
T E C HN I C A L R E PO R T

Critical factors in achieving fine-scale functional MRI:
Removing sources of inadvertent spatial smoothing
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Abstract

Ultra-high Field (≥7T) functional magnetic resonance imaging (UHF-fMRI) provides

opportunities to resolve fine-scale features of functional architecture such as cerebral

cortical columns and layers, in vivo. While the nominal resolution of modern fMRI

acquisitions may appear to be sufficient to resolve these features, several common

data preprocessing steps can introduce unwanted spatial blurring, especially those

that require interpolation of the data. These resolution losses can impede the detec-

tion of the fine-scale features of interest. To examine quantitatively and systemati-

cally the sources of spatial resolution losses occurring during preprocessing, we used

synthetic fMRI data and real fMRI data from the human visual cortex—the spatially

interdigitated human V2 “thin” and “thick” stripes. The pattern of these cortical col-

umns lies along the cortical surface and thus can be best appreciated using surface-

based fMRI analysis. We used this as a testbed for evaluating strategies that can

reduce spatial blurring of fMRI data. Our results show that resolution losses can be

mitigated at multiple points in preprocessing pathway. We show that unwanted blur

is introduced at each step of volume transformation and surface projection, and can

be ameliorated by replacing multi-step transformations with equivalent single-step

transformations. Surprisingly, the simple approaches of volume upsampling and of

cortical mesh refinement also helped to reduce resolution losses caused by interpola-

tion. Volume upsampling also serves to improve motion estimation accuracy, which

helps to reduce blur. Moreover, we demonstrate that the level of spatial blurring is

nonuniform over the brain—knowledge which is critical for interpreting data in

high-resolution fMRI studies. Importantly, our study provides recommendations for

reducing unwanted blurring during preprocessing as well as methods that enable

quantitative comparisons between preprocessing strategies. These findings highlight

several underappreciated sources of a spatial blur. Individually, the factors that con-

tribute to spatial blur may appear to be minor, but in combination, the cumulative
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effects can hinder the interpretation of fine-scale fMRI and the detectability of these

fine-scale features of functional architecture.
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1 | INTRODUCTION

Ultra-high field (≥7T) functional magnetic resonance imaging (UHF-

fMRI) has enabled the study of the fine-scale functional architecture

of the human brain in vivo, at the spatial scale of cerebral cortical col-

umns (Cheng et al., 2001; Nasr et al., 2016; Yacoub et al., 2008) and

layers (Huber et al., 2017; Muckli et al., 2015; Norris & Polimeni,

2019). Because the contrast-to-noise ratio of fMRI increases

supralinear with field strength (Triantafyllou et al., 2005; Turner

et al., 1993; Yacoub et al., 2001), this sensitivity boost provided by

UHF-fMRI can be used to enable imaging resolutions at submillimeter

and/or subsecond scales. Although the ultimate “biological resolution”
of the hemodynamic response to neural activity is still unknown, it

appears that the hemodynamic response in the human brain can be

used to localize the activity of these mesoscale features of neuronal

organization. Indeed, features such as cortical columns have long been

observed using intrinsic-signal optical imaging techniques, which are

also based on tracking hemodynamic changes that accompany neural

activity (Grinvald et al., 1986; Lu & Roe, 2008; Roe & Ts'o, 1995;

Valverde Salzmann et al., 2012). These measurements from intrinsic-

signal optical imaging have been shown to be well-aligned with what

can be observed with high-resolution fMRI (Chen et al., 2007).

The main challenges today to resolve activation of distinct cortical

columns and layers with fMRI are to sensitize the fMRI measurement

to the hemodynamics of the microvasculature—which exhibits the

closest relationship to neural activity—and to achieve sufficient imag-

ing resolution. These targeted features of the functional architecture

are, however, just at the edge of the imaging resolution that can be

achieved with modern fMRI technologies (Polimeni & Wald, 2018).

Therefore, any inadvertent smoothing that is imposed during data

acquisition and/or preprocessing can lead to a failure to detect these

features.

While the nominal resolution of acquisitions may appear to be

sufficient to resolve these features, there are many well-known

sources of unwanted spatial blurring, such as T2* decay in EPI

(Chaimow & Shmuel, 2016; Farzaneh et al., 1990) and partial Fourier

acquisition (Zaretskaya & Polimeni, 2016), that result in losses of

effective imaging resolution, which impede our ability to detect these

features. What is less well appreciated is that data processing will also

cause potentially avoidable losses in effective resolution (Glasser

et al., 2013; Polimeni et al., 2018).

Spatial blurring induced by interpolation during preprocessing is

the major contributor to losses in the effective resolution after the

data have been acquired. For example, studies have reported spatial

resolution losses caused by interpolation during geometric distortion

correction (Renvall et al., 2016) and by motion correction (Grootoonk

et al., 2000; Polimeni et al., 2018; Power et al., 2017). It is crucial to

minimize these losses not only because they induce bias and artifacts

such as regionally varying spatial blurring but they also decrease the

reliability and reproducibility of the results. A recent study by

Botvinik-Nezer et al. (2020) compared the consistency of fMRI results

generated by 70 independent experienced teams analyzing the same

dataset and showed sizeable variation in their reported results; a post

hoc investigation of the discrepant results suggested that the largest

factor contributing to the inconsistency was implicit or unwanted spa-

tial smoothing induced by data preprocessing.

Efforts have previously been made to address and minimize the

effective resolution losses occurring during preprocessing. For exam-

ple, in the Human Connectome Project (HCP), minimization of spatial

blurring was achieved by minimizing spatial interpolation by compos-

ing all transformations applied to the data into one, thereby interpo-

lating the data only once (Glasser et al., 2013, 2016). Another

approach to minimize blurring is to upsample the image volume to a

finer voxel grid to preserve spatial detail during interpolation—and,

potentially, exploit the small head displacement (Allen et al., 2022;

Kang et al., 2007; Zhang et al., 2015). Other similar approaches have

focused on minimizing interpolation-induced resolution losses, such

as the use of higher-order interpolants or nonlinear interpolation

schemes.

Another important facet that has received less attention, which is

particularly relevant for mapping cortical columns, is the potential res-

olution losses associated with projecting the volumetric fMRI data

onto cortical surface meshes, which itself is a form of data interpola-

tion that can lead to regionally varying losses in resolution (Kay

et al., 2019; Polimeni et al., 2018).

Although strategies listed above have been proposed in various

studies, their impact on the final resolution is not often quantified,

and their ability to retain resolution at the fine spatial resolution

needed to detect columnar organization has not been evaluated. The

performance of these strategies may depend on the nominal imaging

resolution and could be influenced by other aspects of the acquisition

of these data—such as geometric distortions specific to UHF-fMRI,

the use of partial brain coverage for acquisition, and so on—and there-

fore should be evaluated for high-resolution UHF-fMRI data to better

understand the limits of these methods in practice for this application.

Motivated by this, here our goal is to both evaluate and minimize

several key sources of blurring imposed both during the data acquisi-

tion and analysis stages. These include aspects that have received less
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attention in past studies such as resolution losses imparted by

projecting the volumetric fMRI data onto cortical surface meshes and

the losses (and potential gains) in resolution associated with geometric

distortion. We propose several practical methods to preserve spatial

resolution during analysis and suggest a simple method for quantifying

spatial resolution that can be applied to any preprocessing stream.

Quantification methods such as this enable principled comparisons

between preprocessing strategies and can provide valuable spatial

“error bars” to use when evaluating results.

Both synthetic data and real data are employed in this study. We

also consider the effects of image resolution on the accuracy of

motion estimation, and demonstrate that the simple approach of

upsampling the imaging data can be an effective way to limit resolu-

tion losses. To evaluate these approaches applied to our targeted

application, imaging cortical columnar patterns, we exploit a favorable

feature found in the columnar patterns within human extrastriate cor-

tex: the fine-scale spatial interdigitation of color selectivity “thin” and
disparity selectivity “thick” stripes in human second visual (V2) cortex.

This interdigitation, known from classic histology studies (Tootell

et al., 1983), provides us with valuable “ground truth”; that is, the two

independently localized stripe (column) types should exhibit minimal

spatial overlap, which allows us to meaningfully evaluate the effects

of spatial blur in these data across different preprocessing strategies.

Because these high-resolution data are typically acquired across

experimental sessions, and these two V2 columnar sub-systems were

imaged independently in different sessions, our data also allow us to

evaluate the accuracy of aligning multi-session data.

A preliminary account of this study was previously presented in

abstract form (Wang et al. 2021).

2 | METHODS

2.1 | Participants

Three human subjects (two females; age range, 24–28 years) partici-

pated in this study. Written informed consent was obtained from each

participant before the experiment, and all experimental procedures

were performed in accordance with our institutionally approved

Human Research protocol and federal guidelines. Data from these

three subjects have been previously published; see our previous study

(Nasr et al., 2016) for additional details.

2.2 | Visual stimuli

Visual stimuli were presented via an LCD projector (1024 � 768-pixel

resolution, 60 Hz refresh rate) onto a rear-projection screen, viewed

through a mirror mounted on the receive coil array. MATLAB 2013a

(MathWorks) and the Psychophysics Toolbox (Brainard, 1997;

Pelli, 1997) were used to present visual stimuli. In order to map V2

“thin” and “thick” stripes, an experiment targeting color selectivity

and an experiment targeting disparity selectivity were performed in

separate experimental sessions; both experiments were conducted

over two sessions, thus four experimental sessions were conducted in

total for each participant.

For the color experiment, sinusoidal drift gratings were presented

either in iso-luminance chromatic or achromatic luminance with low spa-

tial frequency (0.2 cycle/�) and temporal frequency (4�/s). For the dispar-

ity experiment, random-dot stereograms (RDSs) based on red or green

dots (0.09� � 0.09�) were presented against a black background, which

were perceived stereoscopically as an array of cuboids that sinusoidally

varied in time in depth (±0.22�) or at a fixed depth in a frontoparallel

plane. Each experimental session consisted of 8–12 BOLD fMRI runs

(see below) to improve detection sensitivity in each individual subject.

Details of stimulus presentation, fixation task, and luminance calibration

can be found in our previous study (Nasr et al., 2016).

2.3 | Data acquisition

2.3.1 | Functional data

Functional data were acquired using a 7T whole-body scanner

(Magnetom, Siemens Heathineers) equipped with body gradients (maxi-

mum gradient strength, 70 mT/m; maximum slew rate, 200 T/m/s), with

a custom-built 32-channel helmet receive coil array and a birdcage vol-

ume transmit coil (Keil et al., 2010). BOLD fMRI data were acquired using

a 2D single-shot gradient-echo EPI protocol at 1-mm isotropic nominal

resolution using the following protocol parameter values: TR = 3000 ms,

TE = 28 ms, matrix size = 192 � 192, bandwidth = 1184 Hz/pix, nomi-

nal echo spacing = 1 ms, partial Fourier = 7/8, flip angle = 78�, slice

number = 44, acceleration factor = 4 with GRAPPA reconstruction and

FLEET-ACS data (Polimeni et al., 2016) with 10� flip angle. Prior to fMRI

data acquisition, RF transmit voltage amplitude was calibrated to the

visual cortex region of interest.

2.3.2 | Retinotopic mapping

In order to functionally define the cortical area boundaries within the

visual cortex, including the borders of V2 (needed for our analysis of

columnar sub-system or stripe overlap), standard retinotopic mapping

was performed for each subject. These retinotopic mapping data were

acquired in each participant using a 3T Siemens scanner (Tim Trio)

and the vendor-supplied 32-channel receive coil array, using single-

shot gradient-echo BOLD-weighted EPI protocol with nominally

3.0 mm isotropic voxels and the following protocol parameter values:

TR, 2000 ms; TE, 30 ms; flip angle, 90�; matrix, 64 � 64; BW,

2298 Hz/pix; echo-spacing, 0.5 ms; no partial Fourier; FOV,

192 � 192 mm; 33 axial slices covering the entire brain.

2.3.3 | Anatomical data

Structural (anatomical) data were also acquired using a 3T Siemens

scanner (Tim Trio) using a 3D T1-weighted MPRAGE sequence with

protocol parameter values: TR = 2530 ms, TE = 3.39 ms,
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TI = 1100 ms, flip angle = 7�, bandwidth = 200 Hz/pix, echo

spacing = 8.2 ms, voxel size = 1.0 � 1.0 � 1.33 mm,

FOV = 256 � 256 � 170 mm. These anatomical data served as an

anatomical reference for all fMRI data.

2.4 | Data preprocessing and analysis steps
common to all evaluations

2.4.1 | Standard preprocessing

Anatomical reference data preprocessing

In order to visualize the columnar data on the unfolded cerebral corti-

cal gray matter (GM), surface reconstructions were automatically gen-

erated using FreeSurfer (version 6 (http://surfer.nmr.mgh.harvard.

edu/; Fischl, 2012). To evaluate the effects of intra-cortical smoothing

(see next section), we also automatically generated, in addition to the

standard pial surface (i.e., the gray matter border with the surrounding

cerebrospinal fluid or CSF) and the white matter (WM) surface recon-

structions, a family of 11 intermediated equidistant surfaces spaced at

intervals of 10% of the cortical thickness, which consisted the WM-

GM (surface 0) interface surface, the GM-CSF (surface 10) interface

surface, and 9 intermediate surfaces within gray matter.

Functional data preprocessing

The main fMRI data preprocessing includes the following. (1) fMRI

data motion correction, including motion estimation. Each fMRI run

was independently aligned to the middle frame of the run (the refer-

ence frame) using rigid-body alignment. (2) fMRI data registration to

the anatomical reference data. A rigid-body transformation was com-

puted again from the middle frame of each run (the reference frame)

to the T1-weighted anatomical image volume using boundary-based

registration (BBR; Greve & Fischl, 2009). The accuracy of this registra-

tion between the fMRI volume to the anatomical volume was verified

visually. Note that no nonlinear warping or distortion correction was

applied due to the low level of distortion in these accelerated EPI data

seen within the calcarine sulcus (see Section 4). (3) Projection of the

fMRI volumetric data onto the cortical surface mesh derived from the

anatomical reference. The motion-corrected fMRI data were projected

to the WM-GM surface by applying the transformation computed

during anatomical registration. No explicit spatial smoothing in volume

space was applied. Details of the interpolation used for the motion

correction and for the surface projection, both of which are a focus of

the current study, are provided further below.

2.4.2 | Standard statistical analysis

To detect functional activation in the fMRI data, a standard statistical

analysis, based on a general linear model (GLM) for the expected

changes in BOLD signal with activation, was applied to the

preprocessed time series data. A canonical hemodynamic response

was assumed (i.e., a gamma function with 2.25 s hemodynamic delay

and 1.25 s dispersion). The estimated activation maps from across

runs or across sessions, where applicable, were always combined

using a fixed-effect analysis.

2.4.3 | fMRI data visualization

To visualize the activation patterns, including activations tucked

within buried sulci of the extrastriate cortex, activation maps were

displayed on an “inflated” surface representation, with the sulcal and

gyral patterns indicated in grayscale.

2.5 | Preprocessing steps evaluated for preserving
accuracy

Our goals in this study are to evaluate methods for both preserving

spatial accuracy and quantifying the resulting resolution losses. We,

therefore, compared results generated several times via different

strategies. Here we consider resolution losses attributed to

preprocessing and those due to the acquisition process. Strategies

evaluated to reduce unwanted resolution loss include reducing voxel

grid spacing through upsampling, various higher-order and nonlinear

interpolation algorithms, one-step resampling, and surface mesh

refinement. The effects of imaging resolution and voxel grid spacing

on motion correction accuracy and the spatially varying blur caused

by geometric distortion during acquisition were also characterized.

2.5.1 | Upsampling of fMRI volumes

Several fMRI preprocessing steps involve the spatial transformation of

the fMRI volumes. This includes motion correction and also steps such

as geometric distortion correction, which result in either rigid or

nonrigid transformations. For these transformations, voxel data are in

general shifted off of the voxel grid, which necessitates resampling

and therefore some form of interpolation, which results in spatial blur-

ring and spatial resolution losses. Because the spatial extent of the

interpolation kernel is a function of the voxel grid spacing (equiva-

lently, the voxel size), one method to reduce the spatial blur associ-

ated with interpolation is to simply upsample the fMRI volume prior

to resampling.

Additionally, upsampling the fMRI volumes could also potentially

improve the estimation of motion parameters in time-series data. This

is mainly because a finer grid spacing can provide several motion esti-

mation algorithms with a larger number of voxels that contribute to

the estimation as well as more potential translations and rotations of

the volumetric data to evaluate when computing the spatial similarity

of a given displaced frame of data with the reference frame.

To test the effects of fMRI volume upsampling, we upsampled

the native (nominally) 1-mm isotropic resolution data by a factor of

2 in the linear dimension to a 0.5-mm isotropic grid, resulting in a

voxel size that is eight times smaller in volume (and thus eight times
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more voxels per volume) prior to motion correction. The fMRI data

were interpolated onto this finer voxel grid using several interpolation

algorithms: nearest-neighbor, cubic, and linear interpolation. To isolate

the effects of upsampling on resolution losses from interpolation, we

computed all transformations of the fMRI data on the original 1-mm

isotropic volumes (including motion correction and anatomical regis-

tration) and applied these transforms to the upsampled data. We then

compared resolution losses seen in the original 1-mm isotropic data

and on the data resampled to the 0.5-isotropic grid with each of the

three volume-upsampling interpolation methods.

2.5.2 | Transformation composition

Best-practice fMRI preprocessing seeks to reduce resolution losses

caused by interpolation, and the recommendation is to minimize the

number of times the fMRI data are interpolated (Glasser et al., 2013).

The amount of implicit spatial blurring imparted by multiple sequential

steps of interpolation can be minimized by mathematically composing

the transformations such as the transformation of each fMRI frame to

the fMRI reference frame used in motion correction with the transfor-

mation of the fMRI reference frame to the anatomical reference. In

order to evaluate the impact of transformation composition on fMRI

resolution, we implemented a transformation composition that trans-

formed each fMRI frame into the anatomical reference, which allowed

us to project each frame of fMRI data directly onto the cortical surface

mesh. To achieve this, first, the spatial transformations corresponding to

the motion estimation were generated from the motion parameters. Sec-

ond, the transformations of the motion correction and anatomical regis-

tration were composed. Finally, the composed transformation was used

to project each fMRI voxel onto the cortical surface mesh. In this

approach, the fMRI data undergo only a single interpolation (i.e., when

the data are projected onto the cortical surface mesh) and no volumetric

interpolation is applied to the fMRI data.

For comparison, we computed both the activation map computed

using the standard approach of sequentially applying the two transfor-

mations (resulting in two interpolation steps) with the activation map

computed using the composed transformation.

2.5.3 | Refinement of surface mesh

When projecting volumetric data onto a surface mesh, it is important

for the spacing of the mesh vertices to be sufficiently small that it can

accurately represent the volumetric data. In general, this “resolution”
or vertex spacing of the surface mesh is a function of the resolution

of the anatomical imaging data used to reconstruct the surface mesh,

so smaller anatomical voxels will lead to finer meshes (Zaretskaya

et al., 2018). Today, high-resolution fMRI voxels are similar in size or

smaller than typical MPRAGE voxels, and so it is possible that the sur-

face mesh spacing is insufficiently small for these fMRI data. If the

mesh vertex spacing is larger than the fMRI voxel size, it is possible

that fMRI voxels sampling the cerebral cortex are not represented on

the surface mesh, resulting in lost data or “holes” in the activation

map represented on the cortical surface. This can also result in small-

scale geometric distortions of the fMRI data projected onto the sur-

face. These two issues can be minimized by refining the surface mesh

so that the distances between neighboring vertices are smaller than

the fMRI voxel grid spacing.

In order to evaluate the effect of surface mesh refinement on the

surface-based representation of the fMRI data, we iteratively refined

the native surface mesh, with each iteration adding new vertices,

thereby increasing vertex density and decreasing vertex spacing. For

our refinement algorithm, we employed a simple form of the surface

subdivision known as the “butterfly” method under which each

refinement iteration consisted of inserting a new vertex at the mid-

point of each mesh edge, then connecting the three new vertices in

each mesh triangle, which subdivided each original triangle into four

new, smaller triangles. Thus, because FreeSurfer generates surfaces

for which the number of faces is roughly twice the number of vertices,

each iteration also increased the number of vertices by approximately

a factor of 4 and decreased the vertex spacing by about a factor of

2, without changing the geometry of the surface or the positions of

any of the original vertices. Here we performed four successive itera-

tions of mesh refinement. Then the fMRI volumetric data were projec-

ted onto the refined surface meshes and interpolated with trilinear

interpolation. We also calculated the number of unique fMRI voxels

projected onto each surface mesh to quantify the number of recov-

ered voxels with each step of refinement (Section 2.6.2).

2.5.4 | Intracortical smoothing

Although spatial smoothing can help increase signal-to-noise ratio

(SNR) and boost sensitivity, typical volumetric 3D smoothing kernels

applied to the cortical gray matter can increase partial volume effects,

leading to noise contamination from surrounding CSF, signal dilution

from WM, and a mixing of activation from pial veins and the paren-

chyma, which again can lead to displacement of activation and a

general loss of spatial specificity.

In order to increase temporal signal-to-noise ratio (tSNR) in fMRI

data while minimizing loss of spatial specificity, anatomically informed

spatial smoothing can be applied that restricts the smoothing to be

within the cortical gray matter ribbon using the surface mesh-

navigated spatial smoothing method (Blazejewska et al., 2019). This

method allows for smoothing relative to the natural coordinate sys-

tem of the cortex, either parallel to the cortex, perpendicular to the

cortex, or in the form of a “steerable” 3D kernel that follows curva-

ture of the folding pattern.

Because the goal of the present study to is map columnar organi-

zation, here we evaluate anatomically informed smoothing in the

direction perpendicular to the cortex to smooth within the columns.

This approach leverages strong prior information that similar fMRI

responses to our stimuli are expected to be more similar in the direc-

tion perpendicular to the cortex than they are in the direction parallel

to the cortex. Here intracortical smoothing is performed only in the
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radial direction (i.e., with no smoothing in the tangential direction)

with an extent that is limited to the bottom 30% of the cortical rib-

bon, that is, from the 0% surface at the white-matter interface to the

surface at 20% of the relative cortical thickness (as defined in

Section 2.4), which allows us to retain spatial resolution for mapping

the columnar patterns while increasing SNR through exploiting the

prior knowledge about the columnar organization. This conservative

radial smoothing kernel was chosen to retain the spatial specificity,

because of the known losses of spatial specificity for at the pial sur-

face due to large vein contamination in gradient-echo BOLD (Nasr

et al., 2016; Polimeni et al., 2010). Considering both our voxel size

relative to the thickness of the visual cortex, conservatively smooth-

ing voxels within the bottom 30% of the cortical thickness would

capture one to two voxels, which would be expected to capture the

deep and middle cortical layers and, in some locations along the

folded cortex, may reach the superficial layers but would rarely reach

the pial surface. We compared the results of our columnar mapping

with and without this intracortical smoothing applied to the

fMRI data.

2.6 | Evaluation of effects of preprocessing on
spatially varying smoothing

To evaluate the effects of the various preprocessing strategies sum-

marized above on spatial blurring, we utilized both synthetic data and

real fMRI data as follows.

2.6.1 | Quantification of spatial blurring using
synthetic white noise

To quantify the level of spatial blurring induced during preprocessing,

and the spatially varying pattern of this blur, we followed a procedure

employed previously based on generating a synthetic i.i.d. white-noise

time series matching the resolution of the functional data (prolonged

in time dimension to reduce variance of white-noise across voxels),

and subjecting this 4D noise volume to various preprocessing steps

(Polimeni et al., 2018; Renvall et al., 2016). This method is akin to a

Monte Carlo simulation, which is often applied to characterize how

various analysis steps introduce spatial correlation through blurring

(Hagler et al., 2006). The amount of spatial blur can be determined

numerically by the mapping between the resulting temporal standard

deviation (TSTD) and the explicitly applied 3D Gaussian smoothing

kernels with varying smoothing capacity ranging from 0.1 to 3.9

FWHM. Here we derived this mapping between TSTD and FWHM by

simply applying a 3D Gaussian smoothing function with various wid-

ths (using the fslmaths command of the FSL toolbox) and recorded

for each FWHM the resulting TSTD of the smoothed synthetic noise

data. This provided a look-up table that maps the measured TSTD of

the processed noise data to the equivalent FWHM of the induced 3D

smoothing.

Quantification of spatial blurring induced by motion correction for

different interpolation algorithms, with and without volume

upsampling

To compare the extent of spatial blurring introduced during motion

correction, both for our original 1-mm fMRI data and the upsampled

0.5-mm fMRI data, we synthesized white noise data on a 1-mm grid,

then upsampled these data to a 0.5-mm grid. For this experiment,

interpolation was performed for two purposes: during upsampling,

and during motion correction. We evaluated the induced blurring for

three different interpolation algorithms used for upsampling (plus the

case of no upsampling) and for four different interpolation algorithms

used for motion correction, resulting in a total of 16 tests. For each

test, the FWHM was calculated by finding the correspondence to the

calculated TSTD using the look-up table described above and aver-

aged across all voxels within the volume.

Quantification of spatial blurring induced by projecting volumetric

fMRI data onto cortical surface meshes and the effects of composed

transformations

Because many aspects of functional architecture of the cerebral cor-

tex are naturally organized into 2D columnar or topographic maps

embedded in the cortical surface, for many studies, it is necessary to

project the fMRI data onto the cortical surface representation both

for visualizing and analyzing these 2D functional maps. To represent

the volumetric fMRI data on the cortical surface, the so-called

volume-to-surface projection assigns fMRI voxels to surface mesh

vertices, and then once the data are represented on vertices they can

be visualized or rendered using various approaches. Because the sur-

face mesh is typically an irregular polyhedral mesh (e.g., a triangulation

with nonuniform vertex spacing and varying triangle areas) the closest

mesh vertex to a particular voxel centroid is in general offset by a

small amount, and thus the projection also requires an interpolation of

the volumetric data—in this case, instead of interpolating data from

one voxel grid onto another voxel grid, the data are interpolated from

a voxel grid onto an irregular mesh. Note that the closest mesh vertex

is determined using the transformation computed during the

functional-to-anatomical registration.

There are several methods for this interpolation, and different

interpolation strategies are expected to induce different amounts of

spatial blurring. For example, in trilinear interpolation each vertex

value is calculated as a weighted sum of nearby voxel values, which

helps to infer what the fMRI intensity is at a vertex situated “in
between” two or more voxels. However, this will introduce spatial

blurring and correlations into the functional data represented on the

surface. In nearest-neighbor interpolation, each voxel is projected to

all of the vertices it intersects, which leads to some spatial distortion

of the functional data depending on the arrangement of the vertices.

However, it avoids spatial blurring and does not introduce correlations

that are not present in the original volumetric data. Although these

surface interpolation effects are known, the effects are less quantified

compared to volume interpolation effects, especially for high spatial

resolution fMRI data.
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To quantify the surface projection-induced blurring of the fMRI data,

we took the following steps: (i) we projected 4D synthetic white noise

data onto the white matter surface mesh using both nearest-neighbor

and trilinear interpolation methods (using the FreeSurfer command

mri_vol2surf). (ii) Each vertex was assigned a time-series of noise

intensities, then the temporal standard deviation was calculated from

these projected noise data for each vertex. (iii) To determine the effec-

tive 3D smoothing kernel corresponding to these TSTD values, we used

the same lookup table described above. While these resolution losses

are induced by projection onto the 2D surface mesh, and so they can be

characterized by the effective 2D smoothing kernel, which could be

readily calculated using the procedure described above (using a 2D

surface-based smoothing approach), here to keep this evaluation compa-

rable to the evaluation of volumetric smoothing we chose to quantify

the blurring in terms of the effective 3D smoothing; naturally, there is a

simple relationship between the effective isotropic 3D smoothing extent

and the effective isotropic 2D smoothing extent.

Because the fMRI data typically undergo several volume transfor-

mations followed by a surface projection during preprocessing, we

quantified the effect of composing the volume transformations and

surface projection so that the data would be interpolated only once

(i.e., when projecting onto the surface). In this evaluation, again we

used 4D white noise data and tested the effective blurring induced by

the conventional approach in which volumetric transformation (in this

case, motion correction) and interpolation is followed by surface pro-

jection and interpolation, and the proposed approach in which the vol-

umetric transformation was composed with surface projection such

that each frame of uncorrected fMRI data were projected directly

onto the cortical surface mesh.

2.6.2 | Quantification of precision/accuracy trade-
off on volume to surface projection

Although nearest-neighbor interpolation, compared to trilinear inter-

polation, helps reduce smoothing when projecting volumetric data

onto surface meshes, it can cause small-scale distortions and missing

voxels in the data if the mesh is too coarse—which means that

nearest-neighbor interpolation induces potentially less variance but

more bias, thus choosing an interpolation method requires balancing a

bias-variance trade-off. These small-scale distortions can be mini-

mized by refining the surface mesh so that the distances between

neighboring vertices are smaller than the voxel grid spacing. Here,

because the activation map is a prediction of the location of neuronal

response after preprocessing, prediction errors may arise. There are

two kinds of prediction errors related to losses of accuracy and losses

of precision—that is, related to either bias or variance. In our case, bias

is related to displacements and distortions in the estimated stripe pat-

tern, and variance is related to noise and to sensitivity to detect acti-

vation. These terms are discussed in more detail in Section 4.11.

To quantify the proportion of voxels lost during the volume-to-

surface projection, a synthetic volume in which the value of each

voxel was assigned a unique voxel index was generated, and this

volume was then projected onto the surface mesh (using the same

computed registration) using nearest-neighbor interpolation. This was

performed for the original surface mesh and for refined surfaces gen-

erated with a refinement factor ranging from 1 to 4 (as described

above in Section 2.5.3). Then each unique voxel projected to the sur-

face was identified, and the proportion of unique voxels was calcu-

lated for the original and refined surfaces. While the proportion of

unique voxels will of course depend on the voxel grid spacing, here

we aim to demonstrate a method to evaluate how refinement can

help to retain more of the acquired fMRI voxels when projecting onto

cortical surface meshes.

2.7 | Other factors influencing spatial accuracy

2.7.1 | Effect of imaging resolution on motion
estimation accuracy

Because imperfect motion estimation will also result in loss of spatial

accuracy when performing motion correction, we also quantified the

influence of imaging resolution on motion parameter estimation accu-

racy. This was achieved by (1) synthesizing a 4D volume with known

motion by applying measured rigid-body motion parameters (gener-

ated from the motion estimation of our acquired 1-mm fMRI data) to

a single 3D frame of our 1-mm fMRI data, and then (2) resampling the

resulting synthetic 4D volume with known motion to generate 4D

volumes with larger voxel sizes (2 and 3 mm) and with a smaller voxel

size (0.5 mm) and known motion. This first test evaluates the effect

that resampling (upsampling or downsampling) data acquired natively

at 1-mm resolution has on motion estimation accuracy.

Subsequently, to illustrate whether motion estimation accuracy

could potentially be improved by acquiring even higher resolution

fMRI data, again rigid-body motion parameters from acquired fMRI

data were applied to generate synthetic data with known motion, but

in this case, the motion was applied to a single 3D frame of our

natively 1-mm fMRI data after resampling to a 3D volume with larger

voxel sizes (2 and 3 mm) and with a smaller voxel size (0.5 mm). In this

case, the resampling was performed prior to applying the known

motion to generate 4D volumes with known motion. This second test

evaluates the effect that resolution of the acquired data has on

motion estimation accuracy.

For both tests, motion was then estimated from the synthetic 4D

volumes with known motion, and the accuracy of these estimates was

determined by the differences between the estimated motion param-

eters and known motion parameters, and the error was summarized

as the root-mean-square error (RMSE).

2.7.2 | Quantification of spatial resolution losses
caused by geometric distortion

Not only can the resolution of the fMRI data vary spatially due to dif-

ferent preprocessing strategies, but it can also vary across brain
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regions due to geometric distortion. Geometric distortion, such as

well-known macroscopic susceptibility gradient induced distortion in

EPI data, not only displaces fMRI voxels but also can expand or com-

press voxel sizes, leading to another form of spatially varying resolu-

tion across the fMRI volume. In order to illustrate this effect, we

considered gradient nonlinearity distortion, which varies with the

design of the gradient coil, as an example. To increase gradient coil

performance, often the constraint that the gradient field used for

image encoding is linear over space is relaxed, resulting in gradients

that are a nonlinear function of space (Schmitt, 1985; Langlois et al.,

1999). These gradient nonlinearities cause spatial localization errors

that manifest as image distortion and voxel size variation, which are

not accounted for in conventional image reconstruction that assumes

a linear gradient field, and these geometric errors are a function of

position of the head relative to isocenter.

The effects of these distortions have been illustrated recently

(Yamamoto et al., 2021) but their influence on spatial resolution has

not been quantified. Using the nonlinearity of several modern gradient

coils provided by the scanner manufacturer, we applied the

corresponding gradient nonlinearity warping to an example distortion-

free anatomical dataset, assuming that the head was positioned in the

same location centered within each gradient coil. Then, we evaluated

the voxel compression/expansion imparted by several modern gradi-

ent coil sets by computing the Jacobian determinant of the deforma-

tion induced by gradient nonlinearity.

2.8 | Evaluation of spatial specificity through
imaging nonoverlapping columnar subsystems

Besides using synthetic data to evaluate the effects of different

preprocessing strategies on spatial blurring, we also quantified these

effects in a way that is directly relevant to high-resolution fMRI stud-

ies by investigating how the various strategies considered above influ-

ence our ability to detect spatially segregated and nonoverlapping

fine-scale patterns of functional architecture, the V2 “thin” and

“thick” stripes. For this, we evaluated the preprocessing steps

described in Section 2.5 to demonstrate the effect of each on the

accuracy of detecting these stripes by measuring the overlap between

the thin and thick stripes, which are known from histological studies

to be nonoverlapping (Tootell et al., 1983).

To achieve this goal, the two columnar activation maps were

computed following different preprocessing strategies, that is, the

default preprocessing and preprocessing using multiple steps of inter-

polation with volume upsampling, one-step interpolation from com-

posed transformations as well as surface refinement, and intracortical

smoothing. Then combinations of these strategies were also evaluated

including (1) volume upsampling + surface refinement, (2) composed

transformations + surface refinement, (3) volume upsampling + intra-

cortical smoothing, (4) composed transformations + intracortical

smoothing, (5) volume upsampling + surface refinement + intra-

cortical smoothing, and (6) composed transformations + surface refin-

ing + intracortical smoothing. (The preprocessing strategies based on

composed transformations and volume upsampling are were not com-

bined because volume upsampling provides no benefits when per-

forming single-step interpolation onto the cortical surface mesh.)

Because strategies that result in less spatial blurring should pro-

duce “thin” and “thick” stripes with reduced overlap, we required a

means to quantify overlap through quantifying the spatial borders of

each columnar sub-system. This could be achieved through

thresholding the corresponding activation maps. To address the influ-

ence of the chosen threshold on the overlap quantification, binarized

activation maps were generated using multiple thresholds (p = 0.05,

0.01, and 0.001), and activation clusters with a cluster size below two

vertices were considered to be likely false-positive activations due to

noise and removed from the binarized activation maps. The Dice

Coefficient (Dice, 1945) across the different threshold for different

strategies was calculated to quantify overlap between the “thin” and

“thick” stripe sub-systems.

3 | RESULTS

3.1 | Effect of volume upsampling on spatial blur

In order to illustrate the correspondence between the applied 3D

smoothing kernel (FWHM) and TSTD for synthetic white noise data,

look-up tables were calculated and the transfer function between

TSTD and FWHM is shown in Figure 1a for a 1-mm grid and for a

0.5-mm grid. As depicted in the graph, the more spatial blur is applied

to the image volume, the lower the noise TSTD, which indicates how

TSTD can be used as an index to evaluate the amount of the spatial

blur for each voxel. Error bars represent the variance of estimated

TSTD across all of the voxels within the brain. This variance can be

reduced by increasing the number of time points generated in the 4D

synthetic white-noise data, at the cost of increased computation time.

The plateau at small values of TSTD corresponds to smooth kernels

whose width is smaller than the voxel grid size, which indicates how

the grid size chosen will influence the ability to capture fine-scale spa-

tial blur. This can be improved by moving to finer grid sizes, again at

the cost of increased computation time. Comparing the transfer func-

tion computed for the 1-mm grid and for the 0.5-mm grid shown in

Figure 1a, the extent of this plateau decreases, and the absolute

amount of spatial smoothness becomes smaller, when using a finer

grid size.

To demonstrate how upsampling the image volume can reduce

spatial blur caused by interpolation during preprocessing, we evalu-

ated blurring induced in the volume by applying motion correction to

the synthetic white-noise data for both the 1-mm grid and for the

0.5-mm grid, and present the TSTD and FWHM in an example coronal

EPI slice to illustrate the mapping from TSTD to FWHM. These results

show that, while the resulting TSTD values are similar between the

two grids tested, when using the appropriate lookup table, we can see

that the smoothing of the data in absolute units of mm is lower for

the upsampled data on the 0.5-mm grid than it is in the 1-mm data,

as expected (Figure 1b).
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3.2 | Effects of interpolation algorithms used for
volume upsampling and for spatial transformation

Although volume upsampling can reduce spatial blur induced when

applying spatial transformations to the 3D image data, the act of

upsampling itself requires an interpolation, and the choice of interpo-

lation algorithm used for upsampling also has an effect on the total

resolution loss—and if the interpolation algorithm used for upsampling

is not chosen appropriately this interpolation step will counteract and

potentially remove altogether any benefits of volume upsampling. To

illustrate this interaction between the interpolation used for

upsampling and the interpolation algorithm used for spatial transfor-

mation, we upsampled the synthetic volumes using various interpola-

tion algorithms and then applied motion correction again using

various interpolation algorithms. Note that, in general, different inter-

polation algorithms are available for volume upsampling and for spa-

tial transformations. As can be seen in Figure 2, spatial blurring varies

substantially across the different interpolation algorithms tested, and

low-order interpolation, trilinear for example, induces the most severe

spatial blur, as expected. Importantly, applying linear interpolation

during upsampling nearly cancels the benefits of upsampling for

retaining resolution when applying the spatial transformation.

These data suggest that resolution losses due to interpolation

happen not only when applying spatial transformations in volume

space, but can also occur while projecting the volume data onto sur-

face meshes, and surface refinement is in this case analogous to vol-

ume upsampling. This will be addressed in the next section.

3.3 | Effects of composing transformations

To evaluate to what extent spatial blur can be influenced by compos-

ing spatial transformations with surface projection, and the effects of

surface interpolation algorithms, we projected the synthetic 4D white

noise data onto the cortical surface mesh either by composing spatial

transformations and projection or by applying spatial transformations

and projection sequentially. Two different volume-to-surface interpo-

lation algorithms were also compared. As expected, composing spatial

transformations and projection indeed reduces the spatial blur as seen

both in the histogram shown in Figure 3a and the spatial maps shown

in Figure 3b. However, the effect of composed versus sequential

transformation was small compared to the effect of interpolation.

Compared to nearest-neighbor interpolation, trilinear interpolation

induces far higher spatial blur. Furthermore, and perhaps more impor-

tantly, trilinear interpolation induces a broader range of spatial

smoothness as can be seen readily in the histograms of Figure 3a,

leading to a higher variability across the cortex of effective spatial res-

olution. With nearest-neighbor interpolation, the distributions of

FWHM for composing transformation are less than 0.1 mm on aver-

age for this example data.

It should also be noted that, while nearest-neighbor interpolation

helps reduce smoothing when projecting onto surfaces, it can cause
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volume upsampling and for spatial transformation. Each group of bars
represents the smoothing induced by a specific interpolation
algorithm (nearest-neighbor, cubic, and linear interpolation) applied
during volume upsampling prior to motion correction, and each color
represents a specific interpolation algorithm (sinc, quintic, cubic, and
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F IGURE 1 Evaluation of the effect of volume upsampling on
effective spatial resolution. (a) Correspondence between TSTD and
FWHM at original 1-mm voxel grid and upsampled 0.5-mm voxel grid.
Error bars indicate variability across voxels which is influenced by the
number of time point samples. (b) Left and right columns show the
TSTD calculated from white noise after applying motion correction
and the corresponding FWHM at the original 1-mm and at the
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(inset shows the example EPI slice in coronal view)
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small-scale spatial distortions in the data if the mesh is course, that is,

there is a bias-variance trade-off that must be considered. This small-

scale distortion can be reduced by refining the surface mesh, as

described in the next section.

3.4 | Refinement of the surface mesh reduces the
number of missed voxels

To test whether projecting fMRI data onto typical cortical surface

meshes can result in lost fMRI voxels and thus missing data, and how

this loss depends on both voxel grid and mesh vertex spacing, we

counted the number of unique voxels projected onto the surface for

various surface mesh resolutions. (Here, voxel index values, which are

integers, were projected to the surface, and thus nearest-neighbor

interpolation was used to preserve their integer values.) The number

of the lost voxels was then quantified by counting the number of

unique values on the surface mesh.

As depicted in the schematic in Figure 4a, the mesh refinement

scheme used here adds new vertices to the triangle edge mid-points,

and as the number and density of the vertices increases more unique

voxels are retained during surface projection. This schematic also

shows how refining the surface mesh can not only help reduce the

number of missing voxels, but can also help minimize small-scale spa-

tial distortions or displacements that are incurred when projecting

voxel values to vertices that are spatially distant from the

corresponding voxel centroid. If the distance between neighboring

voxels is smaller than the distance between neighboring vertex, there

will be a chance that some voxels will be missed and not projected

onto any vertex. As expected, Figure 4b shows, for an example sub-

ject, how the number of unique voxels projected onto the surface

increases with increasing density of vertices as the mesh is iteratively

refined from one to three steps. This evaluation was performed on

the gray/white matter boundary surface generated by FreeSurfer

from standard 1-mm anatomical data, whose cross-section with the

image slice is represented by the black contour, because this cortical

surface is more commonly used to preserve spatial specificity in

BOLD fMRI studies. In order to visualize the unique voxels projected

onto the surface, here we visualized the voxel index projected onto

the surface as a mask in volume space. As can be seen in the zoomed-

in view, progressively more unique voxels near the gray/white matter

boundary surface are retained (i.e., fewer voxels are lost) as the sur-

face mesh is refined. Figure 4c shows quantitatively the number of

unique voxels captured during surface projection with increasingly

refined surface meshes, and demonstrates an increase in unique voxel

count with increasing vertex resolution that is in line with what can be

seen qualitatively in Figure 4b. Perhaps surprisingly, the number of

unique voxels only reaches a plateau after three iterations of refine-

ment for this example 1-mm resolution volumetric fMRI data,

suggesting that further steps of refinement may be necessary for even

higher resolution fMRI data.

3.5 | Evaluation of spatial blur on measured fMRI
data with interdigitated spatial organizations

Next, in order to evaluate how do the preprocessing strategies impact

the spatial blur of final activation pattern, we also took advantage of a

favorable property of our fMRI data—the interdigitation of V2 thin

and thick stripes—to test whether strategies that reduce blurring

result in smaller spatial overlap between these stripes. In our data, the

fine-scale color selectivity “thin” stripes and disparity selectivity

“thick” stripes in V2 were imaged in different experimental sessions

taking place on different days. Then the overlap of the independently

derived activation patterns was evaluated. In this way, less spatial blur

induced by preprocessing will manifest as less overlap between these

interdigitated stripe patterns.

Both stripes plus the overlap between the two are shown for one

example subject visualized on the subject's cortical surface recon-

struction in Figure 5 across different preprocessing strategies. We

restricted the evaluation of overlap to activation within V2 because

the interdigitation of these sub-systems is only well established within

V2. All of the preprocessing strategies tested here successfully imaged

the stripes and by inspection, the “thin” and “thick” stripe interdigi-

tated pattern looks qualitatively similar across the various strategies.

However, fine details of the activation pattern do depend on the

preprocessing approach taken.

Specifically, the first column in Figure 5b presents the activation

maps resulting from the default preprocessing strategy. The following

F IGURE 3 Total spatial blur induced in fMRI data projected onto
the cortical surface, either using sequential transformations versus
composed transformations, with either nearest-neighbor or trilinear
surface interpolation. (a) Histograms of the FWHM measured after all
transformations are applied to the fMRI data projected onto the
cortical surface, for different strategies of applying the transformation
and projection. The dashed curve shows the original distribution of
voxels without any interpolation, for reference. (b) The FWHMmap

projected onto the cortical surface is shown on visual cortex. Cold
colors indicate low-FWHM values and warm colors indicate high-
FWHM values
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two columns are results from preprocessing strategies with composed

spatial transformations (including surface projection) and with sequen-

tial spatial transformations (including surface projection) applied to

the upsampled fMRI volume, respectively. Note that in order to iso-

late the impact of spatial blur reduction from other aspects that could

affect the appearance of the maps, like registration accuracy (which

may be affected by, e.g., upsampling the volumetric data), we applied

the same spatial transformations and used the same functional-to-

anatomical registration for all of the preprocessing schemes evaluated

here. Therefore, any differences can be attributed to the effects of

interpolation. In agreement with our conclusions from the synthetic

data tests described above, more high-frequency features of the acti-

vation map can be observed in the patterns generated using the vol-

ume upsampling strategy.

The second group of activation maps (columns 4–7) is arranged

to show the effect of surface refinement. The results of surface

refinement combined with the default preprocessing approach and

results from surface refinement combined with composed transforma-

tions and volume upsampling are shown in columns 4–7, respectively.

Qualitatively, surface refinement leads to an improvement in the

depiction of the stripe patterns, where the composed transformation

strategy combined with surface refinement helps to improve the con-

tinuity within the stripes, and several fine-scale features appear (indi-

cated by red and green arrows).

The third group of activation maps corresponds to the results

from adding anatomically-informed intracortical smoothing along the

radial (or columnar) direction to test whether increased SNR can be

achieved without losing fine-scale detail in the columnar patterns.

Notably, the intracortical smoothing does not appear to reduce the

resolution of the activation pattern but it does reveal some fine-scale

features of the stripe patterns indicated by red and green arrows in

columns 8 and 9.

To support this qualitative evaluation with a quantitative assess-

ment, we also calculated the Dice coefficient to measure the extent of

overlap of the interdigitated stripe sub-systems across the different

preprocessing strategies tested for all three subjects. The Dice coeffi-

cient is presumed to be lower in data with less spatial blur. Because

overlap of the thresholded activation maps will be influenced by the

choice of threshold, we calculated the Dice coefficient with several

thresholds (i.e., 0.05, 0.01, and 0.001). As expected, overlap increases

F IGURE 4 Effect of surface mesh refinement on reducing the number of missed voxels. (a) Schematic of volume-to-surface projection.
Squares indicate the voxel in volume space. Yellow squares in represent voxels assigned to a mesh vertex. Gray squares represent missed voxel
that were not projected onto any mesh vertex due to the coarse vertex spacing. Triangles represent the faces of the surface mesh. Blue dots
indicate vertices in the original surface. Purple dots indicate vertices added through surface refinement. As vertices are added to the surface
during refinement, a larger number of voxels are assigned to a vertex, which reduces the number of missing voxels. (b) Voxels missing when using

the original surface that were captured with increasing iterations of surface refinement. The zoomed-in views show an example surface (black
contour) within the calcarine sulcus. Color indicates the unique voxel index. As the surface mesh is refined, more unique voxels are included in the
surface projection. (c) The number of unique fMRI voxels as the surface mesh is progressively refined. With each iteration of refinement, steadily
more unique voxels are included, with a plateau emerging after four refinement iterations. Dashed lines represent values for each individual
subject (N = 3); bars show the average across subjects
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with lower threshold in general. Consistent with our qualitative evalu-

ation, both the composed transformation and volume upsampling

strategies lead to a decreased overlap (Figure 6). This suggests that

these strategies both reduce the amount of spatial blur, as expected.

Interestingly, thresholds of 0.05 and 0.01 both result in a nearly iden-

tical Dice coefficient for both the composed transformation and vol-

ume upsampling strategies, suggesting that these strategies probably

induce less false positives. Surface refinement has a small impact on

the overlap coefficient, which implies that the trilinear interpolation

used for volume-to-surface projection helped to reduce voxel losses

during projection, which led to a smaller effect of refinement. While

volume upsampling resulted in the most favorable overlap, surface

smoothing slightly worsened the overlap, which indicates either that

some spatial smoothing in the tangential direction may have occurred

or that the increased number of above-threshold vertices caused an

increase in overlap. Nevertheless, combining the surface refinement

with intracortical smoothing did result in a net increase in the number

of activated vertices, and the avoidance of resolution losses due to

upsampling seems to have partially compensated for the loss of reso-

lution due to explicit intracortical smoothing such that the resulting

overlap is similar to the default preprocessing scheme—while provid-

ing higher details and more fine-scale features seen in the columnar

patterns.

3.6 | Higher resolution increases motion
estimation accuracy

There are other aspects of preprocessing that may not influence the

spatial blur directly but are indeed beneficial to the spatial accuracy of

F IGURE 5 Evaluation of spatial blurring using functionally segregated, spatially interdigitated columnar sub-systems. Activation maps and
corresponding overlap maps of the V2 “thick” and “thin” stripe systems for an example subject. Each panel shows an activation overlay on the
cortical surface, both before inflation and after inflation. Dark gray underlay indicates sulci; light gray indicates gyri. (a) Whole-brain view showing
the region of interest (indicated by dash rectangle) shown in panels (b)–(d), visualized from a lateral-posterior viewpoint. (b and c) Qualitative
evaluation of color selective “thin” stripes and disparity selective “thick” stripes, respectively. Each row shows thresholded (p < 0.001) activation
maps of color selective thin-stripes or disparity selective thick-stripes, and each column shows the activation map resulting from a different
preprocessing strategy. Color bar represents �log(p) of the activation. Black lines overlaid on each activation map indicate the borders of V1/V2
and V2/V3. (d) Overlap between the “thin” and “thick” stripes within V2. Red represents vertices identified as exclusively within the “thin” stripe;
green represents vertices identified as exclusively within the “thick” stripe; blue represents vertices identified as both “thin” and “thick” stripes,
that is, the regions of overlapping stripe sub-systems. Red and green arrows indicate examples of fine-scale activation pattern details retained by
strategies like transformation composing, volume upsampling, and surface refining for “thin” (red) and “thick” (green) stripes respectively.
“Default”, Default preprocessing strategy with default surface vertex spacing and sequential spatial transformations. “Compos”, Strategy of
composing spatial transformations. “Upsamp”, Strategy of volume upsampling. “Ref”, Strategy of surface mesh refinement (one iteration).
“Ref � 2”, Strategy of surface mesh refinement (two iterations)
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the data. In the previous section, we showed how volume upsampling

can improve spatial specificity. However, volume upsampling can also

potentially improve motion estimation and correction accuracy. To

quantify the impact of voxel grid spacing on motion estimation accu-

racy, we performed a series of tests on synthetic 4D data with known

motion. As shown in Figure 7, the difference between the true motion

parameters and the estimated motion parameters decreases after

upsampling the volume, indicating that a finer grid spacing can

increase motion estimation accuracy. Conversely, using a coarser grid

spacing decreased motion estimation accuracy, with larger voxels fur-

ther underestimating the motion. This indicates that upsampling the

image volume prior to estimating motion can be beneficial, and then

when correcting the motion with the resulting spatial transformations

also provides benefits indicated above in terms of reducing resolution

losses due to interpolation.

Next, we tested whether an improvement in motion estimation

accuracy can be similarly achieved by acquiring data with higher reso-

lution. To do this, we again generated synthetic data with known

motion, but here we generated the data on various voxel grid spac-

ings. These results are presented in Figure S1, which also show higher

accuracy of motion estimation from the finer grid spacing and lower

accuracy from the coarser grid spacing. While, in general, it is not

always possible to increase fMRI resolution (due to hardware restric-

tions and limited SNR), these results suggest that, perhaps counterin-

tuitively, while higher-resolution data may be viewed as more

vulnerable to small motion, in fact, smaller voxels may partly compen-

sate for this by improving the accuracy with which the motion is

estimated.

3.7 | Spatial varying resolution caused by
geometric distortion correction

A final source of resolution loss that we will consider is geometric distor-

tion. While distortion is well-known to cause spatial errors by displacing

voxels, this nonlinear warping of the data also can expand or compress

voxel sizes, leading to another form of spatially varying resolution across

brain regions. A simple means to evaluate true imaging resolution is by

computing the voxel compression/expansion embodied by Jacobian

determinant of the deformation. As a simple example of a common form

of spatial distortion, here we evaluated voxel compression/expansion

imparted by gradient nonlinearity of several modern gradient coil sets.

As shown in Figure 8, gradient nonlinearity causes the effective resolu-

tion to vary spatially. The pattern of spatially varying voxel size of course

varies with the gradient coil design, as the nonlinearity is a function of

the gradient coil winding. The exact pattern of this spatially varying reso-

lution will also depend on the location of the brain relative to the gradi-

ent coil (i.e., the subject's head position relative to isocenter).

Because the head location in our dataset is near to the isocenter,

and because the gradient coil used in our fMRI data acquisition is among

the most linear of all coils tested, we quantified the influence of gradient

coil nonlinearity in our fMRI and found it to be negligible in our region of

interest, the visual cortex (shown in Figure S2), therefore, we chose to

not perform any gradient nonlinearity correction on our data since it was

not necessary. Nevertheless, because gradient nonlinearity is pro-

nounced in high-performance gradient coil designs, we do recommend

that this source of spatially varying voxel size—which is straightforward

to compute—should at least be evaluated in high-resolution fMRI studies

(if not corrected), as it may impact the interpretation of the results.

4 | DISCUSSION

Here we have quantified the effects of various fMRI preprocessing

strategies on the effective resolution of the data. Because high-

resolution fMRI studies are often performed at the limit of achievable

imaging resolution, any form of resolution loss imparted during data

analysis should be minimized. Our study, using both synthetic and real

data, shows that the level of blurring will depend on several analysis

choices. One major source of resolution loss is that incurred by inter-

polation, and we evaluated several strategies to mitigate this, includ-

ing the composition of spatial transformations and surface projection,

as well as a simple but relatively underappreciated approach con-

sisting of upsampling the fMRI volume. Relevant to the increasing

number of high-resolution fMRI studies utilizing surface-based ana-

lyses, we also evaluated the effects of surface mesh refinement and

interpolation algorithm. As expected, and as noted above, spatial

transformation composition, volume upsampling, and surface mesh

refinement do help to retain the spatial resolution and, as a conse-

quence, the fine-scale features. Surprisingly, the simple approach of

volume upsampling performs as well as transformation composing.

Using synthetic white noise data, we showed that preprocessing can

result in a loss of resolution, which in turn will limit the detectability of
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fine-scale structures. Moreover, we showed that the induced spatial blur

effect is nonuniform over the brain and therefore can be a source of spa-

tially varying resolution or detection bias. The spatial pattern of this reso-

lution loss will depend on factors such as the pattern of head motion,

which will vary across runs and subjects, and on factors such as the pat-

tern of gradient nonlinearity, which will remain constant. While several

previous studies (referenced below) have pointed to several of these

effects, and some of our observations of resolution loss were expected,

we also provide a simple framework for evaluating resolution based on

applying the preprocessing steps to white noise data, which can be help-

ful for comparing different strategies and quantifying the resulting blur.

This approach is also amenable to complicated preprocessing steps for

which a closed-form analytic expression for the induced blur is not read-

ily available. The consequences of these strategies were demonstrated

here by applying them to mapping fine-scale features of functional archi-

tecture, the V2 stripe system of the visual cortex, for which there is a

strong prior regarding the spatial pattern of activation that can allow us

to evaluate these various methods in a more concrete way. In addition,

we have presented several quantification methods, including novel evalu-

ations of motion parameter estimation accuracy and missing voxels dur-

ing surface projection, to provide a deeper understanding of the

advantages and disadvantages of these strategies applied to high-

resolution fMRI studies.

4.1 | Overview of previous studies regarding these
problems

The strategy of mathematically composing the multiple spatial trans-

formations applied to the data has been proposed by previous studies

as a means to reduce the number of interpolation steps and thereby

minimize resolution losses (Esteban et al., 2019; Glasser et al., 2013).

In those studies, both rigid and nonrigid (i.e., nonlinear)

transformations—including motion correction, distortion correction,

functional-to-anatomical registration, and spatial normalization to a

common 3D atlas space—were composed in volume space. Our study

also considered the step of composing the projection from volume

space to surface space. Here the motion correction transformation

and the functional-to-anatomical transformation were composed so

that the volumetric fMRI data could be projected directly onto the

surface mesh without any volume interpolation. Thus, the only inter-

polation occurs at the stage of projecting the voxel data onto the sur-

face mesh vertices.

A similar idea has been recently proposed (Huang et al., 2020) in

which motion correction is applied by aligning each fMRI frame

directly to the anatomical image, rather than by aligning each fMRI

frame to a reference frame. This approach was motivated in part by

the availability of powerful “boundary-based registration” methods

that accurately align the fMRI data sampling the cortex to the cortical

surface, and successfully removes one step of resampling and interpo-

lation of the functional data. The difference between their approach

and ours is that they estimate the motion through anatomical registra-

tion, whereas our procedure, in order to be more directly comparable

to existing approaches, calculated the motion estimation by aligning

each fMRI frame to a reference frame and then registered the refer-

ence frame to the anatomical data using boundary-based registration.

While there are advantages and disadvantages to both approaches,

we expect the accuracy of the motion estimation to be comparable in

general, and the direct approach of motion correction through regis-

tration may perform better in studies using a restricted FOV or a small
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number of slices for the fMRI acquisition where the vulnerability to

out-of-view or through-slice motion is high.

Moreover, the current study focused on evaluating to what

extent the preprocessing steps influence the spatial blur of fMRI data.

While SNR is an important metric for evaluating fMRI data quality,

blurring can of course increase SNR, and so SNR gains often come at

the cost of resolution losses. Here our focus was on minimizing reso-

lution losses, while Huang et al. focused on improving SNR and thus

made recommendations on preprocessing approaches that reduced

temporal variability in the fMRI data (Huang et al., 2020). Future work

may consider both quality metrics to establish a given desired balance

between resolution and SNR (i.e., between specificity and sensitivity).

Volume upsampling, being another possible strategy to reduce

the spatial blur caused by preprocessing, was also evaluated and com-

pared to the strategy of composing spatial transformations. Perhaps

surprisingly, we found that simple volume upsampling was also effec-

tive at reducing blur, and often performed better than the more

sophisticated approach of the mathematical composition of

transformations. We note, however, that one limitation of our study is

that we considered only a small number of transformation steps, and

that as the number of transformations applied to the data increases,

the performance of transformation composition relative to volume

upsampling is expected to increase; here only two transformation/

projection steps were considered, but for studies using three or more

such transformations are likely to see that transformation composition

will result in less blurring than volume upsampling.

Transformation composition does come with practical challenges,

as it requires that transformations from potentially different software

packages—or even from different tools from a single package—have

compatible conventions and formats, and often translating between

conventions can be cumbersome and error prone. Although newly

developed wrapper packages like fMRIPrep (Esteban et al., 2019)

sought to integrate several common spatial transformation routines

from the most widely used packages, it is difficult to stay fully up-to-

date with the many new and updated packages and routines available.

Therefore, volume upsampling may be an attractive option for many

F IGURE 8 Spatial nonuniformity of resolution induced by geometric distortion due to gradient nonlinearity. Voxel size varies smoothly across
brain regions due to geometric expansion and compression from gradient nonlinearity, which varies with the design of the gradient coil. Examples
from whole-brain axial slices (a) and histograms (b) show the spatial distribution of relative voxel size in volume dimension. Color range from blue
to red indicates smaller to larger true voxel sizes
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users due to its simplicity. The main downside to this approach is that

it requires increasing data size (e.g., by a factor of 8 to upsample by

the smallest integer factor of 2), which creates potential practical

issues with data storage capacity, and it increases the computation

burden, which creates potential practical issues with computer mem-

ory and processing time.

Note that upsampling does not lead to changes in the number of

comparisons. That is, upsampling simply duplicates the number of

samples without introducing any new values. For example, when a

single voxel is divided into eight during volume upsampling using

nearest-neighbor interpolation, the number of degrees of freedom in

the data and thus the number of comparisons does not change. This is

because, after upsampling, the new datapoints are not independent.

So, the number of comparisons is still equal to the original number of

voxels. Also, smoothing induced by interpolation or other steps of

preprocessing can decrease the spatial degrees of freedom, and so

spatial correlations of the fMRI data after preprocessing (e.g., using

the residuals) are often measured to inform multiple comparisons cor-

rections (Hagler et al., 2006).

While here we have demonstrated how reducing blurring through

appropriate choice of preprocessing steps aids in fMRI studies of cor-

tical columns, reducing unwanted blurring should also yield benefits in

other applications of high-resolution fMRI such as investigations of

small subcortical nuclei and studies of cortical layers. Previous laminar

fMRI studies have made observations similar to ours regarding analy-

sis steps that are specific laminar fMRI: it has been shown that

upsampling in the laminar direction—or using a “finer laminar grid”
composed of far more depths sampled compared with number of

voxels that span cortical thickness—can provide better depictions of

the laminar profile (Huber et al., 2017; Huber et al., 2018; Polimeni

et al., 2018). For example, generating profiles with up to 20 depths

can be advantageous, even when using voxels that are barely sub-

millimeter in size.

4.2 | Towards a reliable strategy for quantifying
spatial blur

Often the visual appearance of the imaging data can be used to assess

smoothness, but this is subjective and not reliable. In order to quantify

the effect of spatial blur induced during preprocessing, we subjected

preprocessing procedures to synthetic i.i.d. white-noise time series

data matched to the voxel grid spacing of the functional data,

resulting in filtered noise. This is similar to Monte Carlo approaches

used to assess spatial correlations in the fMRI data for cluster size

estimation used in multiple comparisons correction approaches

(Hagler et al., 2006). In contrast to methods that evaluate spatial

smoothness from the fMRI data directly, such as residual-based esti-

mation (Kiebel et al., 1999) which assumes the residuals are white

noise, we force the noise in the input data to be white. Because

methods based on residuals also do not account for meaningful short-

and long-range spatial or temporal correlations in the fMRI due to

structured physiological noise or due to functional connectivity

(Eklund et al., 2016; Wald & Polimeni, 2017), they may not be univer-

sally applicable. Our approach, therefore, may be better suited to esti-

mating the smoothing imposed in the data due to preprocessing, since

it avoids statistical assumptions on the fMRI data that may not hold

for a given dataset.

Furthermore, our method provides a measure of voxel-wise blur-

ring effects which is different from the conventional approaches that

attempt to estimate spatial blur by examining correlations in the data

(or in the residuals) along the three dimensions of the voxel grid and

inferring a 3D smoothing kernel from this. As we demonstrated above,

because the induced spatial blur is nonuniform across the brain, our

voxel-wise blur estimation could potentially be used for region-

specific multiple comparison correction, or for providing a “spatial
error bar” along with the activation map so that the results can be

better interpreted in light of the regional patterns of spatially varying

resolution.

4.3 | Potential influences of underlying image
features on blurring when using high-order
interpolation

One consideration of our white noise approach is that it does not

account for the possibility that the smoothing induced by

preprocessing may itself be influenced by the underlying image con-

tent. For example, higher-order data interpolation forms nonlinear

combinations of sampled data to estimate new data, and the

weighting depends on the intensities of the sampled data. Therefore,

applying these interpolation methods to zero-mean noise data will not

produce the same interpolation effects seen when applying them to

nonzero-mean imaging data, and so our estimated smoothing based

on zero-mean noise may be rough approximation only.

To address this, we also applied zero-mean noise to a high-SNR

frame of fMRI data (generated by averaging several frames), subjected

both the high-SNR frame and the frame with added noise to several

preprocessing steps that used high-order interpolation, subtracted the

two resulting volumes, and re-characterized the resulting TSTD and

corresponding FWHM, and the differences in the results of this new

test and the results reported above were negligible. Nevertheless,

because some of these effects may depend on the specifics of the

underlying image structure or anatomy, while our results are likely to

be valid in general, future studies may re-visit these characterizations

on specific cases of interest, such as the potential for different levels

of blurring within the cortex and at the border of the cortex (due to

potential edge enhancement effects).

4.4 | Disadvantages of nearest-neighbor
interpolation

Although we demonstrated through simulations based on synthetic

noise data that nearest-neighbor interpolation may be advantageous

since it induces the smallest spatial blur (Figures 2 and 3), we chose
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not to use nearest-neighbor interpolation in our V2 stripe analysis,

rather we opted to use trilinear interpolation. Our reasoning behind

this decision to not use nearest-neighbor interpolation is that it also

causes displacement and local distortion artifacts, both in the context

of volume transformations and surface projections.

Nearest-neighbor interpolation applied to when transforming vol-

umetric data is known to does not correctly account for subvoxel dis-

placements (Grootoonk et al., 2000) because it is a nonlinear

interpolation—small displacements relative to the voxel grid may

cause no changes in intensity after interpolation, and if the magnitude

of displacement increases steadily there can be sudden jumps in

intensity after interpolation.

Nearest-neighbor interpolation applied to volume-to-surface pro-

jection when using coarse grid spacing on surface mesh relative to a

dense volume grid can cause displacement artifacts (i.e., fine-scale dis-

tortion) and missing voxels (Figure 4). This can lead to artifactual trun-

cated appearance of the data projected onto the surface; this

manifests as an aliased appearance of the activation pattern and arti-

factual edges, which may give misleading fine-scale structure in the

activation pattern. Nevertheless, we note that nearest-neighbor sur-

face interpolation can be beneficial provided that the surface mesh

spacing is sufficiently fine relative to the volume resolution.

4.5 | Other methods exist for representing voxel
data on surface

Our results show that surface refinement can help decrease the num-

ber of missing fMRI voxels when projecting data onto cortical sur-

faces. However, our tests demonstrate that the number of unique

voxels does not plateau until three iterations of refinement have been

performed. If we were to require that all fMRI voxels intersecting the

cortex are included in the projection, an even denser vertex mesh

might be needed, however, each step of refinement dramatically

increases the computational load of the analysis while providing

diminishing returns. We note that the number and density of vertices

are dependent upon the algorithm used to reconstruct the surface

mesh, and in the method used by FreeSurfer these are a function of

the voxel grid used in the anatomical data, which in our case was a

1-mm MPRAGE. As higher-resolution anatomical data, which have

been shown to provide improved surface reconstruction accuracy,

become more common, so will higher density surfaces, which will

require less refinement.

To preserve all fMRI voxels in surface-based analyses regardless

of the density of surface vertices, Gao et al. suggested a pixel-based

method for projecting onto surfaces (Gao et al., 2015). This pixel-

based algorithm directly renders the voxel coordinates on the surface,

such that each fMRI voxel is always represented on the surface

regardless of the vertex spacing, thereby eliminating the need to

upsample the surface mesh. This also removes the need to interpolate

the voxel data when projected onto the surface mesh, and avoids local

displacements or distortions of the fMRI data, which helps to preserve

the spatial specificity and accuracy. While this rendering approach is

promising for visualization, it may not be amenable to other forms of

surface-based analysis where further processing of the fMRI data

along with the surface is necessary, such as surface-based intracortical

smoothing.

Although we demonstrated how relevant fMRI voxels may be

dropped from analysis when projecting onto cortical surface meshes,

the number of missing voxels reported was the average number

across the cortex evaluated using multiple datasets. In other words,

dropped voxels do not occur uniformly across the cortex. This is par-

tially because the irregular triangular surface mesh consists of vertices

with nonuniform spacing (i.e., the distances between neighboring ver-

tices varies across the mesh; Kay et al., 2019; Kemper et al., 2018). An

approach using regularly spaced quadrilateral mesh can also be an

alternative means to represent voxel data on the surface while

maintaining a uniform sampling of the voxel data on the surface

(Kemper et al., 2018; Zimmermann et al., 2011). In this approach, each

fMRI in the regular quadrilateral grid is always surrounded by four

neighboring vertices at a nearly constant distance forming 90� angles

between edges. This representation requires a fine spacing in order to

maintain regular quadrilaterals (i.e., a square grid) given the nonzero

Gaussian curvature of the cortex. Further studies are needed to evalu-

ate the advantages and disadvantages of these two approaches, how-

ever, they both acknowledge and address the generally

underappreciated problem of how best to represent volumetric imag-

ing data on surface representations that minimizes data loss and fine-

scale distortions incurred when projecting these data onto the cortical

surface.

4.6 | Motion estimation accuracy

Along with our evaluations of spatial blurring, we evaluated the spatial

accuracy of motion estimation and correction and tested how changes

in voxel size—imposed either during preprocessing or during

acquisition—affected this accuracy. The first test was conducted by

applying measured motion parameters to generate a 1-mm fMRI vol-

ume with known motion, then resampling this volume to 0.5, 2, and

3 mm grids to emulate how volume resampling during preprocessing

might impact motion estimation accuracy. The second test was con-

ducted by applying measured motion parameters to 0.5, 1, 2, and

3 mm grids to emulate how acquiring data at varying resolutions

might impact motion estimation accuracy. Both sets of results indi-

cated that smaller voxel sizes could improve the accuracy of rigid-

body motion estimation.

Interestingly, the second test suggested that, although the expec-

tation would be that high-resolution acquisitions would have stricter

requirements for subject motion, since a sub-millimeter acquisition

would be less tolerant to sub-millimeter motion, perhaps counter-

intuitively motion estimation is more accurate with smaller voxel sizes,

and so this increased accuracy may help compensate for this

increased vulnerability to motion. Higher-resolution fMRI acquisitions

seemingly have several unexpected benefits, since it has also been

demonstrated that smaller voxels also help to reduce partial volume
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effects and can thereby help reduce physiological noise contamination

and signal dilution effects from neighboring tissues (Blazejewska

et al., 2019). Indeed, smaller voxels will similarly reduce challenging

sub-voxel motion and will also reduce the associated blurring, as

shown above.

4.7 | Effects of nonrigid transformations and
distortions

While most of our evaluations focused on the effects of rigid transfor-

mations on spatial resolution imparted during preprocessing, we also

briefly considered the effects of nonrigid transformations and distor-

tions. Just as rigid transformations lead to losses due to interpolation,

nonrigid or nonlinear transformations similarly lead to spatial resolu-

tion losses due to interpolation, and these effects have been charac-

terized previously (Glasser et al., 2013; Polimeni et al., 2018). In this

way, nonrigid transformations are similar to rigid transformations, and

induce spatially varying resolution losses that are a function of the

voxel grid, the interpolation method, and the transformation itself.

Beyond this, we also consider how nonlinear distortions can mani-

fest as a spatially varying voxel size that is present at the time of data

acquisition. While distortion can potentially be corrected, this spatially

varying imaging resolution cannot be corrected in postprocessing, there-

fore a method to quantify this nonuniform resolution can be helpful for

interpreting the data. Here we propose to use the Jacobian determinant

of the nonlinear transformation, which has long been used in the context

of voxel-based morphometry (VBM) to reveal morphometrical differ-

ences in anatomical images by computing nonlinear transformations

between pairs of images (or between an image and a template space)

then evaluating the Jacobian determinant of that transformation as a

proxy for regional, relative expansion or compression of the brain

between the two images. This local expansion or compression of the true

voxel size occurs whenever the image data are a warped version of the

true anatomy. The most commonly considered form of this geometric

distortion is that induced by susceptibility gradients in EPI data, and can

be quantified by measuring B0 inhomogeneity.

Another perhaps simpler form of geometric distortion is that cau-

sed by gradient coil nonlinearity. However, spatially varying changes

in true voxel size that accompany these forms of geometric distortion

are less appreciated in fMRI studies. Our study, through evaluating

gradient nonlinearity distortion across different gradient coil designs,

illustrated that the effective resolution can vary from about 20%

smaller to 20% larger than the original voxel size. While the range of

voxel size scaling will depend on the gradient coil and on the position

of the head relative to isocenter, this form of spatially nonuniform res-

olution should be considered in fMRI applications where the spatial

scale of the targeted activation pattern is relevant, or when hypothe-

ses are being tested that require a specific resolution. The impact of

susceptibility-gradient-induced distortion on voxel size could also be

readily calculated given a map of B0 inhomogeneity, although estimat-

ing an accurate B0 map can be challenging in practice (Hutton et al.,

2002; Irfanoglu et al., 2015).

If the true voxel size differs substantially from the nominal voxel

size, this may lead to incorrect conclusions if this is not taken into

account. Of note, this effect of distortion on resolution not only

expands the voxel size, leading to undesired resolution losses, but can

also compress the voxel size, leading to beneficial resolution gains. It

may be possible to take advantage of this effect to achieve higher

effective image resolution in certain regions of the brain, if the pattern

of distortion is accurately known in advance.

The Jacobian determinant is not only helpful for quantifying reso-

lution losses imparted during preprocessing but also helpful for quan-

tifying the resolution of the acquired data. It is also possible then that

this spatially varying voxel size will lead to a spatial varying SNR, as

SNR is a function of voxel volume. Future studies may investigate to

what extent the spatial varying voxel size contributes to spatial vary-

ing SNR using Jacobian determinant, although this is expected to be

small compared to other factors that influence SNR across the brain

such as the proximity to the receive coils.

4.8 | Other aspects causing spatial blur in
fMRI data

The present study focused on the spatial blur induced both during

image data acquisition and during data preprocessing. We note that

there are other MRI-physics-related sources of blur in fMRI data that

were not addressed here, such as partial Fourier reconstruction

(Zaretskaya et al., 2018) and T2* decay in EPI (Chaimow &

Shmuel, 2016; Farzaneh et al., 1990), that also strongly influence the

effective imaging resolution. Notably, T2* blur also varies substantially

across the brain, and is further complicated by its dependence on

voxel size and on the quality of the B0 shimming as well as other fac-

tors (Stockmann & Wald, 2018). In addition, there are also other bio-

logical sources, such as large vein effects, that can result in losses of

spatial specificity including displacement artifacts that can distort acti-

vation maps (Kay et al., 2019; Olman et al., 2007).

4.9 | Evaluation of spatial specificity using spatial
interdigitated “thin” and “thick” stripes

Many studies have been dedicated to evaluate the spatial blur of fMRI

data using a known feature of the activation pattern such as the

retinotopic layout of neural activity in visual cortex (Polimeni

et al., 2010), ocular dominance columns (Shmuel et al., 2010; Yacoub

et al., 2007), and temporal frequency selectivity columns (Fracasso

et al., 2021). Using the spatial interdigitation of left-eye- and right-eye-

dominant ocular dominance columns, a similar study has been performed

to show the spatial blur effect induced by macrovascular contributions

to the BOLD fMRI data (Yacoub et al., 2007). In these studies, differential

maps of ocular dominance columns were generated from a single fMRI

measurement, which enforced the two columnar sub-systems to be spa-

tially nonoverlapping, and so these data are not amenable to quantifica-

tion of overlap between the two interdigitated columnar sub-systems.
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Our study employed activation maps generated from two inde-

pendent datasets of two separate columnar structures, acquired

across different experimental sessions, and evaluated the spatial blur

effect using the overlap between these two separate maps. Another

difference between the present study and previous studies is that

they focused on the blurring effect of hemodynamics and large-vein

effects, while we focused on the effects of preprocessing strategies

and image distortions.

We demonstrated that with different preprocessing strategies,

the overlap between the functionally interdigitated “thin” and “thick”
stripes can change. While all preprocessing strategies allowed us to

detect both mostly nonoverlapping stripe patterns in all subjects, the

two patterns were never observed to be purely distinct. This is to be

expected, because, while we aimed to minimize blurring induced by

preprocessing, the various forms of blurring mentioned above, includ-

ing T2* blurring, distortion blurring, the limited resolution of the hemo-

dynamics themselves, and the minimized-but-nonzero blur introduced

through preprocessing will inevitably lead to some spatial smearing of

the data. Furthermore, it is possible that these two systems are not

perfectly interdigitated at the level of neuronal organization, and neu-

rons within pale stripes may to some extent represent both color and

disparity (Peterhans & Heydt, 1993), which may also contribute to

overlap. Nevertheless, our results, both from synthetic and real data,

consistently show a general trend in which less blurring induced by

preprocessing leads to less overlap between these two largely inter-

digitated columnar sub-systems.

4.10 | Balance between spatial specificity and
sensitivity

Here we have presented tools for assessing spatial accuracy in fMRI

data. Because spatial resolution loss is often accompanied by

increased SNR, often these two effects may counterbalance one

another, especially for acquisitions that are SNR starved. For studies

that lack sufficient statistical power, the improved SNR may be bene-

ficial in some regions, and can even lead to an increased visibility of

some features in the fMRI data. However, it is preferable to design

experiments to have sufficient SNR so that these regional differences

in smoothness do not introduce spatial detection biases (Viessmann &

Polimeni, 2021). If more SNR is required, it is recommended to either

require data with more runs or perform explicit anatomically informed

smoothing. Regardless, it is important to know the spatial resolution—

even if losses in resolution do provide occasional improvements—for

proper interpretation of the data.

4.11 | Relating reductions in smoothing to scan-
rescan reproducibility: Accuracy versus precision

As mentioned above, when seeking to reduce measurement error

there is often a trade-off between accuracy and precision, that is,

there exists a bias-variance trade-off. The current study focuses on

how to maintain high spatial accuracy by reducing unwanted forms of

spatial blur. Spatial blurring is a form of systematic error which is

reproducible. While scan–rescan reproducibility is an important metric

for fMRI data quality, and is a measure of precision, reproducibility

can be trivially increased by spatially smoothing the data, which of

course comes at the cost of lower detectability of fine-scale details in

the activation pattern. Thus, reproducibility alone is not a sufficient

measure of data quality, and indeed it can sometimes be misleading

because does not always capture losses in spatial accuracy. Scan–

rescan reproducibility is of course an important measure used to judge

whether the activation pattern merely reflects spatial noise and thus

the activation pattern is not meaningful, as random noise patterns are

unlikely to be consistent across scans. However here, since we are

mainly concerned with reducing spatial blurring, reproducibility is not

a suitable metric to quantify whether spatial blurring has been suc-

cessfully reduced through proper strategies for data preprocessing.

5 | CONCLUSION

This study suggests multiple strategies to reduce the amount of spa-

tial blur induced during fMRI data preprocessing. These strategies,

including composing spatial transformations, volume upsampling, and

surface mesh refinement, help capture fine-scale details of the pat-

terns of functional activation seen in our case through the detection

of interdigitated columnar systems in the extrastriate visual cortex.

We also note that not only is the level of spatial blurring dependent

on preprocessing choices, but also it is nonuniform over the brain.

Evaluation of the final resolution after preprocessing can help inter-

pret the results in studies attempting to compare fine-scale activation

patterns between distant brain regions, characterize spatial details of

columnar or laminar activation, or discover novel aspects of functional

architecture that have yet to be seen with fMRI.

ACKNOWLEDGMENTS

This work was supported in part by a grant from the National Key R&D

Program of China 2018YFA0701400, the National Natural Science

Foundation of China (U20A20221, 819611280292), the Key Research

and Development Program of Zhejiang Province (2020C03004), MOE

Frontier Science Center for Brain Science & Brain-Machine Integration

(Zhejiang University), the Fundamental Research Funds for the Central

Universities (2019XZZX003-20), the NIH NIBIB (grants P41-EB030006

and R01-EB019437), the NIH NEI (grants R01-EY026881 and

R01-EY030434), the NIH NIMH (grant R01-MH124004), the BRAIN

Initiative (NIH NIMH grant R01-MH111419), the Zhejiang University

Academic Award for Outstanding Doctoral Candidates (2019075), the

program of China Scholarships Council (201906320397), and the

MGH/HST Athinoula A. Martinos Center for Biomedical Imaging; and

was made possible by the resources provided by NIH Shared Instrumen-

tation Grant S10-RR019371.

CONFLICT OF INTEREST

The authors declare no competing interests.

WANG ET AL. 3329



ETHICS STATEMENT

All experimental procedures were performed in accordance with the

Massachusetts General Hospital approved Human Research protocol

and federal guidelines.

DATA AVAILABILITY STATEMENT

The analysis software used in this study are available by request. The

ethics protocol used for the data collection does not allow for data

sharing, and so the data are not available at this time. The data and

analysis code are available with the funding bodies requirements.

ORCID

Jianbao Wang https://orcid.org/0000-0002-1774-5979

Jonathan R. Polimeni https://orcid.org/0000-0002-1348-1179

REFERENCES

Allen, E. J., St-Yves, G., Wu, Y., Breedlove, J. L., Dowdle, L. T., Caron, B.,

Pestilli, F., Charest, I., Hutchinson, J. B., Naselaris, T., & Kay, K. (2022).

A massive 7T fMRI dataset to bridge cognitive and computational neu-

roscience and artificial intelligence. Nature Neuroscience, 25, 116–126.
https://doi.org/10.1101/2021.02.22.432340

Blazejewska, A. I., Fischl, B., Wald, L. L., & Polimeni, J. R. (2019). Intra-

cortical smoothing of small-voxel fMRI data can provide increased

detection power without spatial resolution losses compared to con-

ventional large-voxel fMRI data. NeuroImage, 189, 601–614.
Botvinik-Nezer, R., Holzmeister, F., Camerer, C. F., Dreber, A., Huber, J.,

Johannesson, M., Kirchler, M., Iwanir, R., Mumford, J. A., Adcock, R. A.,

Avesani, P., Baczkowski, B. M., Bajracharya, A., Bakst, L., Ball, S.,

Barilari, M., Bault, N., Beaton, D., Beitner, J., … Schonberg, T. (2020).

Variability in the analysis of a single neuroimaging dataset by many

teams. Nature, 582(7810), 84–88.
Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10,

433–436.
Chaimow, D., & Shmuel, A. (2016). A more accurate account of the effect

of k-space sampling and signal decay on the effective spatial resolu-

tion in functional MRI. bioRxiv. https://doi.org/10.1101/097154

Chen, L. M., Turner, G. H., Friedman, R. M., Zhang, N., Gore, J. C.,

Roe, A. W., & Avison, M. J. (2007). High-resolution maps of real and

illusory tactile activation in primary somatosensory cortex in individual

monkeys with functional magnetic resonance imaging and optical

imaging. Journal of Neuroscience, 27, 9181–9191.
Cheng, K., Waggoner, R. A., & Tanaka, K. (2001). Human ocular dominance

columns as revealed by high-field functional magnetic resonance imag-

ing. Neuron, 32, 359–374.
Dice, L. R. (1945). Measures of the amount of ecologic association

between species. Ecology, 26, 297–302.
Eklund, A., Nichols, T. E., & Knutsson, H. (2016). Cluster failure: Why fMRI

inferences for spatial extent have inflated false-positive rates. Proceed-

ings of the National Academy of Sciences, 113, 7900–7905.
Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I.,

Erramuzpe, A., Kent, J. D., Goncalves, M., DuPre, E., Snyder, M.,

Oya, H., Ghosh, S. S., Wright, J., Durnez, J., Poldrack, R. A., &

Gorgolewski, K. J. (2019). fMRIPrep: A robust preprocessing pipeline

for functional MRI. Nature Methods, 16, 111–116.
Farzaneh, F., Riederer, S. J., & Pelc, N. J. (1990). Analysis of T2 limitations

and off-resonance effects on spatial resolution and artifacts in echo-

planar imaging. Magnetic Resonance in Medicine, 14, 123–139.
Fischl, B. (2012). FreeSurfer. NeuroImage, 62, 774–781.
Fracasso, A., Dumoulin, S. O., & Petridou, N. (2021). Point-spread function

of the BOLD response across columns and cortical depth in human

extra-striate cortex. Progress in Neurobiology, 202, 102034.

Gao, J. S., Huth, A. G., Lescroart, M. D., & Gallant, J. L. (2015). Pycortex:

An interactive surface visualizer for fMRI. Frontiers in Neuroinformatics,

9, 9.

Glasser, M. F., Smith, S. M., Marcus, D. S., Andersson, J. L. R.,

Auerbach, E. J., Behrens, T. E. J., Coalson, T. S., Harms, M. P.,

Jenkinson, M., Moeller, S., Robinson, E. C., Sotiropoulos, S. N., Xu, J.,

Yacoub, E., Ugurbil, K., & Van Essen, D. C. (2016). The human

connectome Project's neuroimaging approach. Nature Neuroscience,

19, 1175–1187.
Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B.,

Andersson, J. L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J. R., Van

Essen, D. C., & Jenkinson, M. (2013). The minimal preprocessing pipe-

lines for the human connectome project. NeuroImage, 80, 105–124.
Greve, D. N., & Fischl, B. (2009). Accurate and robust brain image align-

ment using boundary-based registration. NeuroImage, 48, 63–72.
Grinvald, A., Edmund, L., Ron, D. F., Charles, D. G., & Torsten, N. W.

(1986). Functional architecture of cortex revealed by optical imaging

of intrinsic signals. Nature, 324, 361–364.
Grootoonk, S., Hutton, C., Ashburner, J., Howseman, A. M., Josephs, O.,

Rees, G., Friston, K. J., & Turner, R. (2000). Characterization and cor-

rection of interpolation effects in the realignment of fMRI time series.

NeuroImage, 11, 49–57.
Hagler, D. J., Saygin, A. P., & Sereno, M. I. (2006). Smoothing and cluster

thresholding for cortical surface-based group analysis of fMRI data.

NeuroImage, 33, 1093–1103.
Huang, P., Carlin, J. D., Henson, R. N., Correia, M. M. (2020). Improved

motion correction of submillimetre 7T fMRI time series with

Boundary-Based Registration (BBR). NeuroImage, 210, 116542.

Huber, L., Handwerker, D. A., Jangraw, D. C., Chen, G., Hall, A., Stüber, C.,

Gonzalez-Castillo, J., Ivanov, D., Marrett, S., Guidi, M., Goense, J.,

Poser, B. A., & Bandettini, P. A. (2017). High-resolution CBV-fMRI

allows mapping of laminar activity and connectivity of cortical input

and output in human M1. Neuron, 96, 1253–1263.e7.
Huber, L., Tse, D. H. Y., Wiggins, C. J., Uluda�g, K., Kashyap, S.,

Jangraw, D. C., Bandettini, P. A., Poser, B. A., & Ivanov, D. (2018).

Ultra-high resolution blood volume fMRI and BOLD fMRI in humans

at 9.4 T: Capabilities and challenges. NeuroImage, 178, 769–779.
Hutton, C., Bork, A., Josephs, O., Deichmann, R., Ashburner, J., Turner, R.

(2002). Image distortion correction in fMRI: A quantitative evaluation.

NeuroImage, 16(1), 217–240.
Irfanoglu, M. O, Modi, P., Nayak, A., Hutchinson, E. B., Sarlls, J.,

Pierpaoli, C. (2015). DR-BUDDI (Diffeomorphic Registration for Blip-

Up blip-Down Diffusion Imaging) method for correcting echo planar

imaging distortions. NeuroImage, 106, 284–299.
Kang, X., Yund, E. W., Herron, T. J., & Woods, D. L. (2007). Improving the

resolution of functional brain imaging: Analyzing functional data in

anatomical space. Magnetic Resonance Imaging, 25, 1070–1078.
Kay, K., Jamison, K. W., Vizioli, L., Zhang, R., Margalit, E., & Ugurbil, K.

(2019). A critical assessment of data quality and venous effects in sub-

millimeter fMRI. NeuroImage, 189, 847–869.
Keil, B., Triantafyllou, C., Hamm, M., Wald, L. L. & Martinos, A. (2010).

Design Optimization of a 32-Channel Head Coil at 7T. In Paper pres-

ented at the Joint Annual Meeting ISMRM-ESMRMB 2010,

Stockholm, Sweden.

Kemper, V. G., De Martino, F., Emmerling, T. C., Yacoub, E., & Goebel, R.

(2018). High resolution data analysis strategies for mesoscale human

functional MRI at 7 and 9.4 T. NeuroImage, 164, 48–58.
Kiebel, S. J., Poline, J.-B., Friston, K. J., Holmes, A. P., & Worsley, K. J.

(1999). Robust smoothness estimation in statistical parametric maps

using standardized residuals from the general linear model.

NeuroImage, 10, 756–766.
Langlois, S., Desvignes, M., Constans, J. M., Revenu, M. (1999). MRI geo-

metric distortion: A simple approach to correcting the effects of non-

linear gradient fields. Journal of Magnetic Resonance Imaging, 9(6),

821–831.

3330 WANG ET AL.

https://orcid.org/0000-0002-1774-5979
https://orcid.org/0000-0002-1774-5979
https://orcid.org/0000-0002-1348-1179
https://orcid.org/0000-0002-1348-1179
https://doi.org/10.1101/2021.02.22.432340
https://doi.org/10.1101/097154


Lu, H. D., & Roe, A. W. (2008). Functional Organization of Color Domains

in V1 and V2 of macaque monkey revealed by optical imaging. Cerebral

Cortex, 18, 516–533.
Muckli, L., De Martino, F., Vizioli, L., Petro, L. S., Smith, F. W., Ugurbil, K.,

Goebel, R., & Yacoub, E. (2015). Contextual feedback to superficial

layers of V1. Current Biology, 25, 2690–2695.
Nasr, S., Polimeni, J. R., & Tootell, R. B. H. (2016). Interdigitated color- and

disparity-selective columns within human visual cortical areas V2 and

V3. Journal of Neuroscience, 36, 1841–1857.
Norris, D. G., & Polimeni, J. R. (2019). Laminar (f )MRI: A short history and

future prospects. NeuroImage, 197, 643–649.
Olman, C. A., Inati, S., & Heeger, D. J. (2007). The effect of large veins on

spatial localization with GE BOLD at 3 T: Displacement, not blurring.

NeuroImage, 34, 1126–1135.
Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics:

Transforming numbers into movies. Spatial Vision, 10, 437–442.
Peterhans, E., & Heydt, R. (1993). Functional organization of area V2 in

the alert macaque. European Journal of Neuroscience, 5, 509–524.
Polimeni, J. R., Bhat, H., Witzel, T., Benner, T., Feiweier, T., Inati, S. J.,

Renvall, V., Heberlein, K., & Wald, L. L. (2016). Reducing sensitivity

losses due to respiration and motion in accelerated echo planar imag-

ing by reordering the autocalibration data acquisition. Magnetic Reso-

nance in Medicine, 75, 665–679.
Polimeni, J. R., Fischl, B., Greve, D. N., & Wald, L. L. (2010). Laminar analy-

sis of 7T BOLD using an imposed spatial activation pattern in human

V1. NeuroImage, 52, 1334–1346.
Polimeni, J. R., Renvall, V., Zaretskaya, N., & Fischl, B. (2018). Analysis strate-

gies for high-resolution UHF-fMRI data. NeuroImage, 168, 296–320.
Polimeni, J. R., & Wald, L. L. (2018). Magnetic resonance imaging

technology—Bridging the gap between noninvasive human imaging

and optical microscopy. Current Opinion in Neurobiology, 50, 250–260.
Power, J. D., Plitt, M., Kundu, P., Bandettini, P. A., & Martin, A. (2017).

Temporal interpolation alters motion in fMRI scans: Magnitudes and

consequences for artifact detection. PLoS One, 12, e0182939.

Renvall, V., Witzel, T., Wald, L. L., & Polimeni, J. R. (2016). Automatic corti-

cal surface reconstruction of high-resolution T1 echo planar imaging

data. NeuroImage, 134, 338–354.
Roe, A., & Ts'o, D. (1995). Visual topography in primate V2: Multiple repre-

sentation across functional stripes. The Journal of Neuroscience, 15,

3689–3715.
Schmitt, F. (1985). Correction of geometrical distortions in MR-images. In

H. Lemke, M. L. Rhodes, C. C. Jaffee, R. Felix (Eds.), Computer Assisted

Radiology / Computergestützte Radiologie, (pp. 15–23). Berlin, Heidel-

berg: Springer. https://doi.org/10.1007/978-3-642-52247-5_3

Shmuel, A., Chaimow, D., Raddatz, G., Ugurbil, K., & Yacoub, E. (2010).

Mechanisms underlying decoding at 7 T: Ocular dominance columns,

broad structures, and macroscopic blood vessels in V1 convey infor-

mation on the stimulated eye. NeuroImage, 49, 1957–1964.
Stockmann, J. P., & Wald, L. L. (2018). In vivo B 0 field shimming methods

for MRI at 7 T. NeuroImage, 168, 71–87.
Tootell, R., Silverman, M., De Valois, R., & Jacobs, G. (1983). Functional

organization of the second cortical visual area in primates. Science,

220, 737–739.
Triantafyllou, C., Hoge, R. D., Krueger, G., Wiggins, C. J., Potthast, A.,

Wiggins, G. C., & Wald, L. L. (2005). Comparison of physiological noise

at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters.

NeuroImage, 26, 243–250.
Turner, R., Jezzard, P., Wen, H., Kwong, K. K., Le Bihan, D., Zeffiro, T., &

Balaban, R. S. (1993). Functional mapping of the human visual cortex

at 4 and 1.5 tesla using deoxygenation contrast EPI. Magnetic Reso-

nance in Medicine, 29, 277–279.
Valverde Salzmann, M. F., Bartels, A., Logothetis, N. K., & Schuz, A. (2012).

Color blobs in cortical areas V1 and V2 of the New World monkey

Callithrix jacchus, revealed by non-differential optical imaging. Journal

of Neuroscience, 32, 7881–7894.
Viessmann, O., & Polimeni, J. R. (2021). High-resolution fMRI at 7 tesla:

Challenges, promises and recent developments for individual-focused

fMRI studies. Current Opinion in Behavioral Sciences, 40, 96–104.
Wald, L. L., & Polimeni, J. R. (2017). Impacting the effect of fMRI noise

through hardware and acquisition choices—Implications for controlling

false positive rates. NeuroImage, 154, 15–22.
Wang, J., Nasr, S., Roe, A. W., & Polimeni, J. R. (2021). Evaluation of spatial

blur induced by preprocessing and distortion in UHF fMRI data. Pro-

ceedings of the International Society for Magnetic Resonance in Medicine,

29, 3126.

Yacoub, E., Harel, N., & U�gurbil, K. (2008). High-field fMRI unveils orienta-

tion columns in humans. Proceedings of the National Academy of Sci-

ences of the United States of America, 105, 10607–10612.
Yacoub, E., Shmuel, A., Logothetis, N., & U�gurbil, K. (2007). Robust detec-

tion of ocular dominance columns in humans using Hahn spin Echo

BOLD functional MRI at 7 tesla. NeuroImage, 37, 1161–1177.
Yacoub, E., Shmuel, A., Pfeuffer, J., Van De Moortele, P.-F., Adriany, G.,

Ugurbil, K., & Hu, X. (2001). Investigation of the initial dip in fMRI at

7 tesla. NMR in Biomedicine, 14, 408–412.
Yamamoto, T., Fukunaga, M., Sugawara, S. K., Hamano, Y. H., & Sadato, N.

(2021). Quantitative evaluations of geometrical distortion corrections

in cortical surface-based analysis of high-resolution functional MRI

data at 7T. Journal of Magnetic Resonance Imaging, 53, 1220–1234.
Zaretskaya, N., Fischl, B., Reuter, M., Renvall, V., & Polimeni, J. R. (2018).

Advantages of cortical surface reconstruction using submillimeter 7 T

MEMPRAGE. NeuroImage, 165, 11–26.
Zaretskaya, N., & Polimeni, J. R. (2016). Partial Fourier imaging anisotropi-

cally reduces spatial independence of BOLD signal time courses. Pro-

ceedings of the 22nd Annual Meeting of the Organization for Human

Brain Mapping (OHBM 2016), Geneva, Switzerland.

Zhang, P., Zhou, H., Wen, W., & He, S. (2015). Layer-specific response

properties of the human lateral geniculate nucleus and superior

colliculus. NeuroImage, 111, 159–166.
Zimmermann, J., Goebel, R., De Martino, F., van de Moortele, P.-F.,

Feinberg, D., Adriany, G., Chaimow, D., Shmuel, A., U�gurbil, K., &

Yacoub, E. (2011). Mapping the Organization of Axis of motion selec-

tive features in human area MT using high-field fMRI. PLoS One, 6,

e28716.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version

of the article at the publisher's website.

How to cite this article: Wang, J., Nasr, S., Roe, A. W., &

Polimeni, J. R. (2022). Critical factors in achieving fine-scale

functional MRI: Removing sources of inadvertent spatial

smoothing. Human Brain Mapping, 43(11), 3311–3331.

https://doi.org/10.1002/hbm.25867

WANG ET AL. 3331

https://doi.org/10.1007/978-3-642-52247-5_3
https://doi.org/10.1002/hbm.25867

	Critical factors in achieving fine-scale functional MRI: Removing sources of inadvertent spatial smoothing
	1  INTRODUCTION
	2  METHODS
	2.1  Participants
	2.2  Visual stimuli
	2.3  Data acquisition
	2.3.1  Functional data
	2.3.2  Retinotopic mapping
	2.3.3  Anatomical data

	2.4  Data preprocessing and analysis steps common to all evaluations
	2.4.1  Standard preprocessing
	Anatomical reference data preprocessing
	Functional data preprocessing

	2.4.2  Standard statistical analysis
	2.4.3  fMRI data visualization

	2.5  Preprocessing steps evaluated for preserving accuracy
	2.5.1  Upsampling of fMRI volumes
	2.5.2  Transformation composition
	2.5.3  Refinement of surface mesh
	2.5.4  Intracortical smoothing

	2.6  Evaluation of effects of preprocessing on spatially varying smoothing
	2.6.1  Quantification of spatial blurring using synthetic white noise
	Quantification of spatial blurring induced by motion correction for different interpolation algorithms, with and without vo...
	Quantification of spatial blurring induced by projecting volumetric fMRI data onto cortical surface meshes and the effects ...

	2.6.2  Quantification of precision/accuracy trade-off on volume to surface projection

	2.7  Other factors influencing spatial accuracy
	2.7.1  Effect of imaging resolution on motion estimation accuracy
	2.7.2  Quantification of spatial resolution losses caused by geometric distortion

	2.8  Evaluation of spatial specificity through imaging nonoverlapping columnar subsystems

	3  RESULTS
	3.1  Effect of volume upsampling on spatial blur
	3.2  Effects of interpolation algorithms used for volume upsampling and for spatial transformation
	3.3  Effects of composing transformations
	3.4  Refinement of the surface mesh reduces the number of missed voxels
	3.5  Evaluation of spatial blur on measured fMRI data with interdigitated spatial organizations
	3.6  Higher resolution increases motion estimation accuracy
	3.7  Spatial varying resolution caused by geometric distortion correction

	4  DISCUSSION
	4.1  Overview of previous studies regarding these problems
	4.2  Towards a reliable strategy for quantifying spatial blur
	4.3  Potential influences of underlying image features on blurring when using high-order interpolation
	4.4  Disadvantages of nearest-neighbor interpolation
	4.5  Other methods exist for representing voxel data on surface
	4.6  Motion estimation accuracy
	4.7  Effects of nonrigid transformations and distortions
	4.8  Other aspects causing spatial blur in fMRI data
	4.9  Evaluation of spatial specificity using spatial interdigitated ``thin´´ and ``thick´´ stripes
	4.10  Balance between spatial specificity and sensitivity
	4.11  Relating reductions in smoothing to scan-rescan reproducibility: Accuracy versus precision

	5  CONCLUSION
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	ETHICS STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES


