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The objective of the present study was to identify potential biomarkers for gut bar-
rier failure in chickens. A total of 144 day-of-hatch Ross 308 male broiler chickens
were housed in 24 battery cages with six chicks per cage. Cages were randomly
assigned to either a control group (CON) or gut barrier failure (GBF) group. Dur-
ing the first 13 days, birds in CON or GBF groups were fed a common corn–soy
starter diet. On day 14, CON chickens were switched to a corn grower diet, and
GBF chickens were switched to rye–wheat–barley grower diet. In addition, on day
21, GBF chickens were orally challenged with a coccidiosis vaccine. At days 21
and 28, birds were weighed by cage and feed intake was recorded to calculate
feed conversion ratio. At day 28, one chicken from each cage was euthanized to
collect intestinal samples for morphometric analysis, blood for serum, and intestinal
mucosa scrapings for gene expression. Overall performance and feed efficiency was
severely affected (P<0.05) by a GBF model when compared with CON group at
days 21 and 28. Duodenum of GBF birds had wider villi, longer crypt depth, and
higher crypt depth/villi height ratio than CON birds. Similarly, GBF birds had longer
crypt depth in jejunum and ileum when compared with CON birds. Protein levels
of endotoxin and α1-acid glycoprotein (AGP) in serum, as well as mRNA levels of
interleukin (IL)-8, IL-1β, transforming growth factor (TGF)-β4, and fatty acid-binding
protein (FABP) 6 were increased (P<0.05) in GBF birds compared to CON birds;
however, mRNA levels of FABP2, occludin, and mucin 2 (MUC2) were reduced by 34%
(P<0.05), 24% (P=0.107), and 29% (P=0.088), respectively, in GBF birds compared
to CON birds. The results from the present study suggest that serum endotoxin and
AGP, as well as, gene expression of FABP2, FABP6, IL-8, IL-1β, TGF-β4, occludin,
and MUC2 in mucosa may work as potential biomarkers for gut barrier health in
chickens.
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Abbreviations: AGP, α1-acid glycoprotein; AJ, adherens junctions; BW, body weight; BWG, body weight gain; CON, control;
ERK, extracellular signal-regulated kinase; FABP, fatty acid-binding protein; FCR, feed conversion ratio; FI, feed intake;
GBF, gut barrier failure; GIT, gastrointestinal tract; IEC, intestinal epithelial cells; IL, interleukin; JAM, junctional adhesion
molecule; MUC2, mucin 2; NSP, non-starch polysaccharide; PAMP, pathogen-associated molecular pattern; PRR, pattern
recognition receptor; TGF, transforming growth factor; TJ, tight junction; TLR, toll-like receptor; TNF, tumor necrosis
factor; ZO, zonula occluden.
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Introduction

Barrier function is a critical aspect of gut heath. Oxidative stress,
poorly digestible protein, and coccidiosis are some examples that
can cause gut barrier failure (1–5). Nevertheless, as a consequence
of the removal of anti-microbial growth promoters, new multi-
factorial diseases causing enteritis and gut disorders of unknown
origin have emerged in broilers, causing negative impacts in health
and performance (6–9). Among them, dysbacteriosis, defined as
the presence of a qualitatively and/or quantitatively abnormal
microbiota in the proximal parts of the small intestine, associ-
ated with reduced nutrient digestibility, impaired intestinal bar-
rier function, bacterial translocation, and inflammatory responses
have been reported (4, 5, 10). However, more recently, poor gut
health has also been associated with bacterial chondronecrosis
with osteomyelitis in broiler chickens and breeders (11–13). As
the largest organ in the body, the gut serves as a selective bar-
rier to take up nutrients and fluids into the body, while exclud-
ing undesirable molecules and pathogens (3, 14, 15). Therefore,
proper gut barrier function is essential to maintain optimal health
and balance throughout the body, and represents a key line of
defense against foreign antigens from the environment (16). The
first layer of gut barrier is the extrinsic mucus layer comprised
an outer layer associated with bacteria and an inner layer with
high concentrations of secretory IgA and mucin. The outer layer
is loosely attached to epithelium. The inner layer is adherent
to the second layer of gut barrier, the intestinal epithelial cells
(IEC). IEC are a single layer of epithelial cells that separate the
intestinal lumen from underlying lamina propria (17–19). These
epithelial cells must be able to rapidly regenerate in the event of
tissue damage (14, 20, 21). The enterocytes in the apical epithe-
lium are responsible for absorption of nutrients. Tight junctions
(TJ) seal the paracellular space between adjacent epithelial cells
and regulate the permeability of intestinal barrier by preventing
diffusion of microorganisms and antigens (22, 23). Since IEC
are the primary cell type coming into contact with the external
environment, they act as the host’s first line of the defense. In
spite of their non-hematopoietic derivation, IEC represent a core
element of innate immunity within the gut-associated lymphoid
tissue, displaying a wide array of immune functions. In fact,
IEC are able to recognize pathogens through the expression of
innate immune receptors, release of anti-microbial molecules, and
secretion of a wide number of hormones, neuro transmitters,
enzymes, as well as cytokines and chemokines that link innate
and adaptive immune responses (24–26). Hence, any direct or
indirect damage on IECmay cause a breakdown in gut barrier and
consequently, disruption of normalmucosal immune homeostasis
that can potentially lead to uncontrolled chronic intestinal and
systemic inflammation (27, 28).

Several investigators have described the pathways associated
with the disruption of the protein networks that connect epithelial
cells by inflammatory mediators, such as hormones, oxygen free
radical species, enzymes, as well as multiple proinflammatory
cytokines (27, 29, 30). Feeding oxidized/unpreserved fat has been
also shown to increase intestinal epithelial turnover rates and
increase apoptosis at villus tips in poultry and swine (31). Non-
starch polysaccharides (NSP), such as β-glucans and pentosans
have been shown to have a detrimental influence on the utilization

of nutrients in broilers by increasing digesta viscosity and reducing
digestibility of nutrients (e.g., fat and protein) (32, 33), which
could cause dysbacteriosis. Currently, no biomarkers have been
described as tools to evaluate gut inflammation or gut barrier fail-
ure in broiler chickens. The objective of the present study was not
to determine the individual effects of diet ingredients or coccidia
challenge on gut health, rather to identify potential biomarkers
for gut barrier failure. Therefore, we attempted to exacerbate gut
barrier failure by feeding a high NSP diet containing rye, wheat,
and barley to induce high digesta viscosity (4, 5) in combination
with a 2× coccidiosis vaccination to induce gut health challenge.

Materials and Methods

Animal Source and Diets
A total of 144 day-of-hatch Ross 308 male broiler chickens were
randomly housed in 24 battery cages with six chicks per cage
in environmentally controlled rooms. To avoid cross contamina-
tion of coccidiosis vaccine, birds in control group (CON) and
gut barrier failure (GBF) group were housed in two separate
but identically controlled rooms. Temperature was maintained at
34°C for the first 5 days and then gradually reduced according
to normal management practices, until a temperature of 23°C
was achieved. Lighting was provided for 24 h/day. During the
first 13 days, birds in CON or GBF groups were fed common
corn–soy starter diet (Table 1). On day 14, birds in CON group
were switched to a corn–soy grower diet (14–28 days) and the
GBF group was switched to rye–wheat–barley diet (Table 1). The
experimental diets were formulated to approximate the nutritional
requirements of broiler chickens (34). On day 21, birds in GBF
treatment were orally challenged with 2× dose of Advent™ coc-
cidiosis vaccine, amixture ofEimeria acervulina,Eimeriamaxima,
and Eimeria tenella (Huvepharma Sofia, Bulgaria). All research
procedures were reviewed and approved by a licensed veterinarian
and also followed the protocols described previously (5, 35), which
were approved by IACUC at University of Arkansas. All studies
performed by Novus International, Inc. are in accordance to the
standards of the Guide for the Care and Use of Agricultural
Animals in Research and Teaching (35).

Experimental Design
The 144 day-of-hatch chickens were randomly allotted to one of
two groups; CONorGBF on the basis of initial body weight (BW).
Each treatment was comprised of 12 replicates of six chicks each
(n= 72/group). At 21 and 28 days, BW, body weight gain (BWG),
and feed intake (FI) were recorded in each cage to calculate feed
conversion ratio (FCR).

Sample Collection
At 28 days of age, one chicken from each cage was euthanized by
CO2 asphyxiation for sample collection. Blood sample was taken
from cardiac puncture using a syringe, kept at room temperature
for 3 h to allow clotting, and centrifuged (1,000× g for 15min
at 4°C) to separate serum. Following euthanasia, a 1-cm section
of duodenum was collected from the middle of the descending
duodenum; a 1-cm section of jejunum was collected at the
Meckel’s diverticulum; a 1-cm section of ileum was collected
2 cm before the ceca. All of intestinal sections were rinsed with
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TABLE 1 | Ingredient composition and nutrient content of common, control,
and gut barrier failure (GBF) diets, as-is basis.

Ingredient Common
starter,

0–13days (%)

Control
grower,

14–28days (%)

GBF
grower,

14–28days (%)

Corn 60.6 60.6 0
Rye 0 0 33.95
Wheat 0 0 20
Barley 0 0 10
SBM, 47.5% CP 32.56 32.56 28.8
Soybean oil 1.08 1.08 2.96
L-lysine HCl 1.48 1.48 0.14
MHA® 0.3 0.3 0.42
L-threonine 0.01 0.01 0.05
L-tryptophan 0.14 0.14 0.11
Dicalcium phosphate, 18.5% 1.59 1.59 1.57
Limestone 1.09 1.09 1
Salt 0.25 0.25 0.25
Choline chloride, 60% 0.25 0.25 0.25
Sodium bicarbonate 0.2 0.2 0.2
Mineral premixa 0.2 0.2 0.2
Vitamin premixb 0.1 0.1 0.1
Santoquin™ Mixture 6 0.02 0.02 0
MycoCURB™ 0.05 0.05 0
Coban® 90 0.05 0.05 0
BMD® 60 0.03 0.03 0
Calculated nutrients
ME, kcal/kg 3,031 3,152 3,152
SID Lysine, % 1.27 1.1 1.1
SID TSAA, % 0.94 0.84 0.84
Total CP, % 22 20.7 21.8
Ca, % 1.05 0.9 0.9
Available P, % 0.5 0.45 0.45

aMineral premix supplied per kilogram of diet: Mn, 120mg; Zn, 100mg; Fe, 40mg; Cu,
16mg; I, 1.25mg; Se, 0.30mg.
bVitamin premix supplied per kilogram of diet: retinol, 9.2mg; cholecalciferol, 100µg;
dl-α-tocopherol, 90mg; menadione, 6mg; thiamine, 6.2mg; riboflavin, 26.5mg; pan-
tothenic acid, 39.7mg; niacin, 100mg; pyridoxine, 11mg; folic acid, 4mg; biotin, 0.3mg;
cyanocobalamin, 0.1mg.

10% neutral buffered formalin and then fixed in 20× volume of
10% neutral buffered formalin. A 10-cm section of jejunum was
rinsed with ice cold phosphate buffered saline (pH 7.4) and cut
open to scrape mucosa using RNAse-free glass slides into 2-ml
tubes with 1ml RNAlater (Applied Biosystems, NY, USA). The
mucosal scrapings were stored at 4°C for 24 h and then at −20°C
until total RNA isolation.

Histological Sample Preparation and Intestinal
Morphometry Measurement
Intestinal segments were trimmed, processed, and embedded in
paraffin. A 5-µm section of each sample was placed on a glass
slide and stained with hematoxylin and eosin for morphometry
examination and measurement under Olympus light microscope
using Olympus MicroSuite™ Imaging software (Center Valley,
PA, USA). Five replicate measurements for each variable studied
were taken from each sample, and the average values were used
in statistical analyses. Villi height was measured from the top of
the villi to the top of the submucosa. Crypt depth was measured
from the base upwards to the region of transition between the
crypt and villi. Villi width was measured at the middle of each

villus, whereas crypt/villi ratio was determined as the ratio of
crypt depth to villi height (36).

Serum Endotoxin and Serum α1 Acute Phase
Protein Determination
Endotoxin was measured using a chicken Endotoxin Elisa kit
from Amsbio (Cambridge, MA, USA). Acute phase protein, α1-
acid glycoprotein (AGP) was measured using chicken α1-acid
glycoprotein measurement kit from The Institute for Metabolic
Ecosystem (Miyagi, Japan). The Optical Density for both kits
was determined at 450 nm using a BIO-TEK ELx800 (BIO-TEK
Instrument, Winooski, VT, USA).

Quantitative Reverse Transcription Polymerase
Chain Reaction (qRT–PCR)
Total RNA was isolated from mucosa scraping samples using
Clontech Total RNA isolation NucleoSpin® RNA II kit (Clon-
tech Laboratories, Inc., CA, USA). One microgram of total RNA,
11mer oligo mix from Fluoresentric, and M-MLV Reverse Tran-
scriptase (Life Technologies, Grand Island, NY, USA) were used
to synthesize cDNA according to the manufacturers’ instructions.
The relative mRNA levels of mucin 2 (MUC2), fatty acid-binding
protein (FABP) 2, FABP6, interleukin (IL)-8, IL-1β, transforming
growth factor (TGF)-β4, occludin, zonula occluden (ZO)-1, junc-
tional adhesion molecule (JAM) 2, JAM3, catenin, tumor necrosis
factor (TNF) α, Toll-like receptor (TLR) 2β, TLR4, and claudin 1
were measured by quantitative PCR using Applied Biosystems®
SYBR® Green PCR Master Mix, the 7500 Fast Real-Time PCR
System, and primers inTable 2. Results were expressed as the level
relative to the corresponding housekeeping gene actin. All primers
were verified for the efficiency and linearity of amplification.

Statistical Analyses
All data were tested for normality and subjected to one-way
ANOVA as a completely randomized design using the GLM pro-
cedure of SAS (37). Each cage was used as the experimental unit
for the analysis. Growth performance including BW, BWG, FI,
and FCR used the average data per cage. Gut morphometric mea-
surements, serum endotoxin, AGP, and qRT–PCR used individual
measurement from one randomly chosen bird per cage. Data are
expressed as mean± SE.

Results

Growth Performance
The results of the growth performance parameters between CON
and GBF groups are summarized in Table 3. BW, FI per bird,
BWG and FCR at 21 and 28 days of age were dramatically reduced
in GBF chickens when compared with CON chickens (P< 0.05),
indicating that GBF model substantially compromised the growth
performance of chickens.

Histomorphometric Analysis
The results of the histomorphometric analysis of duodenum,
jejunum, and ileal tissue between CON and GBF chickens at
28 days of age are summarized in Table 4. The duodenum,
jejunum, and ileum all showed increased (P< 0.05) crypt depth
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TABLE 2 | List of primers used for qRT–PCR.

Genes Forward primer Reverse primer Fragment size (bp)

Actin CAACACAGTGCTGTCTGGTGGTA ATCGTACTCCTGCTTGCTGATCC 205
MUC2 GCCTGCCCAGGAAATCAAG CGACAAGTTTGCTGGCACAT 59
FABP2 AAAGATAATGGAAAAGTACTCACAGCAT CCTTCGTACACGTAGGTCTGTATGA 77
FABP6 CGGTCTCCCTGCTGACAAGA CCACCTCGGTGACTATTTTGC 59
IL-8 TCCTGGTTTCAGCTGCTCTGT CGCAGCTCATTCCCCATCT 52
TGF-β4 CGGCCGACGATGAGTGGCTC CGGGGCCCATCTCACAGGGA 113
Occludin GAGCCCAGACTACCAAAGCAA GCTTGATGTGGAAGAGCTTGTTG 68
ZO1 CCGCAGTCGTTCACGATCT GGAGAATGTCTGGAATGGTCTGA 63
JAM2 AGCCTCAAATGGGATTGGATT CATCAACTTGCATTCGCTTCA 59
JAM3 CCGACGGCTGTTTGTGTTT GGCGGTGCAAAGTTTTGG 56
Catenin CGACAACTGCTCCCTCTTTGA GCGTTGTGTCCACATCTTCCT 63
TNFα TGTTCTATGACCGCCCAGTTC GACGTGTCACGATCATCTGGTT 63
TLR2β CGCTTAGGAGAGACAATCTGTGAA GCCTGTTTTAGGGATTTCAGAGAATTT 90
TLR4 AGTCTGAAATTGCTGAGCTCAAAT GCGACGTTAAGCCATGGAAG 190
Claudin 1 TGGCCACGTCATGGTATGG AACGGGTGTGAAAGGGTCATAG 62
IL-4 GCCAGCACTGCCACAAGA GGAGCTGACGCGTGTTGAG 54
IL-6 GAGGGCCGTTCGCTATTTG ATTGTGCCCGAACTAAAACATTC 67
IL-1β CAGCCCGTGGGCATCA CTTAGCTTGTAGGTGGCGATGTT 59

TABLE 3 | Performance parameters between control and gut barrier failure grower groups (GBF).

Treatments and growing phase BW (g) FI per bird (g) BWG (g) FCR during each phase

21days
CON 866.25± 11.87a 617.25± 8.76a 390.58± 6.21a 1.58± 0.02b

GBF 642.58± 10.50b 480.67± 11.85b 203.17± 11.27b 2.42± 0.09a

28days
CON 1,302.75± 26.45a 729.50± 26.17a 436.50± 19.04a 1.67± 0.03b

GBF 895.50± 21.58b 578.17± 9.5b 252.92± 20.30b 2.42± 0.17a

Data are expressed as mean±SE.
a,bSuperscripts within columns indicate difference at P<0.05.

(shown as * in Figure 1) in GBF chickens compared to CON
chickens. GBF chickens also had wider villi in duodenum and
jejunum, and higher crypt/villi ratio in duodenum compared to
CON chickens; however, the crypt/villi ratio was not different
in jejunum (P= 0.064) and ileum (P= 0.208) because the villus
height in jejunum and ileum was also increased (P< 0.03) in
GBF birds compared to CON birds. The increase of crypt depth
and/or the crypt/villi ratio is an indication of greater need of cell
proliferation to maintain proper gut health, which suggests that
GBF model generated unhealthy gut barrier.

Serum Endotoxin and AGP
Table 5 shows the comparison of serumAGP and endotoxin levels
between CON and GBF groups of broiler chickens at 28 days of
age. AGP, a marker for systemic inflammation, was increased
(P< 0.05) by 3.8-fold in GBF birds compared to CON birds
(Table 5), suggesting that systemic inflammation was occurring
in GBF birds. Endotoxin, a toxin released by gram-negative bac-
teria in the gut, was increased (P< 0.05) by 2.1-fold in serum
of GBF birds compared to CON birds (Table 5), which suggests
that greater amount of endotoxin was translocated from intestinal
lumen into blood.

Gene Expression in Jejunal Mucosa by qRT–PCR
The relative mRNA levels of genes that are possibly involved
in gut barrier function and inflammation in jejunal mucosa of

TABLE 4 | Histomorphometric analysis of duodenum, jejunum, and ileum in
control (CON) and gut barrier failure (GBF) groups in chickens at 28days
of age.

Tissue CON GBF

Duodenum
Villus height, µm 2324.7± 123.84a 2649.8± 156.21a

Villus width, µm 172.81± 5.24b 214.08± 13.04a

Crypt depth, µm 104.51± 4.76b 201.74± 17.10a

Crypt/villi ratio 0.04± 0.01b 0.08± 0.01a

Jejunum
Villus height, µm 1883.40± 141.54b 2273.80± 77.17a

Villus width, µm 170.57± 9.17b 190.02± 12.08a

Crypt depth, µm 112.84± 9.32b 172.78± 10.59a

Crypt/villi ratio 0.06± 0.01a 0.07± 0.01a

Ileum
Villus height, µm 1005.70± 45.77b 1334.13± 79.61a

Villus width, µm 163.80± 4.97a 166.25± 7.85a

Crypt depth, µm 113.63± 7.91b 174.70± 14.11a

Crypt/villi ratio 0.11± 0.01a 0.13± 0.01a

Values are expressed as means±SE.
a,bSuperscripts within rows indicate difference at P< 0.05.

broilers chickens at 28 days of age are shown in Table 6. The
relative mRNA levels of IL-8, IL-1β, TGF-β4, and FABP6 were
increased (P< 0.04) by 3-, 1.5-, 2.2-, and 7-fold, respectively, in
GBF chickens compared to CON chickens. However, FABP2,
occludin, and MUC2 mRNA levels were decreased by 34%
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FIGURE 1 | Representative images of duodenum (A,B), jejunum (C,D), and ileum (E,F) in control (A,C,E) and gut barrier failure (B,D,F) groups of
broilers chickens at 28days of age. The representative crypts are shown as *.

TABLE 5 | Comparison of serum endotoxin and α1 acute phase protein
(AGP) values between control and gut barrier failure groups in chickens
at 28days of age.

Treatment Endotoxin pg/ml α1 Acute phase protein
(AGP) μg/ml

CON 159.03± 8.56b 174.40± 28.95b

GBF 331.84± 80.46a 655.30± 6.38a

Data are expressed as mean±SE.
a,bSuperscripts within columns indicate difference at P<0.05.

(P= 0.005), 24% (P= 0.107), and 29% (P= 0.088), respectively,
in GBF birds compared to CON birds. The mRNA levels of
catenin, claudin 1, ZO1, JAM2, JAM3, IL-4, IL-6, TLR4, TLR2β,
and TNF-α were not different (P> 0.1) between CON and GBF
chickens (data not shown).

Discussion

It is well known that poor gut health causes negative impacts in
the health and growth performance of broiler chickens in poultry

industry. Alternative grains, such as wheat, barley, and rye that are
high in NSP, have been reported to cause a significant reduction
in performance (38–40). Several mechanisms of the action of
NSP on nutrient absorption have been described including an
increased digesta viscosity due to reduced digestibility, thicken-
ing of the mucous layer on the intestinal mucosa, epithelial cell
apoptosis, and inflammation caused by dysbacteriosis (10, 31, 39).
Poultry have little or no intrinsic enzymes capable of hydrolyzing
these NSP, so high concentrations of NSP in wheat, barley, or
rye lead to reduced nutrient digestibility. The undigested feed
ingredients in the gut provide nutrients for bacteria overgrowth
in the hind gut, leading to dysbacteriosis. High NSP diets have
also been associated with necrotic enteritis, a multifactorial dis-
ease caused by Clostridium perfringens that is probably the most
important bacterial disease in terms of economic implications
in broiler chickens (41). The nutritional and economic conse-
quences of mounting an inflammatory response in poultry are
inversely related to BWG and overall performance (42, 43). In
the present study, a wheat–barley–rye diet in combination with a
coccidia challenge was used to induce gut barrier failure in broiler
chickens. The overall growth performance and feed efficiency
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TABLE 6 | Relative mRNA levels of genes in jejunal mucosa between control and gut barrier failure groups of broilers chickens at 28days of age.

Treatment mRNA TGF-β4 mRNA IL-1β mRNA IL-8 mRNA FABP2 mRNA FABP6 mRNA MUC2 mRNA occludin

CON 81.98± 4.55a 25.6± 4.52a 0.04± 0.01a 26.72± 1.99b 0.01± 0.001a 123.30± 15.51b 2.23± 0.26b

GBF 182.03± 18.09b 43.89± 6.65b 0.13± 0.01b 17.66± 1.89a 0.07± 0.01b 87.11± 12.16b 1.69± 0.16b

P-value 0.0001 0.040 <0.0001 0.0005 0.020 0.088 0.107

Data are normalized by actin mRNA and expressed as mean±SE.
a,bSuperscripts within columns indicate difference at P<0.05.

were severely reduced by this GBF model. These results are in
agreementwith previous studies that highNSPdiets compromised
growth performance in chickens (4, 5, 44, 45).

The morphometry of duodenum, jejunum, and ileum in CON
and GBF chickens at 28 days of age was measured under micro-
scope to confirm whether the rye–barley–wheat diet and coccidia
challenge generated gut barrier failure. GBF birds had longer
crypt depth than CON birds in duodenum, jejunum, and ileum
and also higher crypt/villi height ratio in duodenum than CON
birds. Crypt depth and the ratio of crypt depth to villus height
are measures of efficiency because the increase of crypt depth
and/or crypt/villi ratio indicates greater need of cell proliferation
to maintain gut barrier integrity (46–48). In addition to longer
crypt depth, duodenum and jejunum of GBF birds also had wider
villi. Narrow villi have greater nutrient absorption area. Widening
of villus indicates less nutrient absorption area and probably also
greater amount of gut-associated immune tissue proliferation and
accumulation in the villus, which is another indication of compro-
mised gut heath. The structural change in GBF birds confirmed
that gut barrier failure was occurring in GBF birds, which may
be associated with the poor performance in this study and is
consistent with a previous study (49).

The gastrointestinal tract (GIT) is repeatedly challenged by for-
eign antigens and the intestinalmucosamust have the capability of
fast restoration in the event of tissue damage (50). Impairment of
this fragile barrier leads to enteritis and other inflammatory dis-
eases (9). The intestinal mucosa contains different types of epithe-
lial cells with specific functions. IEC control surface-associated
bacterial populations without upsetting the microbiome that are
vital for host health (51), and play an essential role in maintain-
ing gut homeostasis and barrier function (52, 53). As a single-
cell layer, IEC serve as a protective barrier against the external
environment and maintain a defense against intraluminal toxins
and antigens in addition to support nutrients and water transport
(54). IEC are sealed together by adherens junctions (AJ) and TJ
that are composed of cadherins, claudins, occludins, and JAM
(29, 55–57). Upon injury, IEC undergo a wound healing process
that is reliant on three cellular events: restitution, proliferation,
and differentiation (27). Previous studies have shown that various
regulatory peptides, including growth factors and cytokines, are
capable of influencing the restoration of damaged IEC (58).

Gram-negative bacteria in the gut release endotoxin during
growth, division, and death, and luminal endotoxin can translo-
cate to circulation via two routes: (1) non-specific paracellular
transport through TJ of epithelial cells, and (2) transcellular trans-
port through lipid raftmembrane domains and receptor-mediated
endocytosis (2, 59). TLR4 is involved in the latter route (60). The
lack of difference of TLR4 mRNA levels between CON and GBF

birds suggests that endotoxin probably did not enter into circu-
lation via transcellular transport. Pathogens, such as Escherichia
coli or C. perfringens, as well as their elaborated toxins (e.g.,
endotoxin or entertoxin) have been reported to alter epithelial
TJ and gut barrier function (23). Poor integrity of gut barrier or
opening of TJ has been reported to facilitate paracellular trans-
port of endotoxin, which will increase proinflammatory cytokine
secretion and activate innate and adaptive immune response (61,
62). Secreted cytokines may enter the IEC through the basolateral
side, resulting in further increased inflammation, disruption of
TJ complexes, and increased paracellular endotoxin transport
(63). Interestingly, there were detectable levels of endotoxin in
CON chickens, which are actually not the background noise
detected by ELISA kit. In this study, the CON chickens were
much healthier than GBF chickens, the endotoxin in the serum
of CON chickens could be non-specific paracellular diffusion of
endotoxin from intestinal lumen into circulation. The increase of
endotoxin levels in GBF birds indicates that gut barrier failure
increased the transport of endotoxin from intestinal lumen into
circulation, which could further negatively affect the integrity
of TJ as evidenced by the decrease of occludin mRNA levels
in GBF birds. Occludin, one of the major components of TJ,
is involved in the regulation of inter-membrane diffusion and
paracellular diffusion of small molecules (64). Occludin is down-
regulated in patients with Crohn’s Disease and ulcerative colitis,
two common types of inflammatory bowel disease in humans
(57, 64), suggesting the important role of occludin in intestinal
health. However, no differences were detected between GBF and
CON chickens in the expression of other TJ components, such
as claudin 1, ZO1, JAM2, and JAM3. Claudin 1 is a member of
multiple-span transmembrane protein called claudins, a protein
family with more than 20 members, JAM2 and JAM3 are single-
span transmembrane protein (51, 65, 66). ZO1 is a plaque protein
that acts as adaptors to connect transmembrane proteins to the
perijunctional actomyosin ring (23). These results indicate that
GBFmodel impairedTJ integrity by reducing occludin expression,
which facilitates the transport of endotoxin from intestinal lumen
into blood for systemic circulation.

Endotoxin was also reported to increase satiety peptide secre-
tion, which will reduce FI (20). The decreased growth perfor-
mance in GBF birds could be partially associated with the increase
of satiety peptide resulting from the elevated endotoxin levels,
although satiety peptide was not measured in this study.

α1-Acid glycoprotein, an acute phase protein, has been used
as a marker for systemic inflammation in poultry (67). Increase
of AGP in GBF birds confirms that systemic inflammation was
occurring in GBF birds, which led us to investigate the local
inflammation status in the gut. Changes in the gutmicrobiota have
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been reported to negatively affect gut barrier integrity, leading
to increased leakage of endotoxin and fatty acids, which can act
upon TLR4 to activate systemic inflammation (68). Activation
of macrophages via TLR is important for inflammation and host
defense against pathogens; however, recent studies suggest that
non-pathogenic molecules are able to induce inflammation via
TLR2 and TLR4 (16, 69–71). The capacity to detect tissue injury
and to initiate adequate repair mechanisms is indispensable for
the survival of all higher species. A common aspect of all types
of injury – caused by infectious, physical, chemical, or immune
processes – is a compositional change of the cellular environment
leading to the presence of novelmolecular patterns. These patterns
are recognized by a group of receptors termed pattern recognition
receptors (PRR) and trigger specific responses that promote the
restoration of tissue function, including inflammation and wound
healing (20, 72). Pathogen recognition is critical to survive in an
essentially hostile environment that is full of potentially infective
microorganisms. Detection systems for molecular patterns char-
acteristic for pathogens (pathogen-associated molecular patterns,
PAMP) develop early in evolution, and are present inmost species
including plants and invertebrates (69). As a group of highly con-
served PRR, TLR signals the presence of various PAMP to cellular
constituents of the innate and adaptive immune (69, 73), therefore
acting as gatekeepers for several highly efficient response systems
that regulate tissue homeostasis and protect the host after acute
injury (60, 74). Upon injury, the intestinal epithelium undergoes
a wound healing process (69). Recent studies have revealed the
activation of TLR by the microbiota during the healing process
(20). In addition, several cytokines, such as TGF-α, TGF-β, IL-
1β, and IL-2, are also increased during healing process (16, 75). In
this study, the mRNA levels of TGF-β and IL-1β in GBF chickens
were increased, but TLR4, TLR2β, TGF-α, IL-4, and IL-6 mRNA
levels were not different compared to CONchickens. These results
suggest that the inflammation occurred in GBF birds in this study
is likely not mediated by TLR2 or TLR4 pathway. However, TLR3
mRNA and protein levels of TLR2, TLR4, and TLR3 were not
measured in this study. Therefore, we are not able to exclude the
possibility that TLR pathway is involved in the inflammation in
GBF birds. IL-1β is an important mediator of the inflammatory
response and is involved in a variety of cellular activities, includ-
ing cell proliferation, differentiation, and apoptosis (76). TGF-β,
a key mediator of mucosal immune homeostasis, mediates IgA
production, retains lymphocytes in the gut and promotes wound
healing of intestinal epithelium and mucosa (75). TGF-β also
promotes IEC proliferation through the activation of extracellular
signal-regulated kinase (ERK) 1/ERK2 mitogen-activated protein
kinase during wound healing (20). IL-8 is secreted basolaterally
by intestinal epithelium in response to pathogenic bacteria or spe-
cific inflammory cytokines, and triggers neutrophilmigration and
inflammation in intestine (73). The increase of systemic AGP, and
mucosal TGF-β, IL-8, and IL-1β in GBF birds indicate that GBF
model increased intestinal inflammation and activated intestinal
innate immune response and wound healing.

Mucins are large glycoproteins that cover epithelial surfaces
of the intestine and form a mucus layer to protect epithelial
cells from gut health challenge. There are two major types of
mucins, membrane-bound and secreted (77, 78). In chickens

(Gallus gallus), three transmembrane mucins (MUC4, MUC13,
and MUC16) and four gel-forming mucins (MUC6, MUC2,
MUC5ac, and MUC5b) have been identified (79). In mammals,
MUC2, the mucin secreted by goblet cells, is the most abundant
mucin in the intestine, and its deficiency has been reported to
increase bacterial translocation and inflammation (18, 80). Evo-
lutionary studies suggest that mucins share a common ancestor,
since their domain structures are well conserved in metazoans
(71, 81). All mucins (MUC) contain at least one PTS domain,
a region rich in proline, threonine, and serine (18, 82). Chicken
MUC2 has been reported to be remarkably similar to human and
mouse outside of the central PTS domain, but is highly divergent
within this central repetitive structure (82, 83). Although the
physiological implications and disease associations of MUC on
various mucosal surfaces are well understood, there are still many
questions as to how and why the gene architecture of this family
contributes to diverse protein modifications that show diverse
biological effects between metazoans in health and disease (18,
84–87). MUC2 gene expression has been used as a marker for gut
health in poultry and other species (85, 88, 89). For example, Li
et al. found that zinc supplementation in breeder diets improved
morphometry, increased the number of goblet cell per villus, and
MUC2 gene expression, and reduced mRNA levels of proinflam-
matory cytokines, such as IL-6 and IL-1β in the jejunum of their
offspring (89). In the present study, MUC2 gene expression was
reduced by 29% in GBF birds compared to CON birds, suggesting
that GBF model reduced mucus layer protection in jejunum.

Intracellular lipid chaperones known as FABP are a group of
molecules that coordinate lipid response and metabolism in cells
(90). FABP are found across species, fromDrosophilamelanogaster
and Caenorhabditis elegans to mice and humans, demonstrat-
ing strong evolutionary conservation (90). FABP-mediated lipid
metabolism is closely linked to both metabolic and inflammatory
processes through modulating critical lipid-sensitive pathways in
target cells, especially adipocytes and macrophages (90, 91). Nine
FABP have been identified so far in intestine, liver, brain, adipose,
and muscle, the organs that show high rates of lipid metabolism,
in vertebrates (92, 93). Intestinal FABP, FABP2, and FABP6, are
expressed at high levels in the small intestine and ileum, respec-
tively, and in addition to mediate lipid metabolism, they are also
involved in intestinal inflammatory conditions by modulating
critical lipid-sensitive pathways in adipocytes and macrophages
in human (94, 95). FABP2 is down-regulated in patients with
ischemia/reperfusion-induced intestinal barrier injury (93), sug-
gesting the important role of FABP2 in gut barrier health. FABP2
has been identified as a specific marker for the relative amount
of epithelium in humans and pigs (96). Several FABP (FABP1,
FABP2, FABP6, and FABP10) have been identified to be predom-
inantly expressed in the digestive tract of chickens (97, 98); how-
ever, much remains to be determined regarding their expression
and biological functions in poultry. FABP10 plays an important
hepatic role in in response to FI in chicken (98). FABP2 is involved
in lipogenesis and fatty acids transport, and plays an important
role in abdominal fat content in broiler chickens (98–100). In
the present study, GBF model reduced FABP2 gene expression,
suggesting that, like the role of FABP2 in human intestinal barrier
health, FABP2 can be used as a marker of gut barrier function
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in chicken. Reduction of FABP2 expression indicates the loss of
epithelial cell content and occurrence of intestinal barrier failure
in GBF birds.

The ileal lipid binding protein (ILBP; human gene FABP6) was
recently shown to be needed for the efficient transport of bile acids
from the apical side to the basolateral side of enterocytes in the dis-
tal portion of murine intestine (101). Bile acids are synthesized by
the liver and released into the lumen of the small intestine via bile,
and the majority of bile acids are recovered in the distal end of the
small intestine and then returned to the liver for reuse (102). Bile
acid has emerged as important biological molecules that emulsify
lipids and liposoluble dietary nutrients to facilitate their digestion
and absorption (103, 104). It has strong anti-microbial activity and
therefore is emerging as a host factor that regulates the composi-
tion of microbiota in the gut (105, 106). Reduced bile acid levels
in the gut are reported to be associated with bacterial overgrowth
and inflammation (106). Gut inflammation inGBFbirdsmay have
resulted in lower levels of bile acids, which unfortunately were not
measured in this study. The substantial increase of FABP6 by four
fold in GBF birds indicates high demand of bile acids as an anti-
microbial to promote the recovery of dysbacteriosis and barrier
failure in the gut of GBF birds.

In conclusion, the purpose of this study was not to determine
the individual effects of diet ingredients or coccidia challenge

but rather to determine the potential biomarkers that may be
used to define gut barrier failure in future studies. We attempted
to exacerbate gut barrier failure with the tools available for us,
and the results obtained in the present study suggest that the
combination of high NSP diet and a coccidia challenge induced
gut barrier failure and inflammation in broilers characterized by
the increase of endotoxin and AGP in serum, as well as increase
of IL-8, IL-1β, TGF-β4, and FABP6 mRNA, and reduction of
FABP2, MUC2, and occludin mRNA in jejunal mucosa of GBF
birds compared to CON birds. These parameters may be uti-
lized as potential biomarkers for gut barrier health in chickens.
Now that we have a better understanding of what biomark-
ers are relevant in gut barrier failure models in chickens, fur-
ther studies will be conducted to evaluate the effects of chicken
enteropathogens, different dietary ingredients or feed additives,
such as probiotics and prebiotics, on gut barrier function in broiler
chickens.
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