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ABSTRACT Population structure is a confounding factor in genome-wide association studies, increasing the rate of false positive
associations. To correct for it, several model-based algorithms such as ADMIXTURE and STRUCTURE have been proposed. These tend
to suffer from the fact that they have a considerable computational burden, limiting their applicability when used with large datasets,
such as those produced by next generation sequencing techniques. To address this, nonmodel based approaches such as sparse
nonnegative matrix factorization (sNMF) and EIGENSTRAT have been proposed, which scale better with larger data. Here we present
a novel nonmodel-based approach, population structure inference using kernel-PCA and optimization (PSIKO), which is based on
a unique combination of linear kernel-PCA and least-squares optimization and allows for the inference of admixture coefficients,
principal components, and number of founder populations of a dataset. PSIKO has been compared against existing leading methods
on a variety of simulation scenarios, as well as on real biological data. We found that in addition to producing results of the same
quality as other tested methods, PSIKO scales extremely well with dataset size, being considerably (up to 30 times) faster for longer
sequences than even state-of-the-art methods such as sNMF. PSIKO and accompanying manual are freely available at https://www.
uea.ac.uk/computing/psiko.

POPULATION stratification has been commonly used to
investigate the structure of natural populations for some

time and is also recognized as a confounding factor in genetic
association studies (Knowler et al. 1988; Marchini et al.
2004). As a result, programs for detecting population strat-
ification have become a standard tool for genetic analysis.
Such approaches generally separate into two classes. Model-
based approaches such as STRUCTURE (Pritchard et al. 2000)
and the closely related ADMIXTURE approach (Alexander
et al. 2009) are desirable in that they return a Q-matrix, which
for each accession of the (marker) dataset indicates the pro-
portion of its genotype that came from one of K $ 2 assumed
founder populations. This biological interpretability ofQ-matrices
conveniently lends itself to a subsequent use in association

studies. On the other hand, such approaches often suffer
from long run times, particularly as dataset size increases.
This problem is becoming particularly exacerbated with the
increased use of next generation sequencing (NGS) and
large SNP chips to develop marker datasets (International
HapMap Consortium 2007; Kim et al. 2007). Conversely,
nonmodel-based approaches such as EIGENSTRAT (Price et al.
2006), which uses principal component analysis (PCA),
tend toward much shorter run times, making them more
convenient when analyzing large marker sets. Unfortu-
nately, EIGENSTRAT only returns principal components
(PCs) of a dataset and not a Q-matrix. Some nonmodel-
based approaches such as the recently introduced sparse
nonnegative matrix factorization (sNMF) method (Frichot
et al. 2014), have made advances regarding these issues and
output a Q-matrix for use in association genetic analysis while
significantly shortening run times. Like EIGENSTRAT, sNMF can
be thought of as a feature extraction approach aimed at reducing
the dimensionality of a high dimensional dataset. However, the
matrices used by both approaches to achieve this reduction have
different mathematical properties (Kim and Park 2007). Even
so, sNMF still suffers from longer run times with increased num-
ber of markers.
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In this article, we propose the novel PSIKO approach,
which is linear-kernel PCA based. Like EIGENSTRAT, PSIKO
returns significant principal components of a dataset. Con-
trary to EIGENSTRAT, however, it also generates Q-matrices,
and these are of comparable quality to those produced by
STRUCTURE, ADMIXTURE, and sNMF. In addition, PSIKO’s
scaling properties are better than sNMF’s (and thus STRUC-
TURE’s and ADMIXTURE’s) when the dataset size increases,
making it particularly attractive for large datasets.

We rigorously tested the performance of PSIKO using
simulated datasets, designed to evaluate the effects of inbreeding,
noise, missing data, and SNP pruning, while enabling us to
compare run time and scaling properties in comparison to leading
approaches such as STRUCTURE, ADMIXTURE, and sNMF.

Although we simulated a range of biologically motivated
scenarios, as a more realistic test, we also assessed the perfor-
mance of PSIKO for Q-matrix estimation from two biological
datasets. The first of these was a relatively small diversity
panel comprising 84 Brassica napus lines that had been pre-
viously used to perform associative transcriptomics of seed
traits (Harper et al. 2012). This dataset is of particular interest
as it could be considered to have a complex evolutionary his-
tory. B. napus is a relatively recently formed species, having
arisen from spontaneous hybridization between B. rapa and B.
oleracea as little as 10,000 years ago. It exhibits considerable
phenotypic variation, includes spring, semi-winter, and winter
ecotypes and has been cultivated as both vegetable and oilseed
crops. The most intensive breeding occurred over the last 50–
60 years to produce the most commonly used “canola type”
oilseed rape cultivars with both low erucic acid and low glu-
cosinolate content in the seed. Many of the lines in this bi-
ological dataset will have been included in these breeding
programs and certain groups (such as the winter oilseed rape
lines) may have a complex breeding history. Despite this, the
wide diversity of accessions in the panel enabled 101,644 SNP
markers to be discovered. Originally the population stratifica-
tion of this set of accessions was analyzed using STRUCTURE
before using the identified Q-matrix in a mixed linear associ-
ation model (MLM). We decided to compare the Q-matrices
from PSIKO to those of STRUCTURE as well as sNMF and
ADMIXTURE, and determine how these Q-matrices affect the
results of the MLM for the original seed oil traits.

On its own and in combination with PLINK’s sliding win-
dow SNP pruning procedure, we also tested the Q-matrices
produced by PSIKO and the three other methods under in-
vestigation on a subset of the HapMap Phase 3 project data-
set (International HapMap Consortium 2010). This dataset
should provide a more standard random mating model than
the Brassica dataset, while providing an excellent real-life
example of the very large marker datasets that will become
more common with the advances in sequencing technology.

Materials and Methods

In this section, we first provide an outline of PSIKO in terms
of a two-step approach and then describe these two steps in

detail. This also includes a brief description of kernel-PCA
(Scholkopf et al. 1999) as its main underlying technique. We
then present details on the simulation experiments and the
real biological datasets that we used to assess the perfor-
mance of PSIKO, where the former also includes behavior
under noise, missing data, inbreeding, large datasets, and
SNP pruning. A presentation of PSIKO in terms of pseudo-
code may be found in Supporting Information, File S1.

We start with remarking that we follow Engelhardt and
Stephens (2010) to infer a SNP matrix from a dataset given
in terms of a sequence of d $ 1 SNPs and n $ 1 accessions,
that is, a d3 nmatrix whose entries are 0, 1, and 2. For this,
we use a reference sequence and count for each locus of an
accession the number of copies of the reference allele found
at that locus. Such a reference sequence could, for example,
be obtained as in Bancroft et al. (2011) or be one of the
accessions present in the dataset.

Method outline

Given a dataset X in the form of a d 3 n SNP matrix, PSIKO
aims to infer the number K of founders of X as well as
significant PCs and a Q-matrix. It consists of two main steps:
dimensionality reduction (step I) and population structure
inference (step II). The purpose of step I is to infer signifi-
cant principal components of X and also obtain an estimate
for K. For this we use a combination of the Tracy–Widom
test (Patterson et al. 2006) with a powerful PCA-based tech-
nique called linear-kernel PCA. Due to the centrality of that
technique to PSIKO, we also present an outline of it in that
step. The purpose of step II is to quickly find good estimates
for the ancestry coefficients, that is, the entries of the Q-matrix.
For this, we exploit the properties of a PCA-reduced dataset to
cast the problem of inferring population structure within a
least squares optimization framework.

Step I: Dimensionality reduction: PCA is a popular di-
mensionality reduction method that allows one to reduce the
number of variables of the input dataset X (given in terms of
d), at the same time keeping as much variability in the data as
possible. It has proven very useful in population genetics and
found in Patterson et al. (2006) and Ma and Amos (2012) to
exhibit desirable properties when applied to datasets contain-
ing admixed individuals. However, the inner workings of PCA
imply that it does not scale well with an increasing number of
SNPs. To overcome this problem and thus obtain a method
that is applicable to large NGS datasets, we employ a special
kind of PCA called kernel-PCA which is known to scale well
for large numbers of variables (SNPs in our case) (Murphy
2012). Rather than carrying out a PCA analysis directly on
a given dataset, in kernel-PCA that dataset is first projected to
some new higher dimensional (unknown) feature space, and
then classic PCA is applied to the resulting projection of the
dataset. To overcome the problem that this projection may be
difficult to compute, a technique called kernel trick is some-
times used. Due to its centrality to PSIKO, we next describe it
within a kernel-PCA setting (Murphy 2012).
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For X as above, we start with remarking that if it is cen-
tered as described in Price et al. (2006), then performing
PCA on it reduces to finding an eigendecomposition of the
d3 d-dimensional sample covariance matrix XXT. SupposeW
is the matrix of eigenvectors and L is the diagonal matrix of
eigenvalues of such a decomposition. Then W ¼ XUL2ð1=2Þ;
where U is the matrix of eigenvectors of the n3 n-dimensional
inner product matrix K = XTX and performing PCA on X is
equivalent to carrying out an eigendecomposition of K.

Suppose X is projected into a higher dimensional space F
via a map f, and for all 1 # i # n, put fi := f(xi). Then
performing PCA on the projection of X is equivalent to car-
rying out an eigendecomposition of the inner product matrix
KF = (hfi, fji)1#i,j#n. Computing these inner products di-
rectly tends to be difficult as the projection f is unknown. By
replacing the inner products hfi, fji of KF with the values
k(xi, xj) of a real-valued function k on X 3 X called a kernel
function, the kernel trick overcomes this problem by allow-
ing for computation of said inner products without having to
directly compute f. Informally speaking, k is a proxy for the
inner product in F.

To obtain the required lower dimensional dataset, let UF

denote the matrix of eigenvectors of KF in an eigendecom-
position of KF, let LF denote the associated diagonal matrix
of eigenvalues, and let x denote an accession of X. Then the
kernel-PCA projection of x is kxUFL

2ð1=2Þ
F ; where kx = (k(x,

x1), k(x, x2), . . ., k(x, xn)). The gain in speed of kernel-PCA
over PCA (and thus the ability to cope with large NGS data-
sets) is an immediate consequence of the fact that comput-
ing KF requires O(n2d) operations and a further O(n3) is
required for its eigendecomposition, [as opposed to O(d2n)
and O(d3) for PCA for the corresponding tasks], which
amounts to considerably fewer operations for kernel-PCA
when d is much larger than n.

Then for step I we proceed as follows: We first perform
a linear kernel-PCA for X, that is, we take the kernel function
to be the inner product between accessions of X. Subsequent
to this, we subject the resulting eigenvalues to the Tracy–
Widom test to identify significant principal components
(see, e.g., Peres-Neto et al. 2005) for a survey of attractive
alternative approaches). This test has proven very popular in
population genetics and relies on the fact that nonzero
eigenvalues of a matrix follow a Tracy–Widom distribution.
Checking whether an eigenvector is a significant principal
component of that matrix or not then reduces to checking
whether its associated eigenvalue passes a certain statistical
significance test (Patterson et al. 2006).

Step II: Population structure inference: Simulation studies
indicate that a PCA-reduced dataset X obtained in step I can be
represented in terms of a (K 2 1)-dimensional simplex SK21,
where K $ 2 [see, e.g., Figure 2 for examples for the case K =
3, and Patterson et al. (2006) and Ma and Amos (2012),
where this phenomenon has also been observed for general
K]. The vertices of such a simplex correspond to the putative
founders of the dataset, that is, its nonadmixed accessions. The

position of an accession relative to these vertices encodes the
admixture proportion of that accession in the sense that it can
be uniquely expressed as a convex combination of the vertices
of that simplex. Put differently, with a1, a2, . . ., aK denoting the
vertices of the simplex SK21 representing a dataset X found in
step I, any of its accessions x can be expressed as

x ¼
XK
i¼1

liai;

where, for all 1 # i # K, the quantity li $ 0 is the genetic
contribution of founder ai to x and

PK
i¼1li ¼ 1: Thus, the

components of the ancestry vector lx = (ll)1#l#K of x can be
thought of as the admixture coefficients of x and computing
them is straight forward using standard arguments from
linear algebra if the matrix A = (a1, a2, . . ., aK) of founders
is known. If this is not the case then, by viewing the matrix
AQ as an approximation of X, the matrix A (and thus the
Q-matrix of X) can be inferred using least squares optimiza-
tion. This boils down to minimizing, for a PCA-reduced SNP
matrix X found in step I, the quantity

kX2AQk2F ; (1)

with respect to A and Q, where Q = (lx)x2X, and

kBkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk

i¼1
Pt

j¼1b
2
ij

q
is the Frobenius norm of a matrix

B = (bij)1#i#k, 1#j#t. A detailed explanation on how Equa-
tion 1 is solved may be found in File S1.

Simulated datasets and performance measure

In this section, we present an outline of how we generated
the various types of datasets underpinning our simulation
study for assessing PSIKO’s performance. In addition, we
also briefly review the root mean squared error (RMSE)
measure, which we use as assessment criterion. We start
with providing details concerning our simulation study.

Simulated datasets generation:We used the command line-
based coalescent simulator msms (Ewing and Hermisson
2010) to first simulate founder allele frequencies and then
used them to simulate admixture proportions and genotypes
of admixed individuals. More precisely, we simulated K = 3,
4, . . ., 10 independent, randomly mating populations each of
which comprised 100 individuals, where by an individual we
mean a sequence composed of L loci evolved over a period of
10,000 generations (see File S1 for exact msms commands
used). Here, the number of generations is biologically in-
spired and the number of individuals and the value K = 3
is based on Alexander et al. (2009). The values we chose for L
were 13,262 [which is as in Alexander et al. (2009)] and, to
shed light on the scalability of PSIKO, also 100,000, 250,000,
and 2.5 million. We then used these individuals to calculate
founder allele frequencies fk1, fk2, . . ., fkL for all 1 # k # K.

Once obtained, we simulated the genotype of an in-
dividual on a locus-by-locus basis using the following two-
step process: For a locus l of an individual i, we first
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simulated the founder zl of l by sampling from a multinomial
distribution with parameter the admixture proportions for
individual i. The admixture proportions were sampled from
a Dirichlet distribution and represent the contribution of
each founder to the dataset. Subsequent to this, we simu-
lated the genotype of individual i at locus l by sampling from
a multinomial distribution with parameter fzll the allele fre-
quency of population zl at locus l (see Figure 1 for a summary
of this two-step process).

We repeated this process 1000 times to obtain an
admixed dataset containing 1000 individuals.

Performance measure: To assess the performance of the
four approaches under consideration with regard to their
ability to recover the known Q-matrix underlying a dataset,
we used the RMSE between two Q-matrix Q̂ and Q9, given
by:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nK

X
i

X
k

�
q̂ik2q9ik

�2
;

s
(2)

where n represents the number of individuals (1000 in our
case), K represents the number of founders (K= 3, 4, . . ., 10
in our case), and q̂ik and q9ik are the elements of Q̂ and Q9
respectively, where 1 # i # n and 1 # k # K.

Parameter settings: For all our simulation experiments we
used ADMIXTURE and sNMF with their respective default
settings, as suggested by their authors. For STRUCTURE, we

used the following settings: We assumed admixed popula-
tions with independent allele frequencies. We set the length
of the burn-in period to 2000 iterations and ran the program
for an additional 2000 iterations after the burn-in period. All
remaining parameters were used with default values. To
ensure fairness in run time comparison between the above
three methods and PSIKO, we only compared their run
times for the ground truth value of K, thus ensuring that
a single run of PSIKO was timed against a single run of all
the other methods.

Biological datasets

To assess the performance of PSIKO with challenging
biological datasets, we first performed a comparison of the
Q-matrix provided by PSIKO to those estimated using
STRUCTURE, ADMIXTURE and sNMF for a set of 84 diverse
B. napus accessions as described in Harper et al. (2012).
Over half of these accessions are winter oilseed rape
(OSR) types (49), but the rest comprise diverse winter fod-
der types (5), spring OSR (14), Chinese semi-winter OSR
(5), Japanese kale (2), Siberian kale (2), and Swede (7).
Q-matrix estimations were compared directly and subse-
quently used to perform linear model association mapping
following the method outlined in Harper et al. (2012).
Briefly, the Q-matrices were used as covariates in general
linear models (GLMs), and mixed linear models (MLMs),
where a relatedness measure was included as a random ef-
fect for two seed oil traits, i.e., erucic acid and glucosinolate
content using the program TASSEL (Bradbury et al. 2007).

Figure 1 A summary of how the datasets underpinning our simulation experiments were generated. Each of the 1, 2, . . ., K encircled values indicates
a founder population generated with themsms software. For all 1# k# K, the vector Fk represents empirical allele frequencies computed for each of the K
founder populations [i.e., Fk = (fk1, fk2, . . ., fkL)] and the values qki represent the proportion population k contributes to accession xi of the dataset X.
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The results of these models were then compared to their
P-value expectations. Results were presented as QQ plots
showing observed against expected log10 P-values for each
of the four stratification methods and each of the seed oil
traits and association model types.

To also investigate PSIKO in a human population context,
we applied it to a subset of the HapMap Phase 3 dataset
(International HapMap Consortium 2010). That subset com-
prised 541 individuals spanning the groupings with the fol-
lowing sampling scenarios: African ancestry in Southwest
United States (ASW), Yoruban in Ibadan, Nigeria, West Africa
(YRI), Utah residents with Northern and Western European
ancestry from the Centre d’Etude du Polymorphisme Humain
collection (CEU) and Mexican ancestry in Los Angeles, Califor-
nia (MEX). Each individual was genotyped over 1,457,897
SNP loci. We remark in passing that the choice of dataset is
as in Alexander et al. (2009) noting, however, that that article
used an older version of the dataset and that those sequences
had been pruned so that each comprised 13,298 genotyped
SNP loci (Alexander et al. 2009). The general understanding of
the dataset is that the ASW sample is admixed with ancestries
from YRI and CEU and that MEX is admixed with ancestries
from CEU and an unsampled founder population (Jakobsson
et al. 2008; Li et al. 2008; Alexander et al. 2009). Therefore the
number of founders for this dataset is expected to be three.

Results

Bearing in mind that ADMIXTURE has been shown in
Alexander et al. (2009) to be faster than STRUCTURE, FRAPPE
(Tang et al. 2005), and INSTRUCT (Gao et al. 2007), and
that the recently introduced fastSTRUCTURE approach (Raj
et al. 2014) has run time comparable to ADMIXTURE (Raj
et al. 2014), to asses PSIKO’s performance we only compared
it against ADMIXTURE and sNMF and, due to its popularity,
STRUCTURE. For this, we used a computing cluster with
Intel Sandybridge Dual processor, 8 core E5-2670 2.6 GHz

CPUs and 2 Gb of DDR3 memory at 1066 Mhz, with Intel
Hyper-Threading disabled. We simulated different scenarios
for how populations might have arisen. These simulation stud-
ies are similar in spirit to those performed in Alexander et al.
(2009). Additionally we tested the methods on real biological
examples. We start with describing the results of the simula-
tion study, which also includes details on the parameters we
varied and their ranges. We then present our findings for the
biological datasets.

Simulated datasets

As outlined above (see Materials and Methods) the parame-
ters we varied were the number K of founders and the re-
spective Dirichlet distribution parameters for them. Since
their choices depend on the values of K employed, we will
detail them as part of a separate treatment of the cases K =
3 and K $ 4. Before detailing these cases, though, we re-
mark that low values for the Dirichlet distribution pa-
rameters correspond to almost admixture-free populations,
whereas values close to one correspond to heavily admixed
populations. Thus, our simulation study allows us to assess
the performances of the methods in question on highly
admixed and highly nonadmixed populations. We start our
discussion with remarking that the value for K was correctly
recovered by all tested methods for each of the constructed
simulated datasets.

For K = 3, and datasets with sequence length 13,262,
we chose the same values for the three Dirichlet distribu-
tion parameters as in Alexander et al. (2009), resulting in
six different simulation scenarios. Three of these scenarios
were asymmetric, meaning that in each case at least one
Dirichlet distribution parameter was different from the
other two and the other three were symmetric, meaning
that in each case all Dirichlet distribution parameters were
the same. For each of the six scenarios, we generated 100
datasets, resulting in a total of 600 datasets. These we then
analyzed with regard to their behavior under PSIKO (see

Figure 2 PCA reduced dataset under different
simulation scenarios, each of which is repre-
sented by a separate panel. In each panel, the
coordinate axes are the first two significant
principal components; see text for details.
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below), and the average root mean square error for the
Q-matrices found by each of the methods considered, where
the average is taken over all 100 datasets of a scenario (see
Materials and Methods). Furthermore, for each of the three
sequence lengths, 100,000, 250,000, and 2.5 million, we
generated 10 datasets as before using the symmetric Dir(1,
1, 1) parameter distribution. To assess the effect of SNP
pruning, we also generated a further 100 datasets follow-
ing a similar protocol (see below for details). Additionally,
to test PSIKO’s robustness to deviations from our simula-
tion model, we also simulate scenarios with noise, missing
data, and inbreeding present.

Behavior of a dataset: To investigate the behavior of PSIKO
when applied to a dataset generated under each of the
six scenarios, we randomly chose one dataset from each.
Exploiting the observation that the number of founders of
a dataset equals the number of significant principal compo-
nents found for that dataset in step I of PSIKO plus one (see,
e.g., Patterson et al. 2006), we depict each chosen dataset in
terms of a panel containing a two-dimensional coordinate
system whose axes are labeled by the two significant principal
components found by PSIKO for that dataset (Figure 2). For
each coordinate system that makes up that figure, its footer
Dir(x, y, z) encodes the simulation scenario used to generate
it in terms of the values x, y, and z for the three Dirichlet
distribution parameters. For example, the footer Dir(0.2, 0.2,
0.5) of the leftmost coordinate system in the bottom row
indicates that two of the three Dirichlet distribution parame-
ters had value 0.2 and that the third one had value 0.5.

As expected (see also Patterson et al. 2006), each of the
chosen datasets depicted in Figure 2 (after having applied
PSIKO to them) corresponds to a 2-simplex with the dots
inside the simplex representing the dataset’s accessions.
PSIKO infers three founders for each dataset. We indicated
them for each dataset in terms of three ellipses. These are
clearly very close to the vertices of the simplex representing
that dataset and thus the founders of that dataset. Also the
figure suggests that the smaller the values for the Dirichlet
distribution parameter are, the more the data points get
pushed to the simplex’s vertices, which is again as expected.
This holds not only for the asymmetric scenarios but also for

the symmetric ones, where the data points get pushed away
from the founder with the lowest value. An extreme case in
this context is the asymmetric scenario corresponding to
Dir(0.05, 0.05, 0.01) as it suggests that one of the founders
(i.e., the one corresponding to Dirichlet distribution parame-
ter value 0.01) had very little contribution to the represented
dataset.

Average root mean square error: We next turn our
attention to assessing the estimated accuracy of PSIKO by
measuring the average RMSE between the true and estimated
Q-matrices under each one of the six simulation scenarios.
For this we used the 600 datasets generated as described
above as input to all four methods in question to obtain
Q-matrix estimates from each of them. For each method and
over all 100 datasets of a scenario, we then computed the
average RMSE between the true and estimated Q-matrices. A
summary of our results in terms of these averages is given in
Table 1, which consists of six panels each of which corre-
sponds to one of our six simulation scenarios. As can be
readily observed, all methods seem to be performing similarly
well under all simulation scenarios, with negligible differen-
ces between their estimates for the Q-matrices.

Longer sequences: As can be readily observed from Table 2,
PSIKO is faster than sNMF for each of the three sequence
lengths used i.e., 100,000, 250,000, and 2.5 million (Mate-
rials and Methods). [Since it has been shown in Frichot et al.
(2014) that ADMIXTURE is slower than sNMF, we only
compared PSIKO against sNMF.] In fact, as the length of
the sequences grows, so too does the difference in run time
between PSIKO and sNMF with that difference being signif-
icantly in favor of PSIKO. A possible reason for this might be
that PSIKO is based on kernel-PCA, which is known to scale
very well with the number of variables of a dataset which, in
our case, is the number of SNPs i.e., the sequence length
(see also Materials and Methods). This behavior seems to
suggest that PSIKO scales better than sNMF with increasing
sequence length making it highly attractive for population
structure estimation from the very large datasets that are
becoming increasingly more common in modern, whole-
genome studies.

SNP pruning: A popular way to turn a large SNP dataset into
a dataset of more manageable size is to employ linkage
disequilibrium (LD) (Purcell et al. 2007), which is essentially
a measure of how frequently SNPs get transmitted together.
This technique, however, has the potential to remove relevant

Table 1 For K = 3, average RMSEs between true and estimated
Q-matrices for simulated datasets

Asymmetric Dir(0.2, 0.2, 0.5) Dir(0.2, 0.2, 0.05) Dir(0.05, 0.05, 0.01)

PSIKO 0.008 0.007 0.005
ADMIXTURE 0.008 0.005 0.002
sNMF 0.008 0.005 0.002
STRUCTURE 0.053 0.022 0.021

Symmetric Dir(1, 1, 1) Dir(0.5, 0.5, 0.5) Dir(0.1, 0.1, 0.1)

PSIKO 0.011 0.009 0.004
ADMIXTURE 0.018 0.01 0.004
sNMF 0.02 0.013 0.005
STRUCTURE 0.015 0.016 0.03

Table 2 Summarized relative run times of sNMF and PSIKO as
averages over all 30 datasets

Sequence length 100,000 250,000 2,500,000

PSIKO 8 sec 11 sec 1 min 25 sec
sNMF 55.5 sec 1 min 40 sec 22 min 28 sec

i.e., 10 datasets for each symmetric Dirichlet distribution parameter setting given in
Table 1.
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information thus introducing bias to a dataset. To test the ro-
bustness of the three methods with regards to this, we pro-
ceeded as follows. For K = 3 we used msms to simulate 100
datasets each comprising 1000 individuals and 1 million SNPs
per individual. From the resulting sequences we then randomly
removed 90% of SNPs and then ran PSIKO, ADMIXTURE, and
sNMF on the resulting 100 datasets. We found that the average
RMSE was below 0.025 for all of PSIKO, sNMF, and ADMIX-
TURE, corresponding to at most a 2.5% error in ancestry esti-
mates. Once again, all of the tested methods correctly inferred
K = 3. The average run times were 3 sec for PSIKO, 7 sec for
sNMF, and 30 sec for ADMIXTURE.

Larger values for K: Due to the combinatorial explosion
caused by asymmetric Dirichlet parameter distributions for
increasing values of K, we only considered symmetric Dirich-
let distribution parameters for higher values of K, that is, for
K ranging between 4 and 10. For each of these values for K,
we chose the same values for the Dirichlet distribution
parameters as for the symmetric Dirichlet distribution
parameters for K = 3 i.e., all 1, all 0.5, and all 0.1.

We found that the performance of each of the methods is
comparable for all of the resulting 2100 datasets (see File
S1). It is worth noting, however, that the run time of PSIKO
is much faster than that of ADMIXTURE (and hence also
STRUCTURE), and slightly faster than that of sNMF, with
sNMF taking on average 7 sec to complete processing each
dataset, PSIKO taking on average 4 sec to complete, and
ADMIXTURE taking on average 55 sec to complete.

Noise: Due to the possibility of complex evolutionary pro-
cesses such as hybridization having confounded the co-
alescent signal in a dataset, we also tested the robustness of
PSIKO for noisy datasets. These we obtained by employing
a parameter p that governs the amount of noise that we
allowed a dataset’s sequences to contain. More precisely,
we started with a dataset obtained for K = 3 and Dirichlet
distribution parameters Dir(1, 1, 1) (seeMaterials and Meth-
ods for details), and then, for every one of its sequences,
flipped on a locus-by-locus basis the allele of that locus with
probability p. Using this modification process we generated
100 noisy datasets for 1000 accessions at 13,262 loci with
noise level p set to 0.01, 0.05, 0.1, and 0.15, corresponding
to 1, 5, 10, and 15% noise, respectively.

As can be readily seen, the difference in the average
RMSE between the estimated and true Q-matrix for each
approach in question under each of the aforementioned
noise levels is marginal (Table 3), suggesting that all meth-

ods are equally robust under the considered simulation sce-
narios with the observed differences being marginal.

Missing data: Reflecting the fact that even with current NGS
technology, missing data are still a problem (Harper et al.
2012), we also assessed the robustness of PSIKO for this type
of data. To obtain such datasets, we proceeded as in the pre-
vious data experiment only now instead of flipping a locus allele
state with probability p, we set it to a missing value character
with probability p. More precisely, for K = 3 and Dirichlet
distribution parameters Dir(1, 1, 1), we generated 100 datasets
for 1000 accessions each of which was 13,262 loci long (Mate-
rials and Methods). We set the missing value character proba-
bility p to 0.1 and 0.2, corresponding to 10 and 20% missing
data, respectively. Using again the average RMSE as assessment
criterion, we present our findings in Table 4.

As can be readily seen, even with large proportions of
data missing, all three methods perform equally well with
only marginal differences, a fact that was also observed for
sNMF and ADMIXTURE in Frichot et al. (2014).

Inbreeding: The assumption of random mating is frequently
violated in natural populations. To test the robustness of
PSIKO under these circumstances, we also simulated datasets
where inbreeding is present. To do this, we first simulated
K = 3 independently mating populations as in the noise
experiment. For each population 1 # k # 3 and each locus
l in such a population, we then computed the empirical
allele frequencies fkl (Materials and Methods). Subsequent
to this and following Frichot et al. (2014), we used a preset
value for the inbreeding coefficient FIS (i.e., FIS = 0.25 and
FIS = 1) to compute genotype frequencies gkl at locus l in
population k. Using the Dirichlet distribution parameters
Dir(1, 1, 1), we then applied the same simulation protocol
as above (see Materials and Methods for details), with gkl
taking the place of fkl. For each value of FIS, we simulated
100 datasets comprising 1000 individuals each with 13,262
genotyped SNP positions.

As can be seen in Table 5, all methods are equally robust
to inbreeding being present in the dataset, although PSIKO

seems to be slightly more accurate than sNMF and ADMIX-
TURE (see also (Frichot et al. 2014) where a similar trend
was observed for sNMF and ADMIXTURE).

Biological datasets

To further assess PSIKO, we also subjected it to the test of
two biological datasets, one of which is an oilseed rape

Table 3 Average RMSE between true and estimated Q-matrix for
Dir(1, 1, 1) for each approach under each noise level p

p 0.01 0.05 0.1 0.15

PSIKO 0.011 0.012 0.013 0.015
sNMF 0.016 0.012 0.012 0.02
ADMIXTURE 0.018 0.013 0.013 0.019

Table 4 Average RMSE between true and estimated Q-matrix for
Dir(1, 1, 1) for each approach under each missing value probability
character p

p 0.1 0.2

PSIKO 0.012 0.012
sNMF 0.013 0.012
ADMIXTURE 0.019 0.021

Population Structure Inference Using PSIKO 1427

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.171314/-/DC1/genetics.114.171314-1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.171314/-/DC1/genetics.114.171314-1.pdf


dataset that was originally studied in Harper et al. (2012)
and the other is from the HapMap 3 project (see Materials
and Methods for a brief description of each). We compared
our findings with that of ADMIXTURE and sNMF, again
using the average RMSE as an assessment measure.

Oilseed rape dataset: Two of the four methods tested
predicted two population clusters (i.e., K = 2). ADMIXTURE
predicted three population clusters, while sNMF predicted
five clusters. For the purposes of comparing the four models
equally, we elected to use the Q-matrices generated for K =
2 from each of the programs. Similarly and as recommended
by their respective authors, we ran all programs with their
default parameter values. Additionally, we ran STRUCTURE
with a burn-in period of 20,000 iterations, followed by
another 20,000 iterations. Direct comparison of the four
obtained Q-matrices (Figure 3) indicates great similarity, par-
ticularly between ADMIXTURE, sNMF, and PSIKO.

The results of the association mapping using each of the four
matrices were very similar (Figure 4). As expected, incorporating
the relatedness matrix as a random effect in a MLM reduced the
supposed type I error rate. For the erucic acid trait, the residual
error was minimized by the MLM/STRUCTURE model, and for
the seed glucosinolates trait the residual error was minimized by
the MLM/PSIKO model. It is worth noting, however, that the
difference between the Q-matrices was not enough to alter iden-
tification of markers in close proximity to the major causative loci
(see Harper et al. 2012 for details).

HapMap 3 dataset: Given the size of the dataset and thus
the prohibitively long run time of STRUCTURE, we only
investigated it with ADMIXTURE, sNMF, and PSIKO (again
with all parameter values set to default). Since there are no
trait data available, we measured the difference between
any two of the three returned Q-matrices in terms of their
RMSE and their R2 correlation coefficient.

Given the widely accepted fact that the number of
founders for this particular dataset is three, all three
methods were run with K = 3. They all found strikingly
similar Q-matrices. More precisely, the RMSE between any
two matrices was never larger than 0.02 (corresponding to
an �2% difference) and the R2 correlation coefficient was
always .0.99 (suggesting that they are almost perfectly
correlated). However, there was a discrepancy between
the methods with regard to estimating the number of found-
ers for the dataset with PSIKO and ADMIXTURE returning
K = 3, whereas sNMF returned K = 4. The very fast run time
of 48 sec for PSIKO (as compared to ADMIXTURE, whose
run time was 5212 sec, equating to 1 hr and 27 min and
sNMF, whose run time was 17 min and 18 sec) is strikingly
apparent with this large-scale dataset.

Since mapping information is available for this dataset,
which can be used for LD-based SNP-pruning purposes, we
also investigated the performance of PSIKO, sNMF, and
ADMIXTURE when the sequences are pruned. More pre-
cisely, we used the sliding window-based SNP-pruning

approach implemented in PLINK (Purcell et al. 2007) (with
default settings) to obtain a pruning of the HapMap 3 data-
set. We found that PSIKO, sNMF, and ADMIXTURE all cor-
rectly infer the widely accepted number of three founders
for that dataset, and that the RMSE between any pair of
estimated Q-matrices is never .0.02 (i.e., a 2% disagree-
ment), suggesting that all tested methods yield very similar
results (data not shown). However, PSIKO took 21 sec to
complete. Using K = 3 as input, sNMF took 6 min and
ADMIXTURE took 36 min. Additionally, we found that the
SNP pruning took 52 min to terminate, resulting in a 52-min
overhead in the total running time of each method for this
experiment. This is in stark contrast to the 48 sec it took
PSIKO to analyze the complete, unpruned dataset.

Discussion

Population structure is a confounding factor in population
association studies, hampering our understanding of how, for
example, agronomically important traits have been selected for
in crop plants or how diseases might have spread throughout
a population (Price et al. 2006). It is therefore important to be
able to correct for it and this entails gaining insight into a data-
set’s Q-matrix as well as the number of its founders. Popular
software packages such as STRUCTURE, FRAPPE, INSTRUCT,
and ADMIXTURE infer both. Many of them are based on so-
phisticated models and rely on assumptions such as satisfying
Hardy–Weinberg equilibrium. However, if the dataset in ques-
tion violates such assumptions or is very large, as would be the
case for NGS datasets, these approaches tend to suffer from
long run times. To address the issue, among others, of scalabil-
ity, the sNMF approach has been proposed (Frichot et al. 2014).
Unlike STRUCTURE and ADMIXTURE, it is not model based
and uses sophisticated algorithmic techniques to ensure fast run
times on large datasets.

Here, we propose the novel and fast PSIKO approach for
population structure inference. By combining linear kernel-
PCA with a quick-to-solve optimization problem, it couples the
fast run time and robustness of PCA with the biological
interpretability of Q-matrices obtained from model-based
approaches such as STRUCTURE and ADMIXTURE. This
allows quick estimation of the Q-matrix underpinning a marker
dataset as well as the number of founders of that dataset. Due
to PCA’s few underlying assumptions, PSIKO is widely applica-
ble and generally has a very low run time, at the same time
producing results that are comparable in quality with those
obtained by ADMIXTURE, STRUCTURE, and sNMF.

Table 5 Average RMSE between true and estimated Q-matrix for
Dir(1, 1, 1) for each approach under each value for the inbreeding
coefficient FIS

FIS 0.25 1

PSIKO 0.016 0.017
sNMF 0.026 0.027
ADMIXTURE 0.022 0.026
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To assess the performance of PSIKO with regard to
Q-matrix estimation and inference of founder number, we
rigorously tested it on both simulated and real biological
datasets. In our simulation studies, we varied the number of
founders for a dataset as well as the admixture scenarios for
generating a dataset. To help ensure biological relevance,
we based our choices for the range of these parameters on
those made in Alexander et al. (2009). Across a wide range
of simulation scenarios, we found that PSIKO provides
Q-matrix estimates that are very close to the estimates for the
respective datasets produced by STRUCTURE, ADMIXTURE,
and sNMF where closeness is measured in terms of the root
mean squared error between two matrices (Alexander et al.
2009). Our missing data, noise, and inbreeding experiments
suggest that PSIKO as well as ADMIXTURE and sNMF han-
dle these types of data extremely well. However for large
datasets, PSIKO seems to be superior, even if such a dataset
is pruned based on, e.g., linkage disequilibrium.

The first of our biological datasets comprises 84 oilseed rape
accessions, representing some seven crop types, genotyped over
101,644 SNP loci. The second comprises 541 human samples
from differing geographic regions, genotyped at 1,457,897 SNP

loci. For each dataset, we found that the Q-matrix estimates
generated by PSIKO were very close to those produced by
ADMIXTURE and sNMF for that dataset, using the same
measure of closeness as in our simulation study. However, it
is worth pointing out that independent of whether the dataset
had been pruned or not, PSIKO’s run time was only a fraction of
that of ADMIXTURE, especially on the human dataset, and was
also considerably faster than sNMF.

Although great effort has been put into the development
of powerful tools for deriving the number K of founders of
a population dataset, inferring that number is still a formi-
dable statistical and computational problem. For example,
finding that number using STRUCTURE can be a very time-
consuming task due to the fact that it has to be run on
a range of different values for K, each of which might take
a long time to complete. Even for newer methods such as
ADMIXTURE or sNMF, finding the optimal value of K relies
on running the methods for a range of values of K. In PSIKO,
we exploit the behavior of the eigenvalues returned by
linear-kernel PCA for a dataset to infer K. Due to the
algorithmic internals of PCA, this can be done quickly. We
are also motivated by a study in Patterson et al. (2006) as

Figure 3 Q-matrix plots for the 84 line Brassica napus dataset comparing the performance of PSIKO to other leading methods. The proportion of alleles
belonging to each of the clusters is shown by respective white bars (cluster 1) or black bars (cluster 2).
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well as numerous simulation studies that indicate that the
number of founders of a dataset equals the number of sig-
nificant principal components for that dataset plus one. Our
simulation studies as well as our two real biological exam-
ples suggest that PSIKO holds great promise for this.

The speed of PSIKO is similar to that of sNMF for smaller
datasets and is faster than that of ADMIXTURE. While for
small datasets the differences in speed between PSIKO and
sNMF are negligible, with increasing sequence length PSIKO
proves to be significantly faster than sNMF and implicitly
also ADMIXTURE. We therefore argue that PSIKO could be
a very attractive tool for analyzing the larger datasets that
arise from NGS technologies. For smaller datasets (,50 K
SNPs), the differences between the three methods are not as
clear cut, and the user should choose whichever method
would suit their particular dataset best.

In summary we propose a novel, nonmodel-based method
for inferring population structure. It exploits the advantages of
linear kernel-PCA to quickly and accurately describe a SNP
dataset’s population stratification. It is much (up to 300 times)
faster than classical, model-based approaches while outputs
match those of state-of-the-art methods such as sNMF. Its su-
perior speed for large datasets makes it particularly attractive
for datasets generated by NGS approaches.
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This is the supplement for (POPESCUet al., 2014). We begin by complementing

our simulation results for PSIKO forK = 3 founders presented in (POPESCUet al.,

2014) with those for larger values ofK i. e. K = 4. . .10. We then present a pseudo-

code version of PSIKO ( Algorithm 1). Subsequent to this, we present mathematical

details on how equations underpinning PSIKO are solved. We conclude with details on

themsms commands used to generate our simulated datasets. Unless stated otherwise,

our notation follows that of (POPESCUet al., 2014).

LARGER VALUES FORK

For various Dirichlet distribution parameter settings in asymmetric simulation sce-

nario (see POPESCU et al. (2014) for details), we present in TableS1 the average

Root Mean Squared Error (RMSE) between inferred and trueQ-matrices for values

of K = 4, . . . ,10. As can be readily observed, the average RMSE over all 100 datasets

for each Dirichlet distribution parameter choice and each value forK is below 1.6%

which suggests that PSIKO performs very well for larger values ofK.
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Dirichlet parameters 1 0.5 0.1

K = 4 0.013 0.009 0.007
K = 5 0.013 0.01 0.01
K = 6 0.015 0.01 0.01
K = 7 0.015 0.011 0.011
K = 8 0.015 0.012 0.012
K = 9 0.016 0.013 0.013
K = 10 0.016 0.013 0.01

Table S1: Denoting the Dirichlet distribution parameter settingsof all 1s, all 0.5s and
all 0.1s, by 1, 0.5 and 0.1 respectively and using the latter as column labels, we present
the average RMSE between the true and the estimatedQ-matrix for PSIKO for the
valuesK = 4, . . . ,10.

PSIKO PSEUDO-CODE

A representation of PSIKO in pseudocode is given in Algorithm 1. LetnComp denote

the number of found significant components.

Algorithm 1 PSIKO
Input: A dataset in the form of a SNP matrixX with accession loci encoded as 2’s,

1’s and 0’s.
Output: The numberK of founders, the significant principal components (PCs) anda

Q-matrixQ = (qcx) for X, wherec is a founder ofX andx is a an accession ofX.

STEP I (Dimensionality Reduction):
1 : first apply linear kernel-PCA toX to reduce dimensionality of the dataset and
then the Tracy-Widom test for non-zero eigenvalues to inferthe numbernComp
of significant principal components. Finally use those components to compute a
nComp dimensional datasetX ′

2 : normalizeX′ to have zero mean and unit variance
STEP II (Population Structure Inference):
3 : find the vertices (and thus the numberK of founders) of the(nComp−1)-simplex
representingX′ by minimising Equation (1) below
4 : returnK and the matrixQ found in Step 3 and the significant PCs found in line 1
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OPTIMISING EQUATIONS UNDERPINNING PSIKO

In this section, we give details on the algorithm used to minimise Equation (2) of

(POPESCUet al., 2014), that is:

L (A,Q) = ||X−AQ||2F , (1)

whereA = (ai)1≤i≤K anda1,a2, . . .aK are the founders ofX represented as column

vectors,Q = (qxi)1≤i≤K is the matrix of ancestry coefficients for each accessionx ∈ X,

andK is the number of putative founders.

We start by making some observations that are specific to optimising Equation (1),

and then present in Algorithm 2 an efficient algorithm for minimising it. The notation

used follows that of (POPESCUet al., 2014).

Suppose we are given a matrixQ. Finding a matrixA which minimises Equation (1)

can easily be achieved via linear least-squares optimisation. More precisely, we have

that

x =
K

∑
i=1

qxiai, (2)

holds for any accessionx in our data set. In the context of optimising Equation (1) we

are interested in finding values forai, 1≤ i ≤ K such that a given accessionx in X is

approximated as closely as possible by Equation (2). This can be achieved by using:

Observation 0.1.

A = (QT Q+ΓΓT )−1QT XT
, (3)

where Q and X are as before and Γ = I is a Tikhonov regularisation matrix.

Now consider the converse problem, i. e. that the matrixA is known, and that we

are interested in finding the matrixQ. For this we once again use Equation (2) above.

More precisely, utilising the fact that∑K
i=1 qxi = 1 holds for allx ∈ X, we obtain:
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Observation 0.2. Let B :=







1 1 . . . 1

a1 a2 . . . ak






, qx :=
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qx2

. . .

qxK



















and x′ :=







1

x






.

Then Bqx = x′ or, equivalently,

qx = B−1x′ (4)

We note that the above solution forqx can produce entries which are outside the

interval [0,1]. To address this we followed the strategy employed in sNMF (FRICHO

et al., 2014), and first set for allx ∈ X all entries ofqx that are negative to zero. We

then divide each entry ofqx by the sum of entries ofqx. This ensures that the values of

qx lie in the interval[0,1] and that they also sum to one.

Using Observations 0.1 and 0.2, we can optimise Equation (1)iteratively (see Al-

gorithm 2, withε set to 10−5). We found that that algorithm returns accurate estimates

of theQ matrix across all simulation scenarios as well as for the twobiological datasets

under investigation in (POPESCUet al., 2014).

Algorithm 2 Algorithm used to optimise Equation (1)
Input: A data matrixX as returned by Step I of PSIKO
Output: A matrix A of founders forX as well asQ-matrixQ for X, minimising Equa-

tion (1).

InitialiseA andQ randomly.
prev = 0
cur = L (A,Q)
setε to a small number, say 10−5

while |prev− cur|< ε do
estimateQ givenA using Equation (4)
estimateA givenQ using Equation (3)
prev = cur
cur = L (A,Q)

end while
returnA,Q
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MSMS COMMANDS USED

In order to simulateK > 1 independent, randomly mating populations, we used the

msms coalescent simulator (EWING and HERMISSON, 2010). We simulateK indepen-

dent demes (populations) with no migration between them over a period of 10,000

generations. Each deme is represented by 100 simulated individuals. After 10,000

generations, allK demes are merged and the coalescent process is allowed to termi-

nate. We simulate a fixed number of segregating sites (SNPs inour case) in each case.

Specifically, forK = 3 and 13,626 segregating sites, we used the followingmsms com-

mand:

msms.jar 300 1 -s 13626 -N 1000 -I 3 100 100 100 -ej 2.5 1 2 -ej

2.5 2 3

By modifying the -I flag and adding more -ej flags, this commandcan be used to

simulate an arbitrary number of independent populations. The user is referred to the

msms manual for more details.
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