
ORIGINAL ARTICLE
Portable System for In-Clinic Differentiation of
Skin Cancers from Benign Skin Lesions and
Inflammatory Dermatoses

Michel Nieuwoudt1,2,3,4, Paul Jarrett5,6, Hannah Matthews1,2,3,4, Michelle Locke7,8,
Marco Bonesi1,2,3,4,9, Brydon Burnett1,2, Hannah Holtkamp1,2,3, Claude Aguergaray2,3,4,9,
Ira Mautner2,3,4,9, Thom Minnee1,2,3,4 and M. Cather Simpson1,2,3,4,9
The exquisite sensitivity of Raman spectroscopy for detecting biomolecular changes in skin cancer has pre-
viously been explored; however, this mostly required analysis of excised tissue samples using bulky, immobile
laboratory instrumentation. In this study, the technique was translated for clinical use with a portable Raman
system and customized fiber optic probe and applied to differentiation of skin cancers from benign lesions and
inflammatory dermatoses. The aim was to provide an easy-to-use, easy-to-manage assessment tool for clinicians
to use in their daily patient examination routine to perform rapid Raman measurements of skin lesions in vivo.
Using this system, >867 spectra were measured in vivo from 330 patients with a wide variety of different benign
skin lesions (n ¼ 603), inflammatory dermatoses (n ¼ 140), and skin cancers (n ¼ 124). Ethnicities represented
were 70% European; 16% Asian; 6% M�aori; 5% Pacific people; and 4% Middle East, Latin American, and African.
Accurate differentiation of skin cancers from benign lesions and inflammatory dermatoses was achieved using
partial least squares discriminant analysis, with area under curve for the receiver operator curves for external
validation sets ranging from 0.916 to 0.958. This study shows evidence for robust clinical translation of Raman
spectroscopy for rapid, accurate diagnosis of skin cancer.
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INTRODUCTION
The appropriate use of modern technology such as tele-
dermatology and artificial intelligence in diagnosing dermato-
logical disease offers great potential for effective triage of skin
cancer referral, particularly in resource-constrained environ-
ments. The clinician using these technologies to triage these
referrals needs to be experienced and trained in the use of the
technology and in recognizing the disease. The patient, referrer,
and clinician do not want to miss a clinically significant lesion
that may require urgent treatment, for example, a malignant
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melanoma. Cost-effective triage should reliably screen out
benign lesions, permitting resources to focus on the treatment of
malignant lesions. However, referrals to a skin cancer service
often lack the specific detail needed for accurate triage andmay
be sentwith limited history and poor-quality images fromwhich
anaccurate triageassessment cannot bemade. Furthermore, the
remote but accurate diagnosis of an inflammatory dermatosis
may expedite treatment when there are delays in seeing a
specialist dermatologist. Access problems are amplified when
there are additional geographic or financial barriers to expert
care. The combination of clinical details combined with the
application of in vivo Raman spectroscopy may offer further
refinement to the triage process.

Raman spectroscopy uses laser radiation to measure the
characteristic vibrational frequencies of molecules, providing
a specific fingerprint of the individual compounds forming
complex systems, such as human skin. When a probing laser
is shone on to any biological sample, the light interacts with
the molecules and undergoes changes in energy. The mole-
cules then scatter the light, and roughly one millionth of the
scattered photons experience frequency shifts (inelastic
scattering) when interacting with the vibrating molecules,
these frequencies that provide information on the types of
molecules and their molecular environment. The inelastically
scattered light is Raman scattering, and the intensities of the
Raman scattering can be picked with charge-coupled device
sensors in Raman spectrometers, which measure the in-
tensities of the scattered light as a function of frequency. The
Raman scatter is plotted as a Raman spectrum of peak in-
tensities of scattered photons against wavenumbers (cm�1)
that represent the frequencies of the specific molecular
stigative Dermatology. This is an open
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Figure 1. Schematic layout of Raman measurement system for in vivo skin

recording of skin spectra (not drawn to scale) showing Raman probe and

spectrometer. IPS, Innovative Photonic Solutions; PC, principal component.
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vibrations in the sampled tissue. The set of frequencies is
characteristic of specific molecules so the Raman spectrum
provides a unique chemical fingerprint of the composition of
the tissue. When low laser powers are used, the technique is
noninvasive and nondestructive, thus highly suited for iden-
tifying differences in biomolecules in malignant and benign
cells (Barroso et al, 2015; Brozek-Pluska et al, 2012; Cals
et al, 2015; Carvalho et al, 2015; Huang et al, 2003; Kong
et al, 2013; Santos et al, 2017; Stone et al, 2004).

The use of a Raman microscope with a Raman spectrom-
eter allows for measurement of microsized areas of tissue and
has been used to examine skin composition and hydration
(Baclig et al 2013; Essendoubi et al 2016; Gniadecka et al,
2003, 1998; Nguyen et al 2012; Zhang et al 2011). It has
also been investigated for classifying skin cancers, including
basal cell carcinoma (BCC) (Choi et al, 2005; Feng et al,
2018; Larraona-Puy et al, 2009; Lieber et al, 2008a, 2008b;
Nijssen et al, 2007; Silveira et al, 2015), squamous cell car-
cinoma (SCC) (Fox et al, 2014; Lieber et al, 2008a, 2008b;
Lim et al, 2014; Silveira et al, 2015), and melanoma
(Gniadecka et al, 2004; Hammody et al, 2005; P Santos et al,
2018; Lieber et al, 2008a; Lui et al, 2012; Santos et al, 2016).
These studies have shown the potential of this technique as a
diagnostic tool for early detection of melanoma and non-
melanoma skin cancers (NMSCs). However, these studies
lack useful clinical translation because they have been
applied ex vivo on excised tissue samples in the laboratory
using large and expensive equipment.

Several studies (Bratchenko et al, 2021; Feng et al, 2018;
Khristoforova et al, 2019; Kourkoumelis et al, 2015; Lieber
et al, 2008b; Lim et al, 2014; Lui et al, 2012; Sharma et al,
2014; Silveira et al, 2015) have investigated the feasibility
of applying Raman spectroscopy as a diagnostic tool for
in vivo measurement of skin cancers using smaller, portable
benchtop spectrometers of various sizes. Excitation wave-
lengths in the near-infrared region between 785 and 1064 nm
were selected to minimize the fluorescence exhibited by
melanin in the skin because these effectively mask the Raman
signals. In some of the studies, the autofluorescence signal
was included in the measurement (Bratchenko et al, 2021;
Khristoforova et al, 2019), and different fiber optic probes
and classification methods were developed for some of the
portable systems (Latka et al, 2013; Motz et al, 2004; Sharma
et al, 2014). However, the studies were limited to skin neo-
plasms, and sample numbers were commonly small (range ¼
21e518); in addition, they almost exclusively included Eu-
ropean patient samples. This study focused on developing a
Raman spectroscopyebased portable device suitable for
deployment in clinical practice that would allow primary
clinicians to perform accurate in vivo, real-time differentia-
tion of malignant skin lesions from a wider variety of lesions
that also included a wider variety of ethnicities. Included in
the study were melanomas; NMSCs; benign lesions; and in-
flammatory dermatoses from ethnic groups, including Euro-
pean, Maori and Pacific Island people, Asians and Latin
American, African, and Middle Eastern. All biopsied skin
lesions were confirmed as malignant or benign by histopa-
thology, whereas additional benign lesions and inflammatory
dermatoses that could not be biopsied were clinically
JID Innovations (2024), Volume 4
diagnosed by a highly experienced dermatologist, following
standard clinical practice.

A commercially available, portable Raman spectrometer
(EmVision HT) with deep depletion cooled charge couple
device detector and a custom-made fiber optic probe
(EmVision, Tampa, FL) were used for in vivo measurements in
the clinic (Figure 1).

The laser excitation wavelength of 830 nm was selected to
reduce the autofluorescence by melanin exhibited for 785
nm lasers. Other Raman studies on skin cancers have used
785 nm excitation (Bratchenko et al, 2021, 2017; Lui et al,
2012) because this provides better Raman intensities overall
in a shorter time and better detector efficiency for the higher
wavenumber regions >1500 cm�1. These studies also
included the autofluorescence signal in the classification
(Bratchenko et al, 2017; Khristoforova et al, 2019), which
was found to afford better classification accuracy (Bratchenko
et al, 2017). Skin measurements were optimized through
benchtop testing to ensure that high-quality Raman spectra
could be obtained from consented patients in the shortest
time possible, while also ensuring conformity with the
American National Standards Institute maximum permitted
exposure for skin. Interaction time during measurement was
minimized to allow seamless incorporation into the clinic
patient flow. Classification of skin measurement was per-
formed using partial least squares with discriminant analysis
(PLS-DA) with random subset cross-validation of the training
model, and the classification model was validated with a
separate validation set. The PLS-DA algorithm was selected
being the preferred method for practical classification of
complex chemical data imbalanced datasets such as the one
generated from our study. The method is very suitable for
classifying Raman spectra of biological tissue and has also
been used in previous Raman studies of skin cancers
(Khristoforova et al, 2019; Lui et al, 2012). The variations in
different malignant and benign skin lesions and inflammatory
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dermatoses are subtle and due to different biological changes
and biomarkers. These subtle intergroup spectral differences
can easily be overwhelmed by intragroup spectral variations,
which can degrade the stability and generalizability of a
classifier. Being a supervised method, the partial least square
(PLS) regression finds features and projections representing
the intergroup differences in the new data space that best
separate the different groups. PLS-DA can be prone to over-
fitting; however, this can be checked by examining the
spectral loadings.

The high ratio of benign versus malignant lesions in our
dataset was a result of including as wide a variety of benign
skin lesions and inflammatory dermatoses as possible. The
aim was to include all possible samples that could be
encountered in dermatological and general practitioner
clinics, so as to provide a reliable, objective assessment of
whether or not a lesion presented is malignant or benign,
without having to rely only on clinical experience.

RESULTS AND DISCUSSION
Five different classification models were created from the
Raman spectra of 867 samples that would provide a useful
diagnostic aid for clinicians in a routine clinic. Four models
were constructed from 4 training data subsets of the total set
of Raman spectra and are listed below. For comparison, an
additional classification model (V) was created for a partic-
ular subset of dataset I, which comprised only those lesions
(benign as well as malignant) that had been biopsied with
histology testing. Also investigated was the accuracy of
classifying malignant melanomas from the 2 benign lesions
more commonly misdiagnosed owing to their similar pig-
mented appearance. A training and validation subset I (ii) of
dataset I (i) was therefore set up to include only the benign
lesions seborrheic keratosis (SK) and different melanocytic
nevi (congenital, compound, blue, intradermal, lentiginous
junctional, halo, pedunculated and speckled lentiginous
nevi) and malignant melanomas.

I. (i) all malignant lesions versus all benign lesions (ie,
excluding inflammatory dermatoses) and (ii) malignant
melanomas and selected melanocytic benign lesions: SK
and different melanocytic nevi (congenital, compound,
blue, intradermal, lentiginous junctional, halo, pedun-
culated, and speckled lentiginous nevi);

II. all malignant lesions versus all benign skin conditions (ie,
including both benign lesions and inflammatory
dermatoses);

III. all malignant lesions versus all inflammatory dermatoses;
IV. differentiation of melanomas from the NMSCs, BCC, and

SCC;
V. all malignant lesions versus benign lesions with histology

test results.

All malignant lesions versus different types of benign lesions

The mean spectra with SD for each of the malignant and
benign lesions in data subset I (i) are shown in Figure 2a; the
mean spectra had been normalized to the same height for the
dominant 1446.5 cm�1 peak (eCH2 deformation represent-
ing all lipid, keratin, and collagen components). The mean
spectra have been overlaid in Figure 2b to enable a closer
comparison of the relative peak height differences, which
represent the specific molecular composition in each group
of lesion types. A difference plot of the 2 is given below the
spectra, calculated by subtracting the average spectrum of the
benign lesions from that of the malignant lesions; it has been
magnified by a factor of 5 for a clearer view of the differ-
ences. The positive peaks indicate components present in
greater amounts in the malignant lesions, whereas those in
decreased amounts are represented by negative peaks, all
relative to the CH2 deformation mode (subject to the least
change in intensity than other molecular functional groups).
Negative peaks include those at 811, 858, 873, 919, 940,
973, 1167, 1146, 1182, and 1196 cm�1 (indicating reduction
in the aromatic amino acids tyrosine and tryptophan as well
as proline, hydroxyproline, and valine [Movasaghi et al,
2007; Stone et al, 2004]). Reduction in alpha-helix struc-
tures in the malignant lesions is also indicated by the negative
peaks at 1241 and 1271 cm�1 (amide III) and 1500 and 1534
cm�1 (amide II vibrations). Similar changes have been
observed in previous studies for melanoma and BCC using
laboratory benchtop Raman instruments (Gniadecka et al,
2004). Also decreased in malignant lesions are fatty acids,
shown by the negative peaks at 1383, 1401, and 1427 cm�1.
(Movasaghi et al, 2007; Stone et al, 2004).

The positive peak at 1003 cm�1 (representing phenylala-
nine) shows that these compounds are increased in malignant
lesions. Also increased in malignant lesions are phospho-
lipids (positive peaks at 957 and 1078 cm�1) and DNA purine
bases (1335 cm�1 [Huang et al, 2003; Movasaghi et al,
2007]). Increases in malignant lesions of lipids and ceram-
ides are shown by the positive peaks at 1311 cm�1 (CH2 and
CH3 twisting modes), 1125 cm�1 (CeC and CeN stretching),
and 1650 and 1669 cm�1 (C¼C and C¼O) (Movasaghi et al,
2007).

Principal component (PC) analysis of the spectra did not
show good separation between the classes because the dif-
ferences between the spectra were very subtle. PLS-DA (with
cross-validation) was therefore used to better differentiate
and classify malignant versus benign lesions with 11 PCs
used that explained 95% of the variance; the PLS loadings are
shown in Figure 3.

The diagnostic accuracy of the classification model was
evaluated in terms of the area under curve (AUC) of the
receiver operator curve (ROC), as described in the Materials
and Methods. Figure 2c shows the cross-validated ROC plots
for the training set (532 benign, 96 malignant samples) with
AUC and 95% confidence intervals (CIs); the AUC was
0.904. Figure 2d shows the associated bee-swarm plots for
cross-validated prediction in the training set.

Figure 2e shows the ROC plots with AUC and 95% CIs for
the separate validation set (82 benign, 26 malignant sam-
ples); AUC was 0.916. The corresponding predictions of the
lesions in the validation set are shown as bee-swarm plots in
Figure 2f.

The specificities at 100, 95, and 90% sensitivity levels are
presented in Table 1 (left-hand side) for the training set and
validation set, for each of data subsets IeV and include the
number of PCs (latent variables) and the AUC for both the
training sets and also the validation sets. Two different
threshold levels were selected (between 1 and �1) for the
www.jidinnovations.org 3
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Figure 2. Differentiation between

malignant and benign lesions,

excluding inflammatory dermatoses.

(a) Mean spectrum with SD for each of

the benign (top) and malignant skin

lesions. (b) Mean spectra of each

malignant (purple) and benign (light

blue) lesion, normalized to the same

height for the eCH2 deformation

band at 1446.5 cm�1. The red curve

represents the difference between the

malignant mean spectrum and the

benign mean spectrum, amplified by a

factor of 5 to enhance peak

differences. The asterisk indicates an

instrument peak. (c) Cross-validated

ROC plots for training set, (d) bee-

swarm plots for cross-validated

prediction in training set (532 benign,

96 malignant samples), (e) ROC plots

with 95% confidence intervals for

validation set, and (f) bee-swarm plots

for prediction of the separate

validation set (82 benign, 26

malignant samples). arb., arbitrary;

ROC, receiver operator curve.
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100% sensitivity levels for each training set to compare their
predictive accuracy for the validation set. Threshold A was
selected as the minimum predicted level that ensured 100%
sensitivity of both the training set and the validation set, and
threshold B was selected as the minimum predicted level that
ensured 100% sensitivity of only the training set. The sensi-
tivity and specificities for each threshold for each dataset are
given on the right-hand side of Table 1. For this data subset I
(i), the classification model showed good accuracy, achieving
100% sensitivity for prediction of malignant lesions versus
benign lesions, with 51% specificity. This was achieved for
threshold settings A and B.

For data subset I (ii), the mean spectra for the melanomas
and the benign lesions with their SDs are shown in Figure 4a.
The differences in peak shapes and relative peak heights
between the 2 mean spectra in the figure as well as their SDs
are subtle. The melanoma mean and SDs in Figure 4a show a
slightly broader phenylalanine peak at 1003 cm�1 than the
benign SK and nevi. The mean spectra are overlaid in
Figure 4b, and the spectral differences between the 2 are
JID Innovations (2024), Volume 4
shown in the bottom curve. The difference spectrum appears
similar in the 900 and 1300 cm�1 region to those seen in
Figure 2b for all malignant lesions and benign lesions. The
broadening of the phenylalanine 1003 cm�1 peak results in
the appearance of the difference spectrum of 2 positive peaks
at 993 and 1014 cm-1. In addition, the positive peak at 1039
cm�1 in the difference spectrum is due to the CeH bending
of phenylalanine; these suggest increased levels and changes
in the molecular environment of phenylalanine in the ma-
lignant lesions. Positive peaks at 1058, 1078, 1095, and 1107
cme1 (all lipid CeC stretching and symmetric PO2

� stretch-
ing vibration of phospholipids) show higher levels of nucleic
acids and lipids in malignant melanoma than in the SK and
nevi melanocytes.

The positive bands in the difference spectrum at 1305, 1434,
1507, 1522, 1540, and 1653 cm�1 represent increased levels
of both protein and lipid contents in the malignant melanoma
cells compared with those in the benign nevi and SK lesions
(Movasaghi et al, 2007). The positive peaks between 993 and
1100 cm�1 and the amide I peak at 1653 cm�1 for the



Figure 3. PLS loadings for the 11 PCs

used in the classification training set

model for differentiating malignant

from benign skin lesions, which

explained 95% of the total data

variance. PLS, partial least square; PC,

principal component.
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malignant melanoma agree withmajor peak differences found
in a Raman microscopy investigation of benign melanocytes
and different malignant melanoma cell lines (SKMEL28,
MALME-3M, SKMEL5, UACC-62, and 451LU) (Brauchle et al,
2014), where the melanocytes could be distinguished from
melanoma cells from differences in the peaks for phenylala-
nine, amide I, and DNA, including phospholipids.

A cross-validated PLS-DA classification model was con-
structed using 8 PCs (explaining 93% of the variance) for
differentiating melanomas from these 2 benign classes from
the data subset I (ii) of spectra of melanomas, SK, and the
nevi. Figure 4c shows the cross-validated ROC plots for the
training set (352 benign, 23 malignant samples) with an AUC
of 0.845; CIs are indicated on the plot and also given in
Table 1. The cross-validated predictions by the training model
for classifying lesions as melanomas versus SK and nevi are
given as bee-swarm plots in Figure 4d. The ROC for the
separate validation set (126 benign, 4 malignant samples)
with 95% CIs is given in Figure 4e with an AUC of 0.956. The
predictions of lesions in the separate validation set as mela-
nomas versus SK and nevi are given as bee-swarm plots in
Figure 4f. The 8 PLS loadings are shown in Figure 5.

The AUC obtained for the validation set and specificities of
90% at both 90 and 95% sensitivities (Table 1) are better than
those obtained for dataset I (i) shown in Figure 2e.However, the
specificity of 6% is much lower for the 100% sensitivity level
and also lower than the 15% obtained at 99% sensitivity in a
previous study (Lui et al, 2012) for a similar dataset. This is due
to a particularmalignant sample in the PLS-DAbee-swarmplot
in Figure 4f showing a lower predicted value for malignancy
than the other 3, which unlike the other melanoma samples,
does not show the characteristic brown pigmentation of
melaninwithin the erythematous papule and so is described as
amelanotic (lesion 2 in Figure 6; lesion 1 was confirmed as a
compound nevus). Inclusion of more such amelanotic mela-
nomas in this dataset of melanomas, SK, and nevi would
improve the classification accuracy. Notably, this lesion was
predictedmore accurately in dataset I (i), which included other
malignant and benign amelanotic lesions.
Malignant lesions versus all benign samples (skin lesions and
inflammatory dermatoses)

This is the most useful triage for a primary clinician, who
needs to decide whether or not biopsy/excision is indicated.
The PLS-DA classification of malignant lesions from both
benign skin lesions and inflammatory dermatoses is repre-
sented for the training and validation sets in Figure 7a and b
and c and d, respectively. Twelve PCs were used for the
model, explaining 95% of the variance; the PLS loadings are
shown in Figure 8. Good accuracy was obtained for the
cross-validated training classification model, with an AUC
of 0.904 (95% CI ¼ 0.880e0.924) (Figure 7a) with a spec-
ificity of 50% at 100% sensitivity. Figure 7b shows bee-
swarm plots for the cross-validated prediction model re-
sults (641 benign [both inflammatory dermatoses and
benign lesions, 96 malignant lesions] with an AUC of 0.904
[95% CI ¼ 0.880e0.924]). The bee-swarm plots represent
the predicted values for the 96 malignant lesions and 641
benign skin samples (both lesions and inflammatory
dermatoses).

The ROC plots in Figure 7c with 95% CIs and associated
bee-swarm plots in Figure 7d obtained for prediction of the
separate validation set of 26 malignant skin lesions and 104
benign skin samples show high prediction accuracy, with an
AUC of 0.916 (95% CI ¼ 0.855e0.958) (Figure 7c) and
100% sensitivity and 50% specificity (Table 1, right-side
hand). The specificities of 50, 50, and 70% obtained
respectively for 100, 95, and 90% sensitivities were compa-
rable with those for the skin lesions only (Table 1), which are
better than those obtained in another study on a similar
dataset (Lui et al, 2012).
www.jidinnovations.org 5
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Table 1. PLS-DA Classification Specificities at Sensitivities of 100, 95, and 90% and ROC AUCs for Training and Validation Data Subsets IeV

Data
set

Number
of PCs
(%

variable)

Specificity at Threshold A
Set at Level to Ensure

100% Sensitivity for Both
CV Training and
Validation Sets

Specificity at Threshold B
Set at Level to Ensure

100% Sensitivity for CV6

Training Set Only
Specificity at 95%

Sensitivity
Specificity at 90%

Sensitivity AUC AUC

Accuracy for
Prediction of
Validation Set

Using Threshold A

Accuracy for
Prediction of
Validation Set

Using Threshold B

Training CV
(95% CI)

Validation
(95% CI)

Training CV6

(95% CI)
Validation
(95% CI)

Training CV
(95% CI)

Validation
(95% CI)

Training CV6

(95% CI)
Validation
(95% CI)

Training CV
(95% CI)

Validation
(95% CI) Sensitivity Specificity Sensitivity Specificity

I (i)1 11 (95%) 47% (39e52) 51% (43e61) 47% (39e52) 51%(43e61) 58% (46e74) 85% (73e93) 75% (59e86) 86% (72e93) 0.904 (0.878

e0.926)

0.932 (0.866

e0.971)

100% (86

e100)

51% (43

e61)

100% (86

e100)

51% (43

e61)

I (ii)2 8 (93%) 28% (6e48) 6% (2e26) 28% (6e48) 6% (2e26) 48% (8e 64%) 90% (80e96) 59% (10e76) 90% (81e96) 0.845 (0.805

e0.880)

0.956 (0.906

e0.984)

100% (40

e100)

6% (2e26) 100% (40

e100)

6% (2e26)

II3 12 (95%) 43% (40e54) 50% (35e63) 43% (40e54) 50% (35e63) 61% (46e71) 70% (69e89) 74% (58e79) 79% (67e87) 0.904 (0.880

e0.924)

0.916 (0.855

e0.958)

100% (87

e100)

50% (35

e63)

100% (87

e100)

50% (35

e63)

III4 13 (95%) 36%

26-47

47% (20e73) 36% (26e47) 47% (20e73) 61% (51e80) 73% (33e97) 80% (56e88) 80% (33e97) 0.926

0.878e0.960

0.929

0.825e0.981

100% (86

e100)

47% (20

e73)

100% (86

e100)

47% (20

e73)

IV5 11 (98%) 54% (37e80) 50% (36e70) 54% (37e80) 50%(36e70) 54% (38e80) 87% (56

e100)

92% (74e100) 87% (56

e100)

0.945 (0.880

e0.981)

0.948 (0.762

e1)

100% (54

e100)

50% (36

e70)

100% (54

e100)

50% (36

e70)

V6 15 (96%) 40% (22e58) 50% (2e65) 93% (86e99) 36% (13e65) 69% (55e78) 50% (14e86) 79% (67e88) 93% (43

e100)

0.921 (0.876

e0.953)

0.896 (0.717

e0.978)

100% (75

e100)

50% (2e65) 77% (46

e95)

93% (43

e100)

Abbreviations: AUC, area under curve; BCC, basal cell carcinoma; CI, confidence interval; CV, cross-validation; PC, principal component; PLS-DA, partial least squares discriminant analysis; ROC, receiver
operator curve; SCC, squamous cell carcinoma; SK, seborrheic keratosis.

The % variable denotes the percentage variance explained by these PCs.
1Malignant versus all benign skin lesions.
2Melanomas versus SK and nevi only.
3Malignant lesions versus all benign skin conditions.
4Malignant lesions versus all inflammatory dermatoses.
5Melanoma versus BCC and SCC.
6Malignant versus histology-confirmed only benign lesions.
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Figure 4. Spectral differences

between malignant melanomas and

different types of benign nevi and SK.

(a) Mean spectrum with SD for each of

the benign (top) and malignant

melanoma skin lesions. (b) Mean

spectra of each malignant (purple) and

benign (light blue) lesion, normalized

to the same height for the eCH2

deformation band at 1446.5 cm�1.

The red curve represents the

difference between the malignant

mean spectrum and the benign mean

spectrum, amplified by a factor of 5 to

enhance peak differences. The asterisk

indicates a very sharp peak that is

unassigned and presumably due to a

faulty pixel on the CCD detector. (c)

Cross-validated ROC plots for training

set, (d) bee-swarm plots for cross-

validated prediction in training set

(352 benign, 23 malignant samples),

(e) ROC plots with 95% confidence

intervals for validation set, and (f) bee-

swarm plots for prediction of the

separate validation set (126 benign, 4

malignant samples). arb., arbitrary;

CCD, charged couple device; ROC,

receiver operator curve; SK,

seborrheic keratosis.
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Malignant lesions versus inflammatory dermatoses

For this model, 13 PCs were used that explained 96% of the
variance; the PLS loadings are shown in Figure 9. Good
predictive ability for identifying malignant lesions from the
inflammatory dermatoses was obtained for the cross-
validated training set as seen by the AUC of 0.926 (95%
CI ¼ 0.878e0.960) for ROC and corresponding bee-swarm
plots in Figure 10a and b, respectively. The training set
comprised 96 malignant lesions and 86 benign inflammatory
dermatoses.

The ROC plot of the separate validation set (26 malignant
skin lesions and 32 benign inflammatory dermatoses) is given
in Figure 10c; the AUC for prediction of the validation set
was 0.929 (95% CI ¼ 0.825e0.981). The corresponding bee-
swarm plots for prediction of the validation set are given in
Figure 10d.

The validation set was predicted with very high accuracy:
100% sensitivity and 47% specificity (Table 1) and a biopsy
ratio of 1.6. This classification would be particularly useful
for distinguishing those benign inflammatory dermatoses that
appear similar to malignant lesions. For example, the differ-
ential diagnosis of a red patch on chronically sun-exposed
skin is wide, including carcinoma in situ; superficial BCC;
and inflammatory dermatoses such as eczema, psoriasis,
tinea, and less commonly discoid lupus erythematosus.
Support establishing the correct diagnosis by Raman spec-
troscopy will help those without specialist training in cuta-
neous medicine, especially community physicians. To our
www.jidinnovations.org 7
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Figure 5. PLS loadings for the 8 PCs

used in the classification training set

model for differentiating melanomas

from benign SKs and nevi, which

explained 93% of the total data

variance. PC, principal component;

PLS, partial least square; SK,

seborrheic keratosis.
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knowledge, the Raman differentiation in this study of a large
variety of inflammatory dermatoses from malignant lesions
has not been reported previously.

Melanomas versus NMSCs (BCC and SCC)

This classification was used to differentiate melanomas from
NMSCs. The classification is needed so that melanoma
management can be prioritized above others, especially in a
resource-constrained environment. Amelanotic melanomas
can be difficult to diagnose even for experienced practi-
tioners such as that shown in Figure 4.

The mean spectrum with SD for each of the melanomas
and both NMSCs are shown in Figure 11a; the mean spectra
had been normalized to the same height for the dominant
1446.5 cm�1 peak (eCH2 deformation representing all lipid,
keratin, and collagen components). The mean spectra of
Figure 6. Photographic images of (1) compound nevus and (2) amelanotic

melanoma.

JID Innovations (2024), Volume 4
melanoma and NMSCs (BCC and SCC) are shown overlaid in
Figure 11b to enable a closer comparison of the relative peak
height and shape differences that represent the specific mo-
lecular composition in each group of lesion types. The red
plot below is the difference plot magnified by a factor of 5
and shows more clearly which components occur more or
less in each.

Melanoma shows relatively lower peak intensities at 961 cm�1

(due to lipids), 1003 cm�1 (phenylalanine), and 1656 cm�1

(amide I band) thanBCCandSCC.Protein structures inmalignant
cells are reduced compared with those in normal cells
(Gniadecka et al, 2004; Huang et al, 2001); the lower intensities
for protein peaks observed in Figure 11a for melanomas than for
theNMSCs suggest that changes in theprotein structureoccur toa
greater extent in melanoma than in NMSC lesions. However,
increased peak intensities for the melanoma mean spectrum
compared with those for the NMSCs appear at 820, 849, and
1176 cm�1 (tyrosine) and 1199 and 1210 cm�1 (hydroxyproline
and tyrosine) (Brauchle et al, 2014; Movasaghi et al, 2007;
Puppels et al, 1991).

Phenylalanine and tyrosine are free aromatic amino acids
known to be involved in melanogenesis (Schallreuter and
Wood, 1999); the observation of reduced phenylalanine but
increased tyrosine and hydroxyproline appears to be char-
acteristic of melanoma. The observation of increased tyrosine
peaks in melanoma in this study is consistent with a report of
increased levels of phosphotyrosine in melanoma, due to
elevated protein tyrosine kinase activity (McArdle et al,
2001). The increased intensities over the regions in
Figure 11b between 1380e1403 cm�1 and 1500e1550
cm�1 are likely due to higher levels of melanin in the me-
lanocytes, which is characterized by broad bands centered
around 1350 and 1580 cm�1. The reduced intensities in



Figure 7. PLS-DA differentiation

between malignant skin lesions and

all benign skin samples (both lesions

and inflammatory dermatoses). (a)

ROC plots with 95% CIs and (b) bee-

swarm plots for cross-validated

prediction model results (641 benign,

96 malignant) with AUC of 0.904

(95% CI ¼ 0.880e0.924). (c) ROC

plots with 95% CIs and (d) associated

bee-swarm plots for prediction of the

separate validation set (104 benign

skin samples and 26 malignant

lesions) with AUC of 0.916 (95% CI ¼
0.855e0.958). AUC, area under the

curve; CI, confidence interval; PLS-

DA, partial least squares discriminant

analysis; ROC, receiver operator

curve.

M Nieuwoudt et al.
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melanomas shown by the negative peaks in the difference
spectrum at 1003 and 1103 cm�1 indicate that the NMSCs
have higher levels of phenylalanine than melanomas.
The cross-validated ROCs for the differentiation of
melanomas from NMSCs are given in Figure 11c for the
training set (77 NMSCs, 21 melanomas) with an AUC of
Figure 8. PLS loadings for the 12 PCs

used in the classification training set

model for differentiating all

malignant lesions from both benign

lesions and inflammatory dermatoses,

which explained 95% of the total

data variance. PC, principal

component; PLS, partial least square.

www.jidinnovations.org 9
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Figure 9. PLS loadings for the 13 PCs

used in the classification training set

model for differentiating malignant

lesions from inflammatory

dermatoses, which explained 96% of

the total data variance. PC, principal

component; PLS, partial least square.
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0.945 (95% CI ¼ 0.880e0.981). The associated bee-
swarm plots are given in Figure 11d. The ROC plot for
the separate validation set (16 NMSCs, 6 melanomas)
with an AUC of 0.948 (95% CI ¼ 0.762e1) is given in
Figure 10. Differentiation between

malignant lesions and benign

inflammatory samples. (a) ROC plots

with 95% CIs and (b) bee-swarm plots

for cross-validated prediction of the

training set comprising 96 malignant

lesions and 86 benign inflammatory

dermatoses, with AUC of 0.926 (95%

CI ¼ 0.878e0.960). (c) ROC plot with

95% CIs for prediction of the

validation set of 26 malignant skin

lesions from 32 benign inflammatory

dermatoses with AUC of 0.926 (95%

CI ¼ 0.878e0.960). (d) Corresponding

bee-swarm plots showing prediction

results of the validation set. AUC, area

under the curve; CI, confidence

interval; ROC, receiver operator

curve.

JID Innovations (2024), Volume 4
Figure 11e, and the associated bee-swarm plots are given
in Figure 11f. The amelanotic sample that was poorly
predicted in Figure 4f is better differentiated as malignant
in Figure 11f using the classification model from this



Figure 11. Differentiation between

melanomas and NMSCs (BCCs and

SCCs). (a) Mean spectrum with SD for

each of all melanomas (top) and

NMSCs (BCCs and SCCs) (bottom). (b)

Mean spectra of the melanoma (pink)

and NMSCs (purple) samples,

normalized to the same height for the

eCH2 deformation band at 1446.5 cm
�1. The red curve represents the

difference between the melanomas

and the NMSCs amplified by a factor

of 5 to enhance peak differences. The

asterisk indicates an instrument peak.

(c) Cross-validated ROC plots for

training set with AUC of 0.945 (95%

CI ¼ 0.880e0.981), (d) associated

bee-swarm plots for cross-validated

prediction in training set of 77 NMSCs

and 21 melanomas, (e) ROC plots for

validation set with AUC of 0.948

(95% CI ¼ 0.762e1), and (f)

associated bee-swarm plots for

prediction of the separate validation

set (16 NMSCs, 6 melanomas). AUC,

area under the curve; BCC, basal cell

carcinoma; CI, confidence interval;

NMSC, nonmelanoma skin cancer;

ROC, receiver operator curve; SCC,

squamous cell carcinoma;

M Nieuwoudt et al.
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particular dataset. The AUC values obtained for both
training and validation sets were better than those in
other studies (Khristoforova et al, 2019; Lui et al, 2012).
The 12 PCs used for the PLS-DA model are given in
Figure 12 and explain 95% of the variance.

Malignant and histologically tested-only benign lesions

This classification model was created for a particular subset
of dataset I (i), for which only those lesions that had been
biopsied (benign and malignant) with histology testing
were included. These lesions were suspected as malignant
and referred by the patients’ general practitioners for bi-
opsy, totaling 247. Before biopsy, they were further triaged
by a plastic surgeon at the clinic. Those selected for biopsy
underwent histology testing; 124 of these were confirmed
as malignant, and 123 were confirmed as benign, indi-
cating a clinical assessment biopsy ratio of 0.5. The
training dataset comprised 220 of the samples—111 ma-
lignant and 109 benign—and the validation set had 27
samples (13 malignant and 14 benign).

For this PLS-DA model, 16 PCs were used that explained
96% of the variance; the PLS loadings are shown in
Figure 13.

The ROC for the cross-validated training set (109 benign
and 111 malignant lesions) is shown in Figure 14a for the
training set with an AUC of 0.921 (95% CI ¼ 0.876e0.953).
Figure 14b gives the associated bee-swarm plots for the cross-
validated training set.
www.jidinnovations.org 11
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Figure 12. PLS loadings for the 11 PCs

used in the classification training set

model for differentiating melanomas

from nonmelanoma skin cancers; the

11 PCs explained 95% of the total

data variance. PC, principal

component; PLS, partial least square.
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Figure 14c shows the ROC plot for the separate validation
set (13 benign and 14 malignant lesions) with an AUC of
0.896 (95% CI ¼ 0.880e0.981); Figure 14d shows the
associated bee-swarm plots for prediction of this set. The high
AUC of 0.921 with 93% specificity at 100% sensitivity is
much higher than for the data subsets IeIV. However, this
model predicted the validation set with 77% sensitivity and
93% specificity. In a previous study that compared the ac-
curacy of prediction for a dataset comprising histology-only
confirmed lesions with a dataset that also included
Figure 13. PLS loadings for the 16 PCs

used in the classification training set

model for differentiating the

malignant lesions from the histology-

only benign lesions; the 16 PCs

explained 96% of the total data

variance. PC, principal component;

PLS, partial least square.

JID Innovations (2024), Volume 4
clinician-diagnosed benign lesions (Lui et al, 2012), similar
accuracy was obtained for the cross-validated classification.

However, for the training data subset V, the specificity at
100% sensitivity was 93%, and the prediction threshold set
was 0.44 (threshold B in Table 1), which is high above the
average of �0.06 for the other training subsets IeIV. The
100% threshold value needed for the 100% sensitivity pre-
diction of the subset V validation set was 0.04; setting the
threshold to this value (threshold A in Table 1) enabled 100%
sensitivity for the validation set with 50% specificity



Figure 14. Differentiation of

malignant from benign lesions for

histologically tested samples only. (a)

Cross-validated ROC plots for training

set with AUC of 0.921 (95% CI ¼
0.876e0.953), (b) associated bee-

swarm plots for cross-validated

training set (109 benign and 111

malignant lesions), (c) ROC plots for

validation set with AUC of 0.896

(95% CI ¼ 0.880e0.981), and (d)

associated bee-swarm plots for

prediction of the separate validation

set (13 benign and 14 malignant

lesions). AUC, area under the curve;

CI, confidence interval; ROC, receiver

operator curve.

M Nieuwoudt et al.
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(Table 1). For the other datasets IeIV, the average threshold
for the validation sets is 0.12. This highlights the need to
include as many samples as possible in the training datasets
to ensure accurate prediction of the validation sets.

Comparison of the effect of the different ethnic groups on
the classification accuracy is limited by the different number
of samples in each, with Europeans dominating the numbers
at 70% and Latin American, African, and Middle Eastern
groups having the lowest numbers at 4%. However, the cross-
validated training set specificity at 100% sensitivity is com-
parable with those for the European (45%) and Asian (44%)
groups; lowest for the Maori and Pacific Island group (37%);
and highest for the Latin American, African, and Middle
Eastern groups (73%) (Table 2). However, for the Latin
American, African, and Middle Eastern groups validation set,
no malignant lesions were present. For the other 3 groups, the
best specificity at 100% sensitivity was achieved for the Asian
group at 50%, followed by the European group at 44% and
Maori and Pacific Island group at 33%.

The results in this study show high sensitivities and speci-
ficities for classification of malignant skin lesions from both
benign skin lesions and inflammatory dermatoses as well as
malignant melanomas from NMSCs. Comparison of the re-
sults with the accuracy of clinical diagnosis for malignant
versus benign lesions and/or inflammatory dermatoses of
other studies in the literature is hampered by the wide range
and different measures of accuracy and different lesion types
included in the sample sets used as well as the different levels
of experience of clinicians and clinical practices reported
(Heal et al, 2008; MacKenzie-Wood et al, 1998; Morton and
Mackie, 1998; Trevethan, 2017; Ying et al, 2020). The more
useful measure in this study of the specificity obtained at
100% sensitivity for clinicians is given in Table 1 for each of
the 5 data subsets as well as for the sensitivity settings at 95
and 90%. Using the 100% sensitivity thresholds for each of
the 5 training data subsets, the sensitivities, specificities, and
AUCs were determined for predicting the associated separate
validation sets and are summarized in Table 1. The numbers
of true- and false-positive and -negative samples are given in
Table 3. Compared with the specificities obtained at 90, 95,
and 99% sensitivities reported in a similar study by Lui et al
(2012), the results summarized in this paper in Table 1 show
improved specificities at the 90, 95, and 100% sensitivities
for the calibration training sets and the separate validation
sets.

The ROCs obtained from the 5 data subsets in this
study show improved AUC values compared with those
from a recent in vivo study using a different portable
system (Bratchenko et al, 2021), in which AUCs of 0.75
(95% CI ¼ 0.71e0.79) were reported for classification of
malignant versus benign tumors, 0.69 (95% CI ¼
0.63e0.76) for melanomas versus pigmented tumors, and
0.81 (95% CI ¼ 0.74e 0.87) for melanomas versus SK,
respectively.

This research has developed a portable Raman system that
will assist the clinician by providing an improved diagnostic
tool to differentiate between benign and malignant tissues.
This will translate and expand the scope of Raman spec-
troscopy with its inherent sensitivity and quantitative capacity
beyond a laboratory and only experienced technical users.
Through the application of the multivariate statistical classi-
fication algorithm, PLS-DA, on the spectra obtained with the
www.jidinnovations.org 13
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Table 2. Summary of the Specificity Obtained at 100% Sensitivity for the Cross-Validated Training Set for the
Different Ethnicity and Lesion Types in Dataset II

Ethnicity

Training Set Validation Set

Number of Samples Sensitivity Specificity Number of Samples Sensitivity Specificity

European 499 100% 45.3% 90 100% 44.3%

M�aori/Pacific peoples (Cook Island M�aori, Samoan, Tongan) 74 100% 37.3% 21 100% 33.3%

Asian (Indian, Sri Lankan, Filipino, Chinese, Thai, Malaysian) 130 100% 43.9% 18 100% 50.0%

Latin American, African, and Middle Eastern 33 100% 72.7% 2 N/A N/A

Abbreviation: N/A, not applicable.
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portable system, it was possible to noninvasively differentiate
the malignant lesions from benign lesions as well as inflam-
matory dermatoses. These differences could be explained by
changes in their protein, lipid, and aromatic amino acid
abundances that were evident from the Raman spectral dif-
ferences between the mean malignant and benign samples
and which agreed with those found in other studies in the
literature.

The most useful diagnostic aid for a primary clinician is
one that can help decide whether or not to biopsy when
presented with a lesion that could be malignant, benign, or
an inflammatory dermatosis. In this study, 100% sensitivity
was achieved for predicting malignant lesions from benign
and inflammatory dermatoses, with 50% specificity. The high
accuracy obtained demonstrates the suitability of our
portable Raman system for deployment in dermatological
and general practitioner clinics to provide a reliable,
Table 3. Summary of Confusion Table Data for 100% Sen

Training Set
100%

Sensitivity Specificity
PPV at 10
Sensitiv

Training Set

Dataset I (i) TP 96 46.8% 25%

FP 283

TN 249

FN 0

Dataset I (ii) TP 23 27.8% 8%

FP 254

TN 98

FN 0

Dataset II TP 96 43.2% 21%

FP 358

TN 272

FN 0

Dataset III TP 96 36% 64%

FP 55

TN 31

FN 0

Dataset IV TP 20 54.5% 36%

FP 35

TN 42

FN 0

Dataset V TP 111 40.4% 63%

FP 65

TN 44

FN 0

Abbreviations: FN, false negative; FP, false positive; PPV, positive predictive va
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objective assessment of whether or not a lesion or inflam-
matory dermatosis presented is malignant or benign.

MATERIALS AND METHODS
Raman spectra

All Raman spectra were recorded in vivo using a portable Raman

spectrometer (HT Raman spectrometer, EmVision LLC) with a

custom-made fiber optic probe. A schematic diagram of the Raman

system layout is shown in Figure 1. The probe was placed on the

lesion of interest, and then spectra were recorded using the Andor

Solis software and processed using MATLAB and PLS-Toolbox 9.1

(Eigenvector Research). The excitation radiation used was an 830 nm

central wavelength solid-state diode laser (Innovative Photonic So-

lutions) with 40 mW output power launched into the probe; the

power density measured at the skin was 1.06 J/cm2, which is below

the maximum permitted exposure of 1.67 J/cm2 as specified by the

American National Standards Institute (Choquette et al, 2007). Each
sitivity for Each Data Subset

0%
ity

Validation Set
100%

Sensitivity Specificity

Test Set

Dataset I (i) TP 26 51.2%

FP 40

TN 42

FN 0

Dataset I (ii) TP 4 5.6%

FP 119

TN 7

FN 0

Dataset II TP 26 50.0%

FP 53

TN 51

FN 0

Dataset III TP 26 46.7%

FP 16

TN 14

FN 0

Dataset IV TP 7 50.0%

FP 8

TN 8

FN 0

Dataset V TP 13 35.7%

FP 9

TN 5

FN 0

lue; TN, true negative; TP, true positive.



Table 4. List of Different Types of Lesions and Inflammatory Dermatoses Measured and Included in the Datasets

Group Type Individual Type Number Measured

Melanocytic benign lesions Nevus Blue nevus 2

Café au Lait 8

Compound nevus 6

Congenital nevus 2

Ephelides 14

Halo nevus 2

Intradermal nevus 7

Junctional nevus 5

Lentiginous nevus 18

Lentigo 18

Nevus otherwise not specified 286

Pedunculated nevus 1

Solar lentigo 3

Speckled lentiginous nevus 1

Nonmelanocytic benign lesions Other Accessory nipple 2

Acrochordon 1

Actinic keratosis 41

Angiokeratoma 1

Angioma 1

Becker nevus 3

Cherry angioma 1

Dermatofibroma 9

Haemangioma 37

Keratoacanthoma 4

Keratosis pilaris 1

Linear epidermal nevus 2

Milia cyst 1

Myxoid cyst 1

Pilomixatrona 1

Plantar fibromatosis 1

Scar tissue 11

Scar with no residual malignancy 16

Sebaceous hyperplasia 9

Seborrheic keratosis 86

Vascular malformation 1

Malignant lesions Melanoma Acral melanoma 1

Lentiginous melanoma 2

Melanoma in situ 12

Metastatic melanoma 3

Spitzoid melanoma 1

Superficial spreading melanoma 8

SCC SCC well differentiated 3

SCC in situ 7

SCC poorly differentiated 2

SCC moderately differentiated 11

SCC otherwise not specified 8

BCC BCC in situ 2

BCC nodular 32

Superficial BCC 14

Infiltrative BCC 5

Multifocal BCC 2

BCC otherwise not specified 11

(continued )

M Nieuwoudt et al.
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Table 4. Continued

Group Type Individual Type Number Measured

Inflammatory dermatoses Eczema Atopic eczema 17

Discoid eczema 3

Dermatitis not otherwise specified 10

Nodular prurigo 18

Psoriasis 42

Scabies 2

Morphoea 7

Urticaria 2

Discoid Lupus erythematosus 9

Hematoma 2

Cutaneous leishmaniasis 2

Rash 2

Rosacea 2

Postinflammatory hyperpigmentation 13

Telangiectasia 9

Abbreviations: BCC, basal cell carcinoma; SCC, squamous cell carcinoma.

M Nieuwoudt et al.
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acquired spectrum was recorded using multiple accumulations of a

300 ms integration time amounting to a total measurement time of

10 seconds. The measurement protocol considered the acquisition

of 3 individual spectra with the probe positioned on the suspected

lesion and 3 spectra on the adjacent skin (no lesion) as control

measurement. The aim of the control measurement was to subtract

this from the lesion measurement. However, the control spectra

were not used in the data analysis because the classification accu-

racy of subtracted lesionecontrol was better when only the lesion

spectra were used. The 3 spectra of each lesion measured were

averaged for analysis. The spectral range of our recordings ranged

between 700 and 1800 cm�1.

The spectra were preprocessed to remove fluorescence and

scattering background using a MATLAB asymmetric least squares

algorithm (Eilers and Perfect Smoother, 2003); the interference
Table 5. Summary of the Different Ethnicity and Lesion T
Validation)

Dataset Total Numbers of Lesions European

Asian (Indian,
Lankan, Filipin
Chinese, Tha
Malaysian)

I Benign lesions 404 130

Malignant lesions 118 3

% Ethnicity 71.8% 18.3%

II Benign lesions 404 130

Malignant lesions 118 3

Inflammatory dermatoses 71 17

% Ethnicity 68.4% 17.3%

III Malignant lesions 118 3

Inflammatory dermatoses 71 17

% Ethnicity 71.6% 7.6%

IV BCC 61 1

Melanoma 24 1

SCC 33 -

% Ethnicity 95.2% 1.6%

V Benign lesions 107 2

Malignant lesions 120 4

% Ethnicity 91.5% 2.4%
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signals arising from the fiber optic probe were removed using an in-

house custom-developed algorithm using the MATLAB programming

environment. The influence of the detector efficiency on spectral

intensities was corrected using a National Insititute of Standards and

Technology standard (Choquette et al, 2007). Before classification,

the spectra were preprocessed using a SavitskyeGolay smoothing

algorithm with 11 adjacent points and a second-order polynomial

with area normalization.

Sample collection

Raman spectra were recorded from volunteers at 3 different sites: an

advertised, at free university research clinic, and by opportunistic

recruitment at both a general dermatology and a plastic surgery

clinic. The very experienced dermatologist identified clinically and

unambiguously benign lesions and inflammatory dermatoses for
ypes in Each of the 5 Data Subsets (Calibration D

Sri
o,
i,

M�aori/Pacific
Peoples (Cook
Island M�aori,

Samoan, Tongan)

Latin American,
African, and

Middle Eastern
Percentage
Lesion Type

41 28 82.9%

2 1 17.1%

5.9% 4.0%

41 28 69.5%

2 1 14.3%

49 3 16.2%

10.6% 3.7%

2 1 47.0%

49 3 53.0%

19.3% 1.5%

1 1 51.6%

1 1 21.8%

- - 26.6%

1.6% 1.6%

11 0 47.1%

2 2 52.9%

5.2% 0.8%



Table 6. CV Results and Variance Explained by the PCs Chosen for Training Sets for Data Subsets IeV

Data
Subset

Latent
Variable
Number

X Cumulative
Variance Captured

(%)
CV Classification
Error Average RMSECV

Data
Subset

Latent
Variable
Number

X Cumulative
Variance Captured

(%)
CV Classification
Error Average RMSECV

I (i) 1 53.13 0.3537 0.3511 I (ii) 1 32.19 0.5161 0.2529

2 64.22 0.2859 0.3393 2 63.45 0.4275 0.2512

3 71.69 0.2353 0.3283 3 73.61 0.3597 0.2476

4 78.89 0.2231 0.3208 4 81.84 0.3499 0.2494

5 84.74 0.2067 0.3162 5 86.24 0.3554 0.2474

6 86.67 0.1997 0.31 6 89.35 0.3084 0.2452

7 88.65 0.1979 0.3082 7 92.08 0.2836 0.2419

8 91.89 0.196 0.3052 8 92.65 0.2667 0.2126

9 93.23 0.1705 0.3024

10 93.87 0.171 0.2996 III 1 52.06 0.3798 0.4925

11 94.89 0.1682 0.3 2 60.74 0.3375 0.4696

3 67.94 0.2881 0.4448

II 1 53.47 0.3703 0.3332 4 77.87 0.2924 0.4442

2 64.07 0.3121 0.324 5 82.15 0.2301 0.4274

3 71.31 0.2388 0.3154 6 85.99 0.2114 0.4165

4 78.54 0.2383 0.3106 7 88.55 0.2044 0.4022

5 83.52 0.2136 0.3074 8 91.16 0.2011 0.397

6 86.5 0.2146 0.304 9 91.92 0.1981 0.3827

7 90.49 0.2182 0.3023 10 93.31 0.1832 0.3681

8 92.13 0.2189 0.2982 11 94.61 0.1674 0.3616

9 93.11 0.1971 0.2942 12 95.57 0.1525 0.3596

10 93.58 0.1973 0.2889 13 95.91 0.1489 0.3558

11 94.63 0.2008 0.2884

V 1 52.06 0.3872 0.4924

IV 1 44.14 0.2964 0.3538 2 60.74 0.3227 0.4693

2 64.4 0.164 0.324 3 67.94 0.2977 0.4433

3 73.3 0.176 0.3095 4 77.87 0.2851 0.4465

4 78.99 0.201 0.3273 5 82.15 0.2354 0.4342

5 82.57 0.164 0.331 6 85.99 0.2274 0.4244

6 85.67 0.1455 0.3359 7 88.55 0.2179 0.4123

7 87.09 0.126 0.3466 8 91.16 0.2233 0.4084

8 90.19 0.139 0.3318 9 91.92 0.2064 0.3933

9 92.43 0.1205 0.3178 10 93.31 0.1894 0.3802

10 93.53 0.139 0.3062 11 94.61 0.1671 0.3714

11 94.84 0.139 0.3013 12 95.57 0.1638 0.3694

13 95.91 0.1597 0.3691

Abbreviations: CV, cross-validation; PC, principal component; RMSECV, root mean squared error of cross-validation.

M Nieuwoudt et al.
Raman Device Differentiates Cancer and Benign Skin Lesions
Raman spectroscopy. The majority of these diagnoses did not have

routine histological confirmation, reflecting usual clinical practice.

Those that were identified by the dermatologist as being malignant

were referred for biopsy for histology testing. At the plastic surgery

clinic, 2 plastic surgeons again triaged the patients who had been

referred by their general practitioners as having likely or skin cancers

(melanoma, BCC, and SCC). After in situ Raman spectroscopy

measurements of these lesions, those selected for biopsy were sent

for histology confirmation as malignant or benign after the excision.

In total, 1,296 benign and cancer lesions were measured from

320 patients. A total of 78% of the volunteers were European. Of the

European samples, 41% were recognized as benign nevi. Of note,

up to 20 different nevi were measured from different parts of the

body on a number of the participants. The numbers of benign nevi in

the dataset were therefore reduced by randomly selecting a

maximum of 4 benign lesions on different areas of the body from any

individual participant. The total dataset was thus reduced to 867
spectra that comprised 70% European (closer to the 70.2% European

demographic in New Zealand [Statistics New Zealand, 2018]). The

ethnicity breakdown of the total dataset of 867 spectra was 70%

European; 16% Asian; 6% M�aori; 5% Pacific people; and 4% Middle

Eastern, Latin American, and African patients.

The 124 malignant lesion samples included 27 melanomas (len-

tiginous melanoma, spitzoid melanoma, melanoma in situ, superfi-

cial spreading melanoma, metastatic melanoma, and acral

melanoma), 64 BCCs (in situ, nodular, superficial spreading, multi-

focal, and infiltrative), and 33 SCCs (in situ, acantholytic, infiltrative,

and poorly/moderately/well-differentiated). The 743 benign skin

conditions included a variety of both melanocytic and non-

melanocytic lesions (603 in total) and 140 inflammatory dermatoses.

Melanocytic lesions included nevi (congenital, compound, blue,

intradermal, lentiginous, junctional, halo, pedunculated, and

speckled lentiginous nevi), lentigo, café au lait, ephelides, and solar

lentigo. Nonmelanocytic benign lesions included actinic keratosis
www.jidinnovations.org 17
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and SK, linear epidermal nevus, keratoacanthomas, sebaceous hy-

perplasia, haemangioma, Becker nevus, fibroxanthoma, fibrous

papule, dermatofibroma, scar tissue, vascular malformation, scar

tissue, plantar fibromatosis, myxoid and milia cysts, keratosis pilaris,

cherry angioma, acrochordon, and accessory nipple. The inflam-

matory dermatoses included different eczema types (atopic eczema,

discoid eczema, dermatitis not otherwise specified, nodular pru-

rigo), psoriasis, morphea, urticaria, and discoid lupus erythemato-

sus. The numbers of benign lesions are more than 3 times greater

than the numbers of malignant lesions; however, the intent was to

include as wide a variety of benign lesions as possible in the dataset

that could be encountered in a general clinic. Because it was not

possible to biopsy every benign lesion for histology testing, an

additional dataset subset V that comprised only those lesions with

histology test results (benign and malignant) was also included in the

study.

The data subsets IeV mentioned earlier were each split into a

training set and a separate validation set in the ratio w85%: w15%.

Care was taken to ensure that for each data subset, the training and

validation sets did not share any data from the same patient. The

validation sets therefore represented a separate set of spectra and

from different patients.

The different types of lesions and inflammatory dermatoses are

listed in Table 4. The ethnicities and lesion types in the 5 different

datasets are summarized in Table 5. Classification models were

created for 5 different data subsets to aid clinicians in the diagnosis

of different lesion types in a routine clinic.

Data analysis

The classification of different lesion types was performed using PLS-

DA, chosen for its suitability for classifying Raman spectra of bio-

logical tissue. The very large number of variables in Raman spectra

can hinder the classification, especially when the number of samples

is limited, so the dimensionality reduction of the PLS method is

ideal. Cross-validation was performed on the training sets using the

random subset cross-validation procedure. The data training set was

split randomly into 10 smaller groups; one group was then subjected

to prediction by a calibration model drawn up using the other 9

groups and, this was repeated for each group. Five iterations of this

were procedure performed on 5 different groups of 10 data groups to

give an average root mean square error of the cross-validation for the

5 different iterations. The number of PCs or latent variables was

selected as that number yielding the minimum root mean square

error of the cross-validation. The cross-validation results and vari-

ance explained by the PCs chosen for each training set in data

subsets IeV are listed in Table 6.

The diagnostic accuracy of each classification model was evalu-

ated in terms of the AUC of the ROC and calculated using MedCalc

(version 22.001, MedCalc Software). Although other criteria such as

sensitivity, specificity, positive predictive values, and negative pre-

dictive values are often used, they can result in noticeable trade offs

between themselves (Trevethan, 2017). The ROC plots the cross-

validated sensitivity (1� specificity) for all possible threshold

values that could be defined for predicting a lesion as malignant or

benign and thus enables visualization of this trade off between

sensitivity (plotted on the y-axis) and 1 � specificity (plotted on the

x-axis). The threshold for defining a positive test result (cancer vs

benign) varies from most stringent (100% sensitivity) to least
JID Innovations (2024), Volume 4
stringent (100% specificity) (Kraemer, 1992; Hulley and Cummings,

1988). Generally, the optimum threshold proposed by PLS-DA cor-

responds with the probability of being in the malignant or benign

class equal to 50%. However, it is desirable for clinicians to select

the threshold that will ensure that all malignant samples are

correctly classified as malignant (ie, 100% sensitivity). In this study,

the specificities obtained at the sensitivity levels 100, 95, and 90%

were determined for each dataset.
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