acids, accounting for the inserted and deleted amino acids,
respectively.

Finally, the J(-) terms across the three recurrences denote the
width element along any specified skew-diagonal index (see
Figure 1) in the computation of distance, similar to the one used in
Equation (4). In the recurrences above, at each cell (i, j) one is
accounting for the additional new widths so that the subproblems at
(i—1,j—1),(i—1,j) and (4, — 1) can grow to any (7, j). Notice
that in recurrence 6, two 6(-) terms are involved, as all alignments
going between the cells (i — 1,7 — 1) — (i,/) [i-e. landing in (i, j) in a
match state] cuts across two (not one) skew diagonals. Hence, both
widths, one for the skew-diagonal index i +j — 1 and other for the
index i +j, need accounting for in the dynamic program.

The above dynamic program can be computed bottom-up start-
ing from the trivial subproblem where the expected inter-alignment
distance at the source is 0: EAD™(0,0) = EAD*(0,0) = EAD%(0,0)
=0. Once the matrices get filled, the expected inter-alignment
distance defined in Equation (5) is computed by summing
EAD™(S|,|T|) + EAD (S|, |T|) + EAD(S|, |T]) and dividing it by
the marginal probability. Since the marginal probability matrices
are precomputed (in O(|S||T|) space/time) before running the above
dynamic program, and all other terms at each cell (7, j) can be eval-
uated in O(1) time, it is straightforward to see that the time and
space complexity of the computation of this mathematical expect-
ation is O(|S||T).

Based on the method of computation presented here,
seqMMLigner (v2.5) has been extended for users to be able to com-
pute the expected distance between sequence and any given refer-
ence alignment.

4 Results and discussion

We randomly sampled 1 million distinct pairs of protein domains
across four major structural classes of SCOPe (v2.07): all-o,, all-f, o/
fand o+ B. To restrict the analysis to pairs of homologous proteins,
the domains in each sampled pair were drawn from either the same
‘superfamily’ (yielding 541162 domain pairs) or same ‘family’
(vielding 458 838 domain pairs) as defined by their SCOP classifica-
tion (Murzin et al., 1995). (The list of domain pairs is available
from the Supplementary Section S2.)

Table 1 gives the distribution of the sampled domain pairs across
four SCOP classes. It further shows the number of those pairs for
which: (i) their optimal alignments are statistically significant
(Aoptimal > 0), (ii) their marginal probability detects the sequence
relationship, ~ but  their  optimal alignments do not
(Aoptimal < 0 < Aparginal) and (iii) when neither the optimal align-
ments nor the marginal probabilities are able to provide evidence of
a relationship solely from the sequence information (Aparginat < 0),
but their relationship is ascertained from their SCOP structure clas-
sification and structural alignment. Together, the considered domain
pairs set covers the full spectrum of possible sequence-divergence be-
tween protein pairs, and is thus useful to analyze systematically the

Table 1. Distribution of the sampled 1 million domain pairs, subdi-
vided into three distinct groups/subsets based on their optimal and
marginal compression statistics measuring the significance of se-
quence relationships (see Section 2.2)

SCOP class  SCOP level Compression-based distinct group sizes

Aoptimal > 0 Agptimal < 0and  Apargina < 0

Amarginal > 0
All-o Family 90710 25093 18043
Superfamily 23607 35187 44 346
All-p Family 59962 12250 14020
Superfamily 30810 23869 117717
ol Family 35437 22456 12803
Superfamily 25087 82169 76743
o+ Family 112840 48687 6537
Superfamily 38631 24233 18763

limits of inferring sequence alignment relationships, and to identify
the ‘daylight’, ‘twilight’ and ‘midnight’ zones of sequence relation-
ships among homologous proteins.

The structures of all 1 million domain pairs were separately
aligned using three structure alignment programs: (i) (structure)
MMLigner (Collier et al., 2017), (ii) TM-align (Zhang and
Skolnick, 2005) and (iii) DALI (Holm and Sander, 1995). These pro-
vide three distinct sets of reference structure alignments (A,)
against which the expected distance of the sequence alignment will
be computed. In addition, the sequences of all domain pairs were
compared using seqMMLigner (v2.5) (Sumanaweera et al., 2019)
under both its marginal and optimal modes. To evaluate the effect
of changing the time-parameterized models used in this MML
framework, each domain pair was compared using four different
stochastic Markov matrices and their corresponding three-state ma-
chine models derived by Sumanaweera et al. (2020). The time-
parameterized models in this analysis cover BLOSUM (Henikoff
and Henikoff, 1992), VIML (Miiller et al., 2002), MMLSUM
(Sumanaweera et al., 2020) and PAM (Dayhoff ez al., 1978).

Using the methodology presented in Section 3, we computed the
expected distance of sequence alignments and the inferred Markov
time parameter (timepagina) for each of the million domain pairs,
over all possible combinations of the four time-parameterized mod-
els and the three reference structure alignments considered. (See
Supplementary Website for the raw data from these runs.)

Each of these 12 possible combinations generated a million data
points, respectively. These data points can be grouped into bins
based on the inferred Markov time (time,,ginat) Of each compari-
son, in the range [1, 500]. This time-range corresponds to the
expected %-change of amino acids in the range of [1%, ~ 92%).

For all the domain pairs that group at each inferred integer
timemarginal bin in the range [1, 500], their first (Q1), second (Q2)
and third (Q3) quartile statistics of the expected distances are
tracked. Figure 2 presents the variation of the expected distance of
alignments versus timemaeina- (The plots corresponding to the
PAM model for sequence, DALI and TM-Align for structure com-
parisons are available in the Supplementary Section S3.1.)

Analyzing the plots shown in Figure 2, a consistent pattern
emerges, independent of the time-parametrized models and refer-
ence alignments employed. For all domain pairs with inferred
timeparginal < 150, their sequence and structure alignments agree
very closely, as can be seen from the low value of the computed
expected distance as well as the low variance between the quartile
trends for each time step in the range. This time-range corresponds
to pairs of sequences that have undergone < 71% (expected) change
in amino acids, as shown by the scale on the top of each plot.
Further, the timep,, gina range of [1, 150] accounts for only ~25%
of the domain pairs sampled, as seen from the cumulative growth
curves (the continuous curve shown in brown in each plot, whose
vertical scale appears on the right side of each plot). This time-range
of [1, 150] thus denotes the daylight zone of inference of sequence
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Fig. 2. First, second and third quartile statistics of the expected distance of sequence alignments with respect to a reference alignment obtained using MMLigner (Collier et al.,
2017) program as a function of the inferred Markov time parameter, t imem,gina- The three columns correspond to the three time-parameterized models employed during the
MML sequence comparison: (a) BLOSUM, (b) VTML and (¢) MMLSUM (Sumanaweera et al., 2020). In each plot, the x-axis (shown below the box) is the Markov time step
in the range [1, 500]; the range on the top of the plot is the corresponding expected %-change of amino acids for the chosen time-parameterized model; the y-axis (left of the
box) is the expected distance; the scatter plots (magenta, green and blue) track the changes in the first, second and third quartile statistics of the expected distance statistic over
1 million domain pairs, grouped according to their inferred integer Markov time step (t imeparginal); the vertical range on the right of the box tracks the cumulative %-growth

of the number of domain pairs as a function of time on the x-axis

alignments, which are highly consistent with those inferred from
structures.

In the time-range of [150, 250], the expected distance as well as
the variance between the quartiles ramps up steeply. This region cor-
responds to an expected amino acid %-change of [~ 71%— ~ 84%),
and accounts for a further ~35% of the domain pairs sampled. This
specifies the twilight zone of inference of sequence alignments. The
degree of belief in any specific residue-residue correspondence in this
range becomes unreliable. By selecting pairs of sequences and examin-
ing their optimal sequence alignments and corresponding structural
alignments, we observe that the differences in residue-residue corre-
spondences correlate more with the peripheral regions of the
domains, than with the relationships defined between residues in the
buried core of the structures, especially in the time-range of [150,
200] (or equivalently [~ 71%— ~ 79%] expected %-change in amino
acids). However, in the second half of the twilight zone (inferred time
between [200-250]), the differences spread out even to the buried
core and hence the sequence alignments become more and more unre-
liable in the twilight zone.

Finally, we observed that the midnight zone of protein sequence
relationships, where the inferred time g, gina > 250, is marked by a
drastic growth in the variance between the quartiles, as seen
across plots in the time-range [250-350]. This corresponds to a
region where sequences undergo an expected amino acid change of
[~ 84%— ~ 89%)] and account for about 20% of the total domain
pairs considered. Beyond this (time > 350), the quartile scatter plots
become extremely noisy. Thus, it is prudent to conclude that for the
inferred time > 350 (or equivalently 89% expected %-change of
amino acids) the sequences have diverged beyond the very limit of
inference of pairwise sequence alignments.

Complementing the above observations of the daylight, twilight
and midnight zones, is the analysis we performed based on the sub-
sets/groups defined by the respective statistical significance test sta-
tistics (Agptimal aNd Aparginal). Figure 3 shows three plots that divide
the million domain pairs into three groups. (See last three columns
of Table 1.) The first group accounts for 417084 domain pairs
whose optimal sequence alignment under the MML framework
yielded positive compression (i.e. Agpimal > 0). The second group
accounts for 273 944 domain pairs whose optimal sequence align-
ment lost to the null model but gave positive compression using the
marginal model (i.e. Agpiimal < 0 < Aparginal)- The final group con-
tains the remaining 308 972 domain pairs where Apargina < 0.

Figure 3a shows that ~70% of the 417 084 domain pairs are in
the daylight zone (i.e. timem,egina € [1,150]), and another 28% fall
within the first half of the twilight zone [150, 200], a region where
the common cores are reliably aligned from sequences alone, as
observed above. This is consistent with the observation that all pairs
in this group yielded Agptimal > 0, indicating their single alignments
are reliable. Figure 3b shows that ~50% of the 273944 domain
pairs fall within the twilight zone (time between [150, 250]), and the

remaining 50% in the midnight zone region > 250. This is consist-
ent with the fact that no single alignment (including optimal) is stat-
istically significant in this group (i.e. Agpimat < 0), but the marginal
probability over all possible alignments is able to detect the relation-
ship in some unspecified way (i.e. Aparginal > 0). Finally, Figure 3c
shows that > 80% of the domain pairs for which even the marginal
probability cannot assert a relationship, fall in the midnight zone,
with inferred Markov time > 250. Our analysis shows that this pat-
tern of relationship is not affected by changes to the time-
parameterized models or to the structural alignment programs (see
Supplementary Section S3.2 for the plots corresponding to the other
models and programs).

Next, we verify the computation of the mathematical expect-
ation of distance, using an empirical (sampling) approach that can
be used to generate highly probable alignments using the marginal
probability matrices generated by seqMMligner. For each of the mil-
lion domain pairs, 1000 alignments were sampled from the marginal
probability matrix of each pair. The distance between each sampled
alignment for a pair was compared to its corresponding reference
structure alignment using Equation (4). The resulting estimates of
distance were then averaged to generate an empirical estimate of the
distance that can be compared (as a consistency-check) against the
exact mathematical expectation computed by Equation (5). This
provides a way to validate the expected distances we compute and
report. (See the Supplementary Section S3.3 for details and plots.)

Further, to better understand the correlations between the SCOP
classification of domains and the identified ranges for daylight, twi-
light and midnight zones, we sampled >200000 distinct domain
pairs related at varying levels of SCOPe (v2.07). This yields five dis-
tinct groups of domains pairs with their pairwise SCOP relationship
similar up to the level of (i) same ‘family’ (yielding 55,108 domain
pairs), (ii) same-‘superfamily’ (yielding 31,585 pairs), (iii) same
“fold’ (yielding 40,530 pairs), (iv) same ‘class’ (yielding 40,498 pairs)
and (v) ‘decoy’ (i.e. different class, yielding 40,416 pairs)—see
Supplementary Table S1. As before, we compute the expected inter-
alignment distance and infer Markov time parameter (timemarginal)
for each dataset of domain pairs using MMLSUM time-
parameterized models and reference structure alignments generated
from MMLigner.

Figure S6 (in Supplementary Section S4) shows that the daylight
zone of sequence relationship accounts for ~63% of domain pairs
sampled at the ‘same-family’ level and ~27% of domain pairs
sampled at the ‘same-superfamily’ level. As expected, 0% of the do-
main pairs sampled at the levels of ‘same-fold’, ‘same-class’ and
‘decoy’ fall in the daylight zone.

Next, the twilight zone accounts for ~25% of pairs sampled at
the ‘same-family” level, ~28% of those sampled at ‘same-superfam-
ily’ level and only ~1% at the level of ‘same-fold’ and ‘same-class’,
while it remains 0% for the ‘decoy’ set.
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Fig. 3. Expected distance versus Markov time plots, after separating the million domain pairs into distinct groups based on their compression statistics—see Table 1. (a) The
variation of expected distance of sequence alignment on the subset of the domain pairs where the optimal alignment model beats the null (Aypimai > 0). (b) Same as above, but

corresponding to the subset of the domain pairs for which the marginal beats the null but not the optimal (Ayptimal < 0 < Amarginal)- (¢) As above, but for the remaining do-

main pairs where neither the optimal nor the marginal beats the null

Table 2. Key statistics inferred from the MML framework [using seqMMLigner (v2.5) (Sumanaweera et al., 2019)], comparing the sequences
of a set of six homologous domains from the Globin-like folds with the o chain sequence for human hemoglobin (1THHO chain A)

Sversus T Inarginal (¢S, T')) I(A", (S, T)) NULL((S, T)) Inferred Exp. a.a. change E.A.D.
(bits) (bits) (bits) time (%)
Human [1THHO(A)] versus chicken [ITHBRA(A)] 940.4 940.7 1186.9 49 37.5 0.006
Human [1THHO(A)] versus sperm whale (1IMBD) 1198.8 1203.0 1241.6 157 73.4 0.374
Human [THHO(A)] versus Chironomus [1IECA(A)] 1166.7 1179.1 1174.4 198 79.4 1.202
Human [1THHO(A)] versus bacterium [4VHB(A)] 1165.6 1177.1 1173.8 226 82.4 1.456
Human [1THHO(A)] versus paramecium [IDLW/(A)] 1082.3 1097.0 1087.9 235 83.2 2.776
Human [1THHO(A)] versus red-alga [2BV8(A)] 1277.9 1299.8 1277.3 307 87.7 15.415

Furthermore, the midnight zone accounts for ~12% of pairs at
the ‘same-family’ level, ~45% at the ‘same-superfamily’ level and
~99% at the levels of ‘same-fold” and ‘same-class’. Nearly 100% of
the domain pairs in the ‘decoy’ set fall in the midnight zone.

These numbers reveal a broad agreement with the classification
criterion used in SCOP, where related proteins with similar sequen-
ces fall under the same family and proteins with weak sequence simi-
larity signal, but detectable functional and structural conservation is
classified under same superfamily. Similar superfamilies without
compelling evidence of common evolutionary origin are grouped
into folds, which are further arranged into classes mainly encom-
passing the recurrent secondary structural features and their archi-
tecture. As a future exercise, it would be useful to examine the
domain pairs that fall in the midnight zone of sequence relationship,
despite being related at the same-family or same-superfamily levels.

Finally, we present a qualitative case study comparing the se-
quence of human hemoglobin (IHHO chain A) with the sequences
of six other related proteins, at varying levels of sequence diver-
gence, but all classified within the same SCOP Globin-like SCOP
fold: (i) chicken hemoglobin (1HBR chain A), (ii) sperm whale myo-
globin (IMBD), (iii) Chironomus erythrocruorin (1IECA chain A),
(iv) bacterial hemoglobin (4VHB chain A), (v) paramecium trun-
cated hemoglobin (1DLW chain A) and (vi) red-alga phycocyanin
(2BVS8 chain A).

Table 2 presents the following key statistics inferred for pairwise
sequence comparison of each of the above proteins with human
hemoglobin: the message length terms over the marginal, optimal
and null models (Inarginal ((S, T)), I(A*, (S, T)) and NULL((S, T))),
the inferred unbiased estimate of the time parameter (timearginal)
with respect to the marginal model, its corresponding expected
amino acid change, and the expected inter-alignment distance.

The rows of this table appear in the increasing order of the re-
sultant expected distance statistics for each pair. This distance corre-
lates with increasing sequence divergence between the respective
pairs, as can be verified by their estimated timey,eina parameters
and their corresponding expected fraction of changes to the amino

acids at that inferred time. Note that the last 4 of 6 comparisons in
the table yield negative compression (Agpimal < 0) for any single op-
timal alignment relationship inferred over those pairs. Nevertheless,
the marginal model for the first five comparisons is able to assert
that their respective sequences are indeed related (Apqrginal > 0).
Only for the last comparison between human hemoglobin with red-
alga phycocyanin, the marginal loses to the null (Aparginat > 0), by a
small amount (0.6 bits).

Figure 4 gives the marginal probability landscapes where the fit-
ness of all competing alignments can be visualized—as a color
map—and the optimal sequence alignment and the corresponding
reference structure alignment, appears as a source-to-sink path in
white and red, respectively. The dark blue regions on the marginal
landscape show the relative high-probability regions of sequence
relationships. The expected distance measure presented here takes
into account those and all other alignments (based on their posterior
probabilities). The expected distance statistics for sequence compari-
sons in the daylight zone (e.g. human versus chicken hemoglobin)
remains near 0 but, as the sequence pairs diverge in varying degrees
into the twilight zone (all other comparisons, except the last), the
expected distances increase as expected. The largest distance corre-
sponds to the comparison of human hemoglobin with red-alga
phycocyanin (expected distance of 15.4) where the sequences have
diverged into the midnight zone of sequence relationship, with esti-
mated timen,ging =307 (or expected amino acid change-
=87.7%). Previous studies have noted that phycocyanins and
globins have an extremely distant evolutionary relationship with dis-
tinct ligands involved and biological functions associated with them,
and are known to have no substantial sequence similarity (some-
thing confirmed by the statistics above) but with similar folding pat-
terns (Pastore and Lesk, 1990).

In sum, we have performed a comprehensive analysis of the com-
patibility of alignments derived from sequences and structures of
pairs of proteins. This analysis identifies the extent of sequence di-
vergence between pairs beyond which the alignments agree closely
with each other (the daylight zone of sequence relationship), the
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Fig. 4. Visualization of the marginal probability matrices/landscapes generated after comparing the amino acid sequence of human hemoglobin (1IHHO chain A) with the
sequences of six other homologous globins. The color-codes denote the negative logarithm of the product of marginal probabilities that the prefixes and the suffixes are related
(see Section 2.2). The colors within each matrix vary between the range of its [min, max| matrix values

extent of sequence divergence where the alignments start to diverge
and where any given residue-level alignment should be handled with
caution (the twilight zone), and finally the extent of divergence be-
yond which it is impossible to detect any sequence relationship (the
midnight zone) where any alignment generated from sequences
alone should be discarded all together.

In contrast to previous attempts which deal with a single optimal
sequence alignment computed using ad hoc choices for alignment
parameters, the work presented here explicitly models the deterio-
rating quality of sequence relationships by employing marginal
probabilities computed rigorously using time-parameterized statis-
tical models. Another key difference of this work compared to the
work of Rost (1999) is the latter’s reliance on a simple binary ‘yes’/
‘no’ notion of structural similarity in estimating the three zones of
sequence relationship. In comparison, this work rigorously com-
putes the expected inter-alignment distance between sequences and
structures at a residue level using strict probabilistic models and
explores the limits of residue-residue relationships from sequence
information alone.

As future work, it would be interesting to examine, using the
developed framework of sequence comparison, probabilistic models
of amino acid relationships and measures of inter-alignment dis-
tance, the specified relationships and classification in popular data-
bases such as SCOP (Murzin et al., 1995), CATH (Orengo et al.,
1997) and ECOD (Cheng et al., 2014).
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