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SUMMARY

Although prokaryotic organisms lack traditional organelles, they must still organize cellular 

structures in space and time, challenges that different species solve differently. To systematically 

define the subcellular architecture of mycobacteria, we perform high-throughput imaging of a 

library of fluorescently tagged proteins expressed in Mycobacterium smegmatis and develop 

a customized computational pipeline, MOMIA and GEMATRIA, to analyze these data. Our 

results establish a spatial organization network of over 700 conserved mycobacterial proteins 

and reveal a coherent localization pattern for many proteins of known function, including 

those in translation, energy metabolism, cell growth and division, as well as proteins of 

unknown function. Furthermore, our pipeline exploits morphologic proxies to enable a pseudo-

temporal approximation of protein localization and identifies previously uncharacterized cell-

cycle-dependent dynamics of essential mycobacterial proteins. Collectively, these data provide a 

systems perspective on the subcellular organization of mycobacteria and provide tools for the 

analysis of bacteria with non-standard growth characteristics.
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In brief

Zhu et al. develop a two-stage image analysis pipeline, MOMIA and GEMATRIA, that efficiently 

models the spatial and temporal dynamics of over 700 conserved proteins in M. smegmatis. 

Through the analysis they report spatial constraints of mycobacterial ribosomes and membrane 

complexes and reconstruct temporal dynamics from still image data.

INTRODUCTION

Prokaryotic organisms have elegant systems to establish and maintain the architecture of 

their key cellular processes (Rudner and Losick, 2010). Resolving this organization has 

been enabled by the use of fluorescent proteins and improved microscopy (Huang, 2015), 

allowing the characterization of proteins that participate in processes, such as cell-cycle 

regulation (Rowland et al., 2000; Toro et al., 2008), nascent cell wall assembly (Scheffers 

and Pinho, 2005), and DNA replication (Reyes-Lamothe et al., 2010), as well as new 

components of these processes identified by virtue of their shared localization. This work 

has been undertaken on a much larger scale with model organisms such as Escherichia coli 
(Kitagawa et al., 2005; Kuwada et al., 2015), Caulobacter crescentus (Werner et al., 2009), 

and Bacillus subtilis (Meile et al., 2006). However, these systematic imaging-based studies 

are limited to a few model organisms, and there is a lack of comprehensive datasets for most 

bacterial species, including important pathogens.
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The genus Mycobacterium contains several significant human pathogens, including 

Mycobacterium tuberculosis (Mtb). Mycobacteria are phylogenetically distant from these 

model organisms and have unique cellular features including a multilayered, lipid-heavy cell 

wall (Dulberger et al., 2020; Niederweis et al., 2010). Emerging evidence, much of which 

has been obtained through quantitative fluorescence microscopy, indicates that mycobacteria 

organize their cellular structures differently than in established models. Mycobacteria 

incorporate nascent cell wall materials exclusively at the cell poles and septa (Meniche 

et al., 2014) and undergo cellular elongation (Aldridge et al., 2012; Hannebelle et al., 2020), 

cell wall remodeling (Baranowski et al., 2018; García-Heredia et al., 2018), and cell division 

(Aldridge et al., 2012; Botella et al., 2017; Hannebelle et al., 2020) in an asymmetric 

manner. Moreover, several groups have used different protein markers, such as DnaN, Ssb, 

ParB, or DnaE1, to track the dynamics of the DNA replication machinery (Logsdon et 

al., 2017; Rao et al., 2008; Santi and McKinney, 2015; Trojanowski et al., 2019) and 

demonstrate that DNA replication is also asymmetrically positioned in live mycobacteria. 

Collectively, these lines of evidence suggest that mycobacteria have a distinctive cellular 

organization and that observations made with model bacterial organisms may not directly 

apply to mycobacteria.

In our recent effort to understand the subcellular organization of mycobacteria (Judd et 

al., 2021), we systematically tagged over 1,000 highly conserved M. smegmatis (Msm) 

proteins with the fluorescent protein Dendra (Gurskaya et al., 2006) and generated a 

comprehensive microscopy dataset as part of the Mycobacterial Systems Resource (MSR) 

(Judd et al., 2021, example images and the primary analysis of the dataset available on 

https://msrdb.org). While these images are valuable, they have limitations that prevent us 

from fully exploiting the information they contain. First, mycobacteria have an irregular and 

nonuniform shape and are prone to cellular aggregation (Smith et al., 2020), both of which 

limit the application of conventional image segmentation tools. Two recent studies addressed 

this issue by combining MicrobeJ and bespoke post-segmentation filters (Smith et al., 2020; 

de Wet et al., 2020), but these methods focused on quantitating cellular morphology rather 

than the localization of proteins. Second, making biological inferences from the integration 

of cellular fluorescent patterns requires accurate and unbiased feature extraction. Manual 

designation of fluorescence features is less transferable to nonuniform organisms and is 

prone to human bias (Werner et al., 2009). Recent developments in supervised machine 

learning methods have empowered automated feature extraction and classification of protein 

localization patterns with eukaryotic imaging data; however, these approaches rely heavily 

on human-annotated training sets and have not been validated on bacterial specimens. 

Moreover, the inference of cell-cycle-associated (i.e., temporal) dynamics using previous 

methods requires predefined cell-cycle markers or a time-lapse recording, neither of which 

are currently available for the Dendra-tagged MSR dataset (MSR-Dendra).

To exploit the information-rich MSR-Dendra dataset and to address these technical 

issues, we devised an analytic pipeline of two customized programs. The first program, 

MOMIA (mycobacteria-optimized microscopy image analysis), achieves automated image 

segmentation on Msm specimens and measures cell morphological and fluorescence 

attributes with subpixel precision. The second program, GEMATRIA (graph embedded, 

multi-attribute temporal reconstruction of intracellular protein allocation), compiles the 
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single-cell profiles rendered by MOMIA and computes both a repertoire of spatial patterns 

and their cell-length-associated variations. These inferred protein localization patterns 

enable single- or multi-parametric comparisons at various scales. Through the combined 

application of MOMIA and GEMATRIA on the MSR-Dendra dataset, we have established 

a spatial-temporal blueprint of the mycobacterial protein network. From this network, 

we map the subcellular distribution dynamics of proteins that mediate translation, ATP 

biosynthesis and several metabolic processes, and functionally implicate new proteins in 

these processes by virtue of shared localization patterns. Moreover, we reconstruct temporal 

protein dynamics from still images using cell length as a proxy for cell-cycle state, enabling 

us to identify over 70 proteins with discernible cell-cycle-dependent dynamics, several of 

which had not been previously characterized.

RESULTS

Streamlined image processing and the spatial-temporal representation of mycobacterial 
protein localization

The recently established MSR database (Judd et al., 2021) encompasses over 70,000 

microscopy images covering 1,053 conserved mycobacterial proteins (Figure S1, more 

information can be found on https://msrdb.org). While our data concur with published 

localization patterns (Figure 1A) (Hayashi et al., 2016; Hołówka et al., 2017; Logsdon 

et al., 2017; Meniche et al., 2014), the vast majority of the proteins in the library have 

not been examined by microscopy (examples depicted in Figure 1B). To interrogate the 

MSR-Dendra dataset, we developed a Python-based program, MOMIA (Figures S2 and 

S3), to perform automated image segmentation and cell profiling. MOMIA implements 

customized filters to account for illumination variations and cellular aggregation to improve 

segmentation performances (Figure S3). For each identified cell, MOMIA computes the 

morphological contour and center line with subpixel precision (Figure 1C). The inferred 

contour and center line are used as geometric coordinates (Figure S3H) to straighten the 

single-cell fluorescence profile into a rectangular array (matrix). Of the 1,053 MSR-Dendra 

entries, a fraction had low cell counts (<150) or dim signals (<64, a.u.). Omission of 

these data yielded 760 entries, which we selected for further analysis (Figure S4A; Table 

S1). In addition to single-cell profiling, MOMIA also compiles single-cell data to portray 

populational dynamics (Figures 1D and S4B). For example, the demograph (Ducret et al., 

2016; Paintdakhi et al., 2016), created by stacking axial signals according to cell length, 

shows that the single-stranded DNA binding protein Ssb has a congregated mid-cell signal 

in shorter cells and a diffused signal in longer cells, consistent with previous observations 

by time-lapse microscopy (Logsdon et al., 2017). While these graphical illustrations are 

visually appealing, inferring further biology from them remains challenging, as protein 

localization dynamics are convolved with cell-age and cell-cycle progression, both of which 

are difficult to extrapolate from static images. Moreover, although cell length increases 

monotonically for a single cell, the association between absolute cell-length and cell-cycle 

stage is obscured by varied birth lengths and growth kinetics. Nevertheless, it has been 

shown that, in an exponentially growing culture of E. coli or B. subtilis, the extant cell-

length and cell-age distributions are relatively static, whereas the absolute cell length alone 

could explain about 50% of the cell-age variability (Van Heerden et al., 2017). Therefore, 
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we posited that, by using the relative cell length (rank orders) and data binning, we could 

partially restore the temporal dynamics of protein localization from microscopy snapshots.

To achieve this, we first standardized the straightened data (Figure 1C) to enable direct cell-

to-cell comparisons and data binning. For a rod-shaped bacterium, the expanse of its polar 

hemispheres remains relatively constant while the cell elongates (Figure 1E). Standard linear 

interpolation, therefore, introduces cell-length-dependent distortions to the length-invariant 

polar structures. Previous studies indicate that the tropomyosin-like structural protein 

Wag31, which plays an essential role in septation and nascent pole assembly, marks the 

mycobacterial cell poles and locates within 0.3–0.4 μm (by MOMIA, Figure 1E) (Meniche 

et al., 2014) from the polar apices. Here, we define the region 0.3 μm from the pole as the 

polar compartment to dissect each straightened matrix into three sections, which are then 

independently interpolated and concatenated to create a standardized matrix, as illustrated 

in Figure 1F. Using the cell pole-associated protein Wag31 and the subpolar protein Gtf1 

(MSMEG_0389) surrogates (Figure 1G), we found that our bimodal interpolation method 

is advantageous at preserving the polar signal topology (Figures S4C-S4H), which enables 

cell-to-cell comparisons independent of cell length (Figure 1H). To deduce cell-length-

associated dynamics, we grouped the interpolated matrices by their length rank orders and 

used the normalized average of each group to represent cell-length-associated localization 

patterns (Figure 1I). The length-binned data structure has a substantially reduced data size 

(~40-fold); however, it effectively recapitulates the protein localization patterns of various 

forms, as demonstrated by the transformed Ssb data (Figures 1D and 1J). Similarly, the 

binning transformation demonstrates that TtfA (Figure 1J), an essential membrane protein 

that participates in mycolic acid transport (Fay et al., 2019), manifests a membrane-anchored 

signal with a constant polar signal and a length-dependent septal association, which is 

consistent with published time-lapse data (Fay et al., 2019).

GEMATRIA

The length-binned data encompass two orthogonal sets of information: the different protein 

localization patterns and their dynamics in relation to cell length—the deconvolution of 

which could be reliably achieved using a matrix factorization approach (Stein-O’Brien et 

al., 2018). A recent study employed principal-component analysis (PCA) to discern the 

various localization patterns—or features—found in E. coli time-lapse data (Kuwada et al., 

2015). However, when applied on our compiled dataset, PCA rendered complex localization 

patterns (two-dimensional manifestations of principle components or PCs) (Figure S7A) 

that are difficult to interpret. The alternative matrix factorization approach, non-negative 

matrix factorization (NMF), which is broadly used in bioinformatic and biomedical image 

analysis (Stein-O’Brien et al., 2018), poses several advantages as opposed to PCA: NMF 

enforces non-negativity of the output matrices and has been shown to effectively infer 

visually intuitive features representing different “parts” of a complex image (Lee and 

Seung, 1999). The better interpretability of NMF-derived features would in turn support 

the straightforward quantitation of feature-specific dynamics in the dataset.

We therefore sought to develop an NMF-based method that simultaneously learns 

biologically relevant protein localization patterns and restores the coarse-grained localization 
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dynamics from static imaging data. This method, GEMATRIA, comprises two modules. 

In the first module, GEMATRIA uses matrices containing the compiled length-binned 

dataset (Figures 2A and 2B) and deconvolves it by standard NMF. Through NMF and 

subsequent data reconstruction, GEMATRIA renders two sets of matrices (Figures 2C and 

2D). A basis matrix (Figure 2C) represents a discernable localization pattern, or feature, 

extracted from the input dataset, whereas an encoding matrix (Figure 2D) elucidates two 

salient attributes of a protein: the relative contributions (weights) of different features in 

describing the protein’s localization pattern and their variations in relation to cell lengths, 

or in a coarse way, the approximation of cell-cycle progression. The second module of 

GEMATRIA seeks to integrate the encoding information to restore the spatial-temporal 

organization of proteins. In a bacterial cell, proteins of related function often coalesce 

to ensure coordinated function and to attain optimal activity. We therefore posited that a 

network-based analysis, where pairs of proteins are connected by their spatial similarity 

(Figure 2E), is well suited for this task. For each length group, GEMATRIA uses the 

encoding information to estimate the similarities of different proteins and creates a fully 

connected similarity network. While each length-coupled similarity matrix is, by itself, 

informative, it represents only a facet of the complete structure. GEMETRIA implements 

the similarity network fusion technique (Wang et al., 2014) to reconcile different similarity 

matrices, and generates a composite network that captures the stable underlying structure 

of protein localization (Figure 2F). The low-dimensional embedding can be leveraged to 

visualize the static or the length-resolved dynamics of different features, as depicted in 

Figure 2G (Video S4). In summary, GEMATRIA is an unsupervised method that learns 

prominent visual features from highly complex, multi-protein localization snapshots, and 

restores the spatial organization and the coarse-grained temporal dynamics of these bacterial 

proteins. Its applications on the MSR-Dendra dataset are explored in the following sections.

Discriminative features identified by GEMATRIA are visually intuitive and biologically 
relevant

In addition to the 760 MSR-Dendra entries (Table S1), we also integrated several 

independently gathered imaging datasets to validate GEMATRIA’s output. These datasets 

include Msm stained with different fluorescent dyes (Figure S5A), an Msm strain that 

co-expresses two different cytosolic fluorescent proteins (Figure S5B), and seven previously 

characterized Msm strains that encode fluorescently tagged “divisome” components (Figure 

S6) (Wu et al., 2018). Using GEMATRIA, we generated a total of 20 features (basis 
matrices, depicted in Figures 3A, 3B, and S7B) from the mixed dataset. While all features 

found by NMF appear to be spatially confined, many of them are also visually intuitive. 

For instance, the four near-symmetric features depicted in Figure 3A, features 1, 2, 

7, and 12, matched the expected localization patterns of cytosolic proteins, membrane 
proteins, septum-associated proteins, and DNA-associated proteins (segregating daughter 

chromosomes), respectively. When illustrated with the composite network (Figure 3A, lower 

panels), the four near-symmetric features marked distinct parts of the network. In contrast, 

most of the remaining features were asymmetric (Figures 3B and S7B), a subset of which 

manifested mirrored patterns (features 4 and 6 or features 13 and 16) with overlapping but 

nonidentical prevalence in the composite network (Figure 3B, lower panels). As the single-

cell profiles rendered by MOMIA have been reoriented to enforce signal polarity (Botella et 
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al., 2017), the presence of mirroring feature pairs implies that proteins associated with these 

locations (polar, peri-polar, etc.) exhibit varied degrees of asymmetry. As demonstrated in 

Figures 3C, S8A, and S8B, these asymmetric features can be used to identify and quantitate 

proteins that are exclusively unipolar (e.g., MSMEG_6363) or uni-peri-polar (e.g., GlpX, 

MSMEG_5239), as well as proteins that are more evenly allocated to the two polar (e.g., 

TtfA, MSMEG_0736) or peri-polar (e.g., DlaT, MSMEG_4283) regions. The complete set 

of encoding matrices for the MSR-Dendra library are included in Table S1.

To assess whether GEMATRIA faithfully represents the known structural properties of a 

mycobacterial cell, we inspected the validation entries. As indicated in Figures 3D, S8C, 

and S8D, the two untagged fluorescent proteins (Figure S5B), mScarlet (Bindels et al., 

2016) and mNeonGreen (Shaner et al., 2013), display a near-identical profile, highlighted 

by the cytosolic feature 1. The two membrane-staining dyes (Figure S5A), FM4-64 and 

Nile Red, are marked by the membrane-associated feature 2. Hoechst 33342 and SYTO-17 

(Figure S5A), both of which stain the chromosomal DNA, manifest the highest signals for 

the DNA-associated feature 12. Finally, the two selected FtsZ-mCherry (Figure S6) datasets 

also phenocopy each other and display strong septal (feature 7) signals. Together, these 

data indicate that our NMF-based approach could effectively infer visually intuitive and 

biologically relevant features from a large-scale imaging dataset.

The GEMATRIA-derived composite network is biologically compartmentalized

Next, we sought to interrogate the biological structure of the composite network (Figure 

2F). We leveraged the previously established method, SAFE (spatial analysis of functional 

enrichment, Baryshnikova, 2016), to find functional annotations that are significantly 

enriched in defined regions (subgraphs) of the composite network. Using the up-to-date 

COG (clusters of orthologous genes) functional categories as the reference (Galperin et 

al., 2021), we discovered three functional clusters in the composite network (Figure 3E, 

zoomed-in view depicted in Figure S9). The first cluster, here denoted as the core domain 

(light green-shaded region), is defined by proteins that participate in the biosynthesis of 

DNA, RNA, proteins, and their corresponding regulatory processes. The second cluster, 

denoted the membrane domain (pink-shaded region), encompasses proteins that are involved 

in energy metabolism, cell wall synthesis, cell division, and other membrane-associated 

activities. Notably, the core domain encloses the two nucleic acid-staining entries, Hoechst 

33342 and SYTO-17, whereas the membrane-staining FM4-64 and Nile Red are allocated 

to the center of the membrane domain. Moreover, the four FtsZ entries coalesce into 

a tight cluster in the core domain adjacent to the border with the membrane domain, 

which is associated with the function of FtsZ in cell-cycle regulation. The third cluster 

(light blue-shaded area) is enriched for proteins with functions in amino acid metabolism; 

however, we found that nearly all the proteins associated with this cluster manifest a diffused 

cytosolic fluorescence pattern, including the mNeonGreen and the mScarlet validation 

entries. We therefore denote this cluster as the cytoplasm domain. With a more stringent 

search criterion, the three macro domains can be further dissected into subdomains of 

various biological functions (Figure S10). Notably, as both the downscaling interpolation 

and binning processes irreversibly compress the dataset, information loss is expected. We 

reasoned that data binning would have greater impact on proteins with irregular localization 
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dynamics, as local protein signals are more prone to be blurred by averaging. By comparing 

the signal coefficient of variation (CV) of the raw data and binning-averaged dataset (Figure 

S11A), we found 27 MSR-Dendra entries whose signal variations are underrepresented 

after binning (protein information and graphical representations are attached in Table S2). 

When projected onto the composite network, we found that nearly all the CV outliers 

were positioned between the membrane and the core domains (Figure S11B) and could be 

further grouped into functional subgraphs, including one that contained all three subunits 

of mycobacterial pyruvate dehydrogenase (Figures S11C and S11E). Together, these data 

suggest that the composite network rendered by GEMATRIA robustly recapitulates the 

underlying biological structures at various scales.

Mycobacterial ribosomes are excluded from the cell poles

To further assess the traceability of the composite network, we generated a curated list 

of ribosomal proteins and applied SAFE to search for potential functional partners of 

mycobacterial ribosomes (Hentschel et al., 2017). While 26 of the 29 ribosomal proteins in 

the MSR-Dendra library are allocated to the core domain (Figure 4A and S12), 18 of them 

further coalesce into a spatially confined cluster (Figures 4A and 4B). By comparing the 

Dendra-tagged ribosomal proteins with the membrane (FM4-64), the cytosolic (mScarlet 

and mNeonGreen), and the DNA-bound markers (Hoechst 33342 staining and DNA 

binding proteins Hup and MysA), we revealed that most ribosomal proteins exhibit a 

cytosolic distribution with a low prevalence at the cell poles (Figure S12A). Furthermore, 

using the peri-polar features 13 and 16 as proxies (Figure S12B), we also found that, 

compared with the DNA-bound and the cytosolic markers, mycobacterial ribosomal 

proteins are more asymmetrically distributed in the cell (Figure S12C). In addition to the 

structural components of the mycobacterial ribosome, we also identified several ribosome-

associated proteins in this cluster (Figures 4C and S12D) that participate in various 

processes of protein translation, such as co-translational chaperoning (Tig, MSMEG_4674), 

translational termination (PrfA, MSMEG), rRNA maturation and modification (Era and 

RmsI, MSMEG_4493 and MSMEG_5445), as well as proteins that participate in amino acid 

metabolism (ProB and ThrA, MSMEG_4621 and MSMEG_4957).

To validate the intriguing localization pattern of ribosomal proteins, we used the 50S 

ribosomal protein, RplU (MSMEG_1364), as a surrogate for ribosome localization 

dynamics and conducted time-lapse microscopy (Figure 4D; Video S1). We found that 

mycobacterial ribosomes are indeed excluded from future cell poles before septation. 

Moreover, as the new pole matures (Hannebelle et al., 2020), the ribosome-depleted area 

further expands to the peri-polar region. The delayed exclusion of ribosomes from the 

nascent peri-polar compartments is likely what caused the overall asymmetry of ribosome 

localization patterns. Notably, the observed localization pattern of mycobacterial ribosomes 

differs significantly from previous established models of E.coli or B. subtilis (Bakshi et al., 

2015; Bayas et al., 2018), in which ribosomes are more homogeneously distributed in the 

cytoplasm, albeit being excluded from the densely packed nucleoid. Bacterial ribosomes 

are large macro-complexes (>2.5 MDa), whose cytosolic distribution is confounded by their 

interactions with other macropolymers (mRNAs and chromosomal DNA) as well as the 

subcellular distribution of their protein products (Bakshi et al., 2014, 2015; Gray et al., 
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2019). To test whether the polar exclusion of mycobacterial ribosomes is reliant on the 

co-transcriptional translation continuum, we treated the mycobacterial strains expressing 

RplU-Dendra or Dendra-tagged RpoZ, the ω subunit of RNA polymerase (RNAP), with 

antibiotics that target translation (chloramphenicol or CAM), transcription (rifampicin or 

RIF), or ATP biosynthesis (bedaquiline or BDQ) (Figure 4E). We found that, upon the 

brief exposure to CAM or RIF, but not BDQ, RNAPs are concentrated to the center of 

the cells (Figure 4F, bottom panels), indicative of chromosomal condensation (Xiang et al., 

2021; Zhu et al., 2018). Conversely, ribosomal fluorescence became visually more diffused 

after CAM or RIF treatments (Figure 4F, top panels). To systematically interrogate the 

drug-induced changes of protein localization, we leveraged the 20 localization patterns 

extracted by GEMATRIA as references to transform the drug-treatment imaging data into 

single-cell profiles. As illustrated in Figure 4F, disruption of either translation elongation 

(CAM) or transcription initiation (RIF) substantially increased the polar prevalence (features 

4 and 6) of ribosomes, implying that polar exclusion is dependent on a functioning 

transcription-translation apparatus. To exploit the single-cell data, we used the Uniform 

Manifold Approximation and Projection (McInnes et al., 2018) to render planar projections 

of single-cell morphological (Figure 4H) and fluorescence profiles (Figure 4I). Consistent 

with previous work (Cass et al., 2017; Pradhan et al., 2020; Smith et al., 2020; de Wet et 

al., 2020), we found that morphological features are good predictors of cellular outcomes 

in response to antibiotics; however, they lack the resolution to probe intracellular changes. 

As a complement to conventional cytological profiling, GEMATRIA-derived features show 

that short-term perturbation of translation or transcription led to the spatial segregation of 

ribosomes and RNAPs (Figure 4I), a previously uncharacterized facet of mycobacterial cell 

biology.

Spatial co-occurrence of functionally associated mycobacterial membrane proteins

Next, we queried the mycobacterial ATP biosynthetic machinery. We found that 11 of 

the 15 MSR-Dendra archived ATP biosynthetic proteins (Figures 5A and 5B) formed a 

compact cluster inside the membrane domain. These include the major non-proton pumping, 

type II NADH dehydrogenase Ndh (complex I, MSMEG_3621), subunits of the Qcr-Cta 

supercomplex (complex III-IV, QcrB, QcrC, the two copies of CtaD and CtaF) and subunits 

of the ATP synthase (complex V, AtpB, AtpD, AtpG). In addition, we found that a recently 

characterized complex III-IV component, CtaI (Gong et al., 2018), co-clusters with other 

functional partners. We also noted that compared with other membrane proteins (Figure 

5D), the identified ATP biosynthesis proteins show significantly diminished signals at the 

polar hemispheres (Figure 5E), as revealed by polar features 4 and 6. The polar exclusion 

of OXPHOS proteins was further confirmed through time-lapse microscopy using QcrB-

Dendra as a localization marker (Figure 5F; Video S2).

While it is reassuring to validate the spatial co-occurrence of proteins of known structural 

complexes, the power of GEMATRIA is its ability to provide information about proteins 

whose functions are less understood. Previous work had uncovered a unique mycobacterial 

membrane domain (intracellular membrane domain, or IMD) that is devoid of membrane 

tethered, mature cell wall material, and associates with a distinct protein set (Hayashi 

et al., 2016). Indeed, microscopy revealed that several postulated IMD proteins locate 

Zhu et al. Page 9

Cell Rep. Author manuscript; available in PMC 2022 February 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to the peri-polar regions of mycobacterial cells (Hayashi et al., 2016; Judd et al., 2021; 

Puffal et al., 2018). By mapping the biochemically identified IMD proteins onto the 

composite network, we found that >65% (31/47) of the MSR-Dendra-archived IMD proteins 

congregate to the same region (Figures 5G and 5H) of the composite network and exhibit 

a consistent peri-polar enriched signal profile (Figures 5H and S13; Video S3). Using the 

network locations of the known IMD proteins as a reference, we identified 16 previously 

unreported putative IMD proteins (Figures 5I and S13B). While many of these novel IMD 

candidates are annotated to participate in lipid metabolism (Figure 5I), we also discovered 

proteins involved in the biosynthesis of cytochrome c (CcdA) amino acids (AsnB and 

MSMEG_4632), as well as enzymes of unknown function. Together, these data indicate the 

structural and functional importance of the IMD as a physical “hub” for various metabolic 

processes; however, further investigation is required to deduce the exact composition and the 

molecular functions of this structure.

Reconstruction of cell-cycle-dependent protein localization dynamics by GEMATRIA

The orchestration of the bacterial cell cycle involves many essential proteins that are 

dynamically allocated to different regions of the cell where they are thought to exert 

their function (Surovtsev and Jacobs-Wagner, 2018). To attain a “temporal” perception of 

the protein network, we color coded the feature weights and animated their variations in 

relation to cell length, or in a coarse sense, cell-cycle time (Figure S14A; Video S4). While 

some features are relatively static across a reconstituted “cell cycle” (e.g., the cytosolic 
feature 1 and the membrane-associated feature 2, as illustrated in Video S4), many others 

manifest a dynamic distribution pattern. In particular, we found that the septal feature 7 

reveals a cell-cycle-dependent protein reallocation from the core domain to the membrane 
domain (Figure S14A), which is consistent with previous models whereby the center 

of a mycobacterium (septum) needs to accommodate alternating cellular processes from 

DNA replication (Trojanowski et al., 2019) to cell division (Wu et al., 2018). We further 

inspected the dynamics of known cell-cycle-associated proteins. As depicted in Figure 

6A, the length-binned patterns of four previously characterized cell-cycle proteins display 

different length-dependent signal displacement near the mid-cell. Specifically, DnaE1, a core 

component of the DNA replication machinery, congregates near mid-cell in shorter cells 

but exhibits diffused or bifocus localization when cells are longer, a pattern that mirrors 

the aforementioned DnaZX replisome subunit (Logsdon et al., 2017; Trojanowski et al., 

2019). The two divisome components, FtsZ and FtsW (Wu et al., 2018), associate with 

the septum when cells reach medium lengths, albeit with varied degrees of delay. MmpL3, 

which plays a vital role in myco-membrane synthesis and nascent pole assembly (Fay et 

al., 2019), manifests septal signals during the final stages of the cell cycle. Notably, these 

patterns resembled the averaged time-lapse kymographs of corresponding proteins (Figure 

6B). Using the feature 7 (Figure S14B) as a reference, we extracted the normalized mid-cell 

dynamics from time-lapse data (Figure 6C, blue lines) and compared them to the mid-cell 

dynamics inferred by GEMATRIA (Figure 6C, red lines). We found that, although the 

amplitudes of the mid-cell dynamics rendered by the two methods may differ, their overall 

shapes are comparable. To further assess the consistency between GEMATRIA-derived 

pseudo-temporal profiles and time-lapse data, we adopted a constrained sinusoidal function 

to model these dynamics (Figure 6D; STAR Methods). As demonstrated in Figures 6E, 

Zhu et al. Page 10

Cell Rep. Author manuscript; available in PMC 2022 February 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



S14C, and S14D, the sinusoidal phase shifts of GEMATRIA-derived mid-cell dynamics 

correlated well with phase shifts calculated using time-lapse data (Pearson coefficient 

> 0.95), demonstrating the feasibility of cell-cycle modeling using GEMATRIA-derived 

features.

The successful reconstruction of several known cell-cycle events propelled us to 

systematically interrogate the MSR-Dendra dataset. We fitted the sinusoidal function to all 

GEMATRIA-derived feature 7 profiles and obtained 76 MSR-Dendra entries with distinctive 

length-associated dynamics (Figure S15A; Table S3) that formed a continuum of mid-cell 

protein displacement throughout a presumed full cell cycle (Figure 6F). Based on their 

annotated functions (Figure 6F, bottom panel), these proteins can be divided into three 

groups. DNA binding proteins, especially proteins involved in DNA replication, are the 

first set of proteins to assemble at the mid-cell, likely nearby the single copy of the 

chromosome. The incorporation of proteins that engage in septum assembly (cell-cycle 

proteins) begins when cells reach moderate lengths and continues in a sequential manner 

throughout the rest of the cell cycle (Wu et al., 2018). Finally, as the septation event 

is completed by the installation of a bilayered plasma membrane and cell wall, this 

resource-intensive process requires the late-stage septal enrichment of membrane proteins 

and the unique IMD-associated proteins, many of which have been shown to play prominent 

roles in mycobacterial cell wall biosynthesis (Puffal et al., 2018). Here, we focused on 

MSMEG_6928, a highly conserved membrane protein of unknown function. GEMATRIA 

predicts that septal accumulation of MSMEG_6928 occurs after FtsW but before MmpL3; 

the predicted mid-cell temporal dynamics was subsequently confirmed by time-lapse 

microscopy (Figures 6E, 6G, and 6H; Video S5). Importantly, the gene msmeg_6928 
resides within a highly conserved operon (Figure 6I), with an upstream anti-mutator gene 

mutT4 (Dupuy et al., 2020) and a downstream membrane protein-encoding mviN, whose 

E. coli homolog (murJ) was identified to be the peptidoglycan lipid-II flippase (Ruiz, 

2008). Although the Msm protein MSMEG_6928 has not been previously characterized, its 

Mtb homolog Rv3909 (Figure 6I), along with its neighboring gene MviN (Rv3910), were 

both found to directly interact with the mycolate transporter, MmpL3 (Belardinelli et al., 

2019), which is consistent with our finding that MSMEG_6928 and MmpL3 are tightly 

associated in the composite network (Figure S15B). Moreover, the recently established Msm 
morphological landscape upon essential gene silencing (de Wet et al., 2020) revealed that 

the transcriptional repression of either of the three genes in the operon (msmeg_6927–6929) 

resulted in the dwarfing and thickening of Msm cells (Figure 6J), which phenocopied the 

repression of mmpL3 or wag31. Together, these data imply that MSMEG_6928 and its Mtb 
homolog may play salient roles in the early assembly of nascent cell poles; however, future 

work is needed to elucidate the underlying molecular mechanisms.

DISCUSSION

Bacteria generally lack membrane-enclosed organelles; however, emerging evidence 

indicates that the prokaryotic kingdom employs equally elaborate mechanisms to organize 

their cell bodies (Rudner and Losick, 2010; Surovtsev and Jacobs-Wagner, 2018). In 

this work, we systematically characterized the subcellular localization dynamics of over 

700 conserved mycobacterial proteins. As the MSR-Dendra dataset comprised only static 
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images, we leveraged the coarse association between cell-cycle progression and cell 

length to develop an NMF-based technique, GEMATRIA, which simultaneously learns 

visually discernable localization patterns as well as their length-associated changes. This 

approach allowed us to exploit the complexity and density of the MSR-Dendra dataset 

and efficiently reconstruct the spatial and pseudo-temporal localizations of mycobacterial 

proteins. In addition to protein-level feature extraction and quantification, GEMATRIA also 

rendered a protein-protein similarity network that recapitulated the underlying structure 

of the dataset. In summary, we show that GEMATRIA is an effective tool for analyzing 

large-scale bacterial imaging data and requires only still images for temporal information 

reconstruction, which could potentially be used to analyze chemically fixed human 

pathogens including M. tuberculosis.

One of the most appealing properties of NMF is that it recognizes regional features, or 

“parts” of an image, as previously shown (Lee and Seung, 1999). This property allows 

us to map a protein to one or several visually intuitive cellular regions (Figures 3A 

and 3B). In our case, most of the inferred features represent distinct segments along 

the longitudinal axis of a cell (Figures 3A and 3B), suggesting that a mycobacterium 

can be functionally segmented along this axis. This hypothesis is not unprecedented, as 

previous studies have demonstrated that the polar (Carel et al., 2014; Fay et al., 2019; 

Meniche et al., 2014) and peri-polar (Hayashi et al., 2016) regions of mycobacterial 

cells are enriched for two distinctive set of proteins. Here, we report that mycobacterial 

ribosomes are excluded from the polar-peri-polar region of the cell (Figures 4C, 4D, and 

S12), whereas previous work in E. coli reported opposing patterns (Bakshi et al., 2015). 

Using Dendra-tagged RplU or RpoZ as ribosome or RNAP markers, we further show 

that chemical inhibition of either translation elongation (chloramphenicol) or transcription 

initiation (rifampicin), but not ATP biosynthesis (bedaquiline), caused the re-distribution 

of both ribosomes and RNA polymerases in mycobacteria (Figures 4E and 4F). Notably, 

while chloramphenicol treatment induced consistent ribosome diffusion and chromosomal 

compaction in mycobacteria as have been reported for E. coli (Bakshi et al., 2014; Xiang et 

al., 2021), rifampicin treatment resulted in contradicting phenotypes in the two organisms, 

implying different body plans for the two species. Another striking finding made by 

GEMATRIA is that the ATP biosynthetic machinery appears to be excluded from the 

curved polar caps (Figures 5A-5F). This could either reflect physical exclusion of the 

machinery or a functional requirement to locate the ATP machinery distant from cell poles 

and septa. Together, these visually guided inferences suggest that the polar, peri-polar, 

peri-chromosomal, and septal regions of mycobacterial cells are functionally distinct and 

physically semi-segregated.

The septum of a mycobacterium needs to accommodate distinct cellular processes 

throughout the cell cycle, from the inception of DNA replication to the final stages of 

septation. Therefore, it is not surprising that the mid-cell-associated feature 7 had the 

most extensive length-dependent variations. Nevertheless, the high concordance between 

the pseudo-temporally resolved patterns (Figures 6A-6E) and time-lapse imaging data 

suggest that the GEMATRIA-derived pseudo-temporal protein heatmaps contain detailed 

circumstantial information about potential cellular functions for this class/cluster of proteins. 

We could, therefore, leverage this information to both characterize proteins of known 
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functions as well as to infer the cellular function of unknown proteins (Figure 6F). 

Notably, a recent study by Bandekar et al. (2020) experimentally resolved the cell-cycle-

associated transcriptomic dynamics in M. tuberculosis and revealed numerous genes that are 

differentially expressed in a cell-cycle-dependent manner. Together, our studies suggest that 

mycobacterial genes and their protein products are regulated both spatially and temporally 

and that localization can be used to infer protein function.

Limitations of the study

In this work, we present a lightweight, two-stage image analysis pipeline, MOMIA and 

GEMATRIA, and demonstrate its application on quantifying the spatial and temporal 

dynamics of over 700 fluorescently tagged M. smegmatis proteins. While we show that this 

pipeline is effective at characterizing mycobacterial protein localization dynamics, our study 

has several major limitations. First, unlike the E. coli precedent (Kitagawa et al., 2005), 

the fluorescently tagged proteins of the MSR-Dendra library are expressed from a strong, 

constitutive promoter (Judd et al., 2021). The overexpression of these tagged proteins may 

impose varied pressures on the cell’s metabolism, cell wall homeostasis, and other essential 

processes, concerns of such are demonstrated by the presence of MSR-Dendra strains with 

deformed cell shapes or retarded growth. This technical caveat could be partially resolved 

by introducing a separate copy of tet repressor (tetR) to the system to enable controllable 

expression, as the promoter already contains a tet operator (tetO). Secondly, as the cellular 

fluorescence signals are straightened and projected onto a regular matrix, this transformation 

ablates important lateral information, such as the protein’s association with membrane 

curvature or its dependency on non-septal constrictions (Eskandarian et al., 2017). These 

features may be independently interrogated using MOMIA-derived cell coordinates (Colavin 

et al., 2018; Özbaykal et al., 2020; Ursell et al., 2014), which are not covered in this study. 

Finally, because the length binning procedure computes the averaged intensity profiles of 

many cells, our current framework of GEMATRIA is crippled in characterizing proteins 

with punctuate fluorescence patterns, especially the ones manifesting high stochasticity and 

cell-to-cell variations in localization (Figure S11; Table S2). We posit that this challenge 

could in theory be resolved by training a multi-layer NMF model with an integrated dataset 

containing both single-cell and binned data, a frontier that we are actively exploring.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Requests for raw imaging data, bacterial strains, and further information 

can be directed to the lead contact, Eric J. Rubin (erubin@hsph.harvard.edu).

Materials availability

• MSR-Dendra plasmids used to generate the corresponding MSR-Dendra strains 

have been deposited to Addgene, the link to which is listed in the key resources 

table. Other plasmids or bacterial strains described in this manuscript will be 

shared by the lead contact upon request.

• This study did not generate new unique reagents.
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Data and code availability

• Unprocessed imaging data described in this work cannot be deposited in a 

public repository due to file size limitations. To request access, contact the first 

author J. Z (juzhu@hsph.harvard.edu). or the lead contact, E. J. R.; GEMATRIA 

transformed MSR-Dendra dataset is included in Table S1.

• All original code has been deposited at Zenodo and is publicly available as of the 

date of publication. DOIs are listed in the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL AND SUBJECT DETAILS

Bacterial strains and culture conditions—M. smegmatis (Msm) mc2155 and 

derivatives were cultured in 7H9 liquid medium supplemented with 5g/L albumin, 2g/L 

dextrose, 0.85 g/L NaCl, 0.003g/L catalase, 0.2% (v/v) glycerol and 0.05% (v/v) Tween 80. 

Antibiotic concentrations for Msm cultures were as follows: 25 μ g/ml kanamycin, 50 μ g/ml 

hygromycin, 25 μ g/ml zeocin, 40 μ g/ml nourseothricin, 12.5 μ g/ml apramycin. To culture 

MSR-Dendra strains, cells were seeded from the 96-well frozen stocks into a 96-well culture 

plate (flat-bottom, untreated clear polyethylene, VWR) containing 200 μ l culture medium 

with apramycin. The initial culture plate was kept shaking (benchtop plate shaker, 700 rpm) 

at 37°C until all wells turned turbid. Replicate plates with 2 μ l culture inoculant from the 

initial plates and 198 μ l liquid medium in each well were grown shaking at 37°C overnight 

to reach OD600 ≈ 1.0–3.0. To prepare the spike-in strains listed in Table S1, cells were 

seeded from the frozen stocks into culture tubes containing 3 mL 7H9 liquid medium with 

antibiotics and grown at 37°C on a benchtop tube roller drum to reach OD600 ≈ 2.0–3.0. 

The early-stationary phase cultures were then diluted (1:500) into fresh liquid medium and 

grown shaking at 37°C overnight to reach OD600 ≈ 1.0.

Differential antibiotics treatment—100 μ l of exponentially growing RplU-Dendra or 

RpoZ-Dendra expressing Msm cells (OD600~0.6 and 0.3, respectively) were combined with 

100uL fresh 7H9 media containing 100 μg/mL chloramphenicol, 200 μg/mL rifampicin, 10 

μg/mL bedaquiline or 1:100× diluted DMSO in a sterile 96 well plate. Cells were treated 

at 37°C on a benchtop thermoshaker for three hours, then immediately seeded on 2.0% 

growth-supporting agarose pad (1× concentration of 7H9, 0.1% w/v casamino acid (BD), 

0.2% w/v glucose, 0.2% v/v glycerol) and subjected to imaging.

Chemical fluorescent dye staining—1× chemical staining working solutions were 

prepared with PBS-T solution (1× phosphate buffer saline, pH = 7.4, supplemented with 

0.05% Tween-80). Specifically, Nile red stock solution (Sigma, 1 mg/mL in DMSO) was 

diluted with to a final concentration of 5 μ l/ml; Hoechst 33342 stock solution (Life 

technologies, 10 mg/mL in distilled water) was diluted to a final concentration of 10 μ g/ml; 

Syto-17 stock solution (ThermoFisher, 5 mM in DMSO) was diluted to a final concentration 

of 0.5 μ M; FM4-64 stock solution (ThermoFisher, 1mg/ml in DMSO) was diluted to a final 

concentration of 10 μ g/ml. 1 mL culture (OD600 ≈ 1.0) of wild type Msm cells were spun 

down and washed with PBS-T solution for two times, then lifted with 1mL PBS-T. Pellets 
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of 200 μ l aliquots were stained with equal volumes of the 1× chemical staining working 

solutions at room temperature for 10 min. After staining, cells were washed twice with 

PBS-T, resuspended in 100 μ l PBS-T, and subjected to imaging immediately.

METHODS DETAILS

Semi-automated image acquisition and quality control—To image the arrayed 

MSR-Dendra strains, cell cultures of optical density at 600 nm (OD600) of ~1.0 to 3.0 

were spotted onto 96-pedastal slides (2.5% agarose in 1XPBS) cast using a customized 

metal mold and imaged with a Plan Apo 100 × 1.45 NA objective using a Nikon Ti-E 

inverted, widefield microscope equipped with a Nikon Perfect Focus system with a Piezo 

Z drive motor, Andor Zyla sCMOS camera, and NIS Elements (v4.5). Semi-automated 

imaging was carried out using a customized Nikon JOBS script to locate imaging fields of 

interest, 9 or 18 images were taken for each strain. To image the reference strains, cells 

expressing fluorescent proteins or stained with chemical fluorescent dyes were seeded on 

agarose pads (2.5% agarose in 1XPBS) prepared as previously described (Skinner et al., 

2013) and immediately subjected to imaging. Fluorescence signals were acquired using a 

6-channel Spectra X LED light source and the Sedat Quad filter set. The excitation (Ex.) and 

emission (Em.) filters used in this study were: Ex. 395/25nm and Em. 435/25nm for Hoechst 

33,342; Ex. 470/24nm and Em. 515/25nm for green fluorophores (Dendra, mNeonGreen, 

and GFPmut3); Ex. 550/15nm and Em. 595/25nm for red fluorophores (mCherry, FM4–64, 

and Nilre Red); Ex. 640/30nm and Em. 705/25nm for the far-red fluorophore SYTO-17. 

Raw imaging data were manually screened to remove out-of-focus images or ones that with 

intense cellular aggregation or with no cells.

Time-lapse microscopy—To generate time-lapse data for Dendra-tagged proteins listed 

in Figure 6E (except for ImuB or mCherry-tagged FtsZ), corresponding MSR-Dendra strains 

were grown in regular 7H9 media until late log phase (OD600~0.8–1.5), then diluted in 7H9 

to a final density of OD600~0.1. 0.5–1 μ l of diluted cells was seeded on a 2.0% agarose pad 

containing 1× concentration of 7H9, 0.1% w/v casamino acid (BD), 0.2% w/v glucose and 

0.2% v/v glycerol. The agarose pad was cast in a 12 × 12 mm2 customized plastic frame and 

placed in a low-evaporation imaging disk (MatTek Corp.) to enable long-term time-lapse 

experiment. Fluorescence and phase-contrast images were acquired every 10 min for a 12-h 

period using the same microscope configurations as used to generate the MSR-Dendra 

dataset. To acquire time-lapse data for Dendra-tagged ImuB (MSMEG_1622), cells were 

grown in a CellASIC microfluidics plate and imaged with a Plan Apo 60 × 1.45 NA 

objective using a Nikon Ti-E inverted, widefield microscope equipped with a Hamamatsu 

C11440 CMOS camera and an Agilent MLC400 Monolithic laser combiner. Images were 

acquired every 12 min for a total of 15 h. Time-lapse imaging data for mCherry-tagged FtsZ 

(CB954) were adopted from our lab’s previously published work (Wu et al., 2018).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis—Statistical analysis described in this study was performed using the 

python package SciPy (Virtanen et al., 2020). As the encoding and the basis images derived 

by NMF are both sparse representations of the dataset (Hoyer, 2004), the distributions 

of feature weights (feature coefficients) are often not normal. Therefore, we used the non-
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parametric Mann Whitney U test to compare the feature weights of two independent subsets, 

as shown in Figures 4G and 5E.

Time-lapse imaging data analysis—Time-lapse snapshots and videos were rendered 

using Fiji (Schindelin et al., 2012). To analyze time-lapse data, we used Fiji’s segmented 

line tool to measure the axial fluorescence signals consistently from the new pole to the old 

pole for every single cell from its birth to the last image frame before the cell had divided. 

Each cell’s fluorescence profiles were subsequently concatenated according to its cell cycle 

progression and interpolated into a standard 10 × 30 matrix (cellular kymograph). Cellular 

kymographs were subsequently analyzed using customized Python scripts as illustrated in 

Figure S14B.

Still image data preprocessing by MOMIA—For each qualified image, MOMIA 

removes the peripheral 36% pixels to account for aberrant phase contrast signals (e.g., 

drift in z-axis), which are empirically more pronounced on the images’ edges. The trimmed 

phase-contrast images were subsequently processed by a dual-bandpass frequency filter with 

the low and high frequency cutoff set to be 0.05 μm−1 and 5 μ−1. The dual-bandpass filter 

enhances segmentation performance by suppressing abrupt optical aberrations (e.g., small 

air bubble) as well as low-frequency signal variations (e.g., uneven illumination), as depicted 

in Figure S4. For fluorescence signals, we used a conventional “rolling-ball” method to 

subtract fluorescence background from the cropped data (Sternberg, 1983). To account for 

the potential horizontal drift between the phase contrast and fluorescence images, MOMIA 

estimates the horizontal drift with subpixel resolution by calculating the cross-correlation 

between the two channels in Fourier space, and automatically corrects the detected drift with 

a maximum drift cutoff set to 2μm.

Cluster segmentation and clump removal—After data cleanup and image 

preprocessing, MOMIA computes both the global threshold (iso-data method) and the local 

adaptive threshold to generate a binary mask from the phase contrast image, as demonstrated 

in Figure S3. The binary image is further separated into clusters of pixels based on their 

inter-connectivity. Unlike other prokaryotic model organisms (e.g., E. coli, B. subtilis) 

which form a flattened monolayer when embedded on an agarose surface, mycobacteria are 

prone to cellular clumping and often appear as stacked cellular clumps of varied thickness. 

MOMIA implemented a customized function to minimize false segmentation caused by cell 

aggregation. Given the bandpass-filtered phase contrast image Ii = 1,2…N, j = 1,2…M of N×M 
pixels, the amplitude of local variation Ai = 1,2…N, j = 1,2…M is defined as below:

Aij =
Iij
Gij

Where Gij is obtained by convolving / with the 2-dimensional Gaussian kernel of variance 

σ2. By default, σ is set to 8–10 (pixel units) to accurately locate cellular clumps. As 

illustrated in Figure S4, mycobacterial cell aggregates are often associated with higher Aij 

measures. Pixels with extreme Aij values, along with its neighboring pixels of an arbitrary 

radius, are regarded as aggregation “hot spot”, therefore, they are excluded from downstream 
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image segmentation. Clusters with areas lower than 80 pixels are also removed from the 

analysis.

Cell segmentation—MOMIA uses a series of functions to extract cell-like particles 

from non-clumping clusters. The core function is a threshold-based method that relies on 

the computation of a previously established local shape descriptor called "shape index" 

(Koenderink and van Doorn, 1992). MOMIA adopts a user-defined set of numeric thresholds 

to locate pixels composing the core parts of the cells which are used as “seeds” to 

conduct segmentation with the watershed method. The initial segmentation results are 

further processed with a median filter to smoothen the binary mask edges as well as a 

morphological opening operator to split particles that are minimally connected. To account 

for the occasional over-segmentation events where two or more seeds were falsely drawn 

for a single bacterium, we implemented a pre-trained neuron-network model to classify 

boundaries between each pair of particles. Particles that share a ‘false’ boundary were 

subsequently merged to (Stylianidou et al., 2016).

Edge extraction and optimization—MOMIA overlays the phase-contrast image with 

the corresponding binary mask of segmented cells to generate a shaded grayscale image. The 

values of the background pixels were then adjusted to the maximum phase-contrast intensity 

of the foreground. Based on the maxima-shaded image (resembles the form of a canyon), 

MOMIA calculates a contour line encircling the segmented inland using the marching 

squares algorithm (Lorensen and Cline, 1987), then simplifies the crude contour lines with 

a spline-interpolation function. To accurately locate the border coordinates, MOMIA also 

implements a modified Canny/Devernay method (Grompone Von Gioi and Randall, 2017) to 

optimize the simplified contour lines.

Topological skeleton and profiling mesh—MOMIA implements a set of functions 

to compute, optimize, and analyze the topological skeleton of a given particle. Topological 

skeleton, or simply put, a thin, centered line that sketches the bulk shape of the object, 

renders useful information regarding the geometrical and topological properties of the 

object’s shape. The initial pixelated skeleton is achieved using Zhang’s thinning method 

(Zhang and Suen, 1984). For particles with a branched or irregular shape, the skeleton 

was further divided into segments connected by nodes. MOMIA then attempts an accurate 

estimation of the midline by iteratively evolving the pixelated skeleton (segments) to 

maximize the number of points that are equidistant to the refined contours. The widths along 

the midline were simultaneously estimated. Upon the smoothed contour, skeleton, and the 

widths profile, MOMIA builds a mesh that floods over the segmented cell (Figure S6). The 

inferred mesh and corresponding coordinates would allow the users to interpolate signals 

(phase contrast, shape index, or fluorescence when available) over the cell at a user-specified 

resolution.

Transformation of single-cell fluorescence profiles—Linear transformation of 

single-cell fluorescence profiles (Figure S4C) was achieved by directly performing two-

dimensional linear interpolation on the Gaussian smoothened intensity matrix (Figure 1C, 

bottom panels). To conduct the pole-aware transformation (Figure S4D), the two cell poles 
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(0.3 μm inward) and the remnant of a given straightened intensity matrix are interpolated 

separately, then re-combined to create a standardized matrix of 15 × 30 pixels (Figure 1F). 

The transformed data is subsequently normalized to its mean to mitigate the impact of 

differences in absolute fluorescence intensity.

Conversion of strain profiles to length-binned fluorescence patterns—Assume 

that a strain comprises K cells whose lengths fall within the 5–95% interval (inaccurate 

segmentation often yields objects with extreme lengths). The irregular shaped single-cell 

fluorescence profile of cell k is approximated with the profiling mesh (Figure S7C) to 

make a rectangle-shaped data matrix, which are interpolated and converted to a standardized 

matrix (dk) by the shape of X×Y (here X and Y were set to be 15 and 30). dk is subsequently 

normalized by its average intensity to make a relative representation of protein localization 

preferences in a standard cell, this is based on the presumption that protein concentration is 

cell-cycle invariant under a constitutive promoter (Lin and Amir, 2018).

Based on the lengths of the K cells, the collected matrices D (D = {d1…dK}) were sorted 

into L equal-sized length bins (here L = 10). The standardized matrices of the same length 

bin l were subsequently averaged to constitute the frame l of the length-binned data. 

Notably, while the binning process preserves the relative preference of protein localization 

over space and length, the amplitude of the transformed signals is still affected by the overall 

fluorescence intensity of the strain, as the first normalization was done by using fluorescence 

intensities as denominators. To enable strain-to-strain comparison, each strain-wise length-

binned data (denoted LD) was further processed using the min-max normalization method as 

indicated below:

norm(LDx, y, l) =
LDx, y, l − min

(X, Y , L)
(LD)

max
(X, Y , L)

(LD) , (X = 1, 2, …15; Y = 1, 2, …30; L = 1, 2, …10)

Non-negative matrix factorization (NMF)—NMF was performed with the 

‘decomposition’ module from the Python package Scikit-learn (Pedregosa et al., 2012). For 

a target matrix V, NMF seeks to find an encoding matrix W and a basis matrix H, the dot 

product of which approximates V:

V ≈ W H, V ≥ 0; W ≥ 0; H ≥ 0

As demonstrated in Figures 2B-2D, the transformed MSR-Dendra dataset is represented as a 

matrix (V) with 7770 rows (777 entries times 10 length bins) and 450 columns (pole-aware 

transformation and binning yields uniformed 15 × 30 matrices). The resultant non-negative 

matrices W and H therefore had a shape of 7770 × M and M × 450, respectively. Here M 
denotes the number of features, which is empirically set to 20 in the present study. To solve 

the matrix decomposition problem, we adopted an objective function E as below:

2E = ∑
i, j

(V ij − W ij•Hij)2 + ∑
i, j

αM W ij2 + Hij2 , V ≥ 0; W ≥ 0; H ≥ 0
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To avoid model overfitting, we used a relatively high tolerance (0.005) and the regularization 

term α (0.02). The initial basis and encoding matrices were determined with a nonnegative, 

double singular vector decomposition (NNDSVD) function. The objective function was 

solved using the Coordinate Descent method (Cichocki and Phan, 2009).

Single-cell fluorescence feature extraction by GEMATRIA—To compare the 

localization dynamics of RplU and RpoZ upon different antibiotics treatment, we 

straightened the single-cell fluorescence profiles and conducted pole-aware transformation 

to convert them into standard 15 × 30 matrices. Single-cell features were inferred by 

solving the same objective function as described above except that the target matrix V was 

the flattened cell thumbnail with a shape of 1 × 450 and the basis matrix H was fixed 

to be the same as the basis matrix inferred from the MSR-Dendra dataset. The resultant 

encoding matrix has a shape of 1 × 20 and was further normalized to the sum of the 20 

coefficients. The normalized feature coefficients of individual cells were used to guide the 

feature focused comparison of different drug treated groups (e.g., cell pole associated feature 

4 & 6, as depicted in Figure 4G) or to enable a global scale analysis using UMAP (Figure 

4I).

Similarity network fusion (SNF) and graph embedding—The SNF method was 

adopted from (Wang et al., 2014) and executed using the python module SNFpy (https://

github.com/rmarkello/snfpy). Briefly, for each length bin (frame) l (l = 1, 2…L), a 

correlation matrix c was generated where cij denotes the Pearson correlation coefficient 

between the lth feature weights of strain i and j. The normalized metrics were subjected to 

a standard SNF process. The SNF output, denoted status matrix C, is a fully connected, 

weighted graph. The dense composite graph data was simplified by preserving only the top 

10% weighted edges, and compiled using the NetworkX package (Hagberg et al., 2008). 

To visualize the composite similarity network, the pruned graph was projected onto a 

two-dimensional plane using the Fruchterman-Reingold force-directed algorithm (Arafat and 

Bressan, 2017).

Implementation of the spatial analysis of functional enrichment (SAFE) 
process—COG (Clusters of Orthologous Genes) annotations of the M. smegmatis genome 

are downloaded from the latest NCBI COG deposit (Galperin et al., 2021). KEGG (Kyoto 

Encyclopedia of Genes and Genomes) annotations of the M. smegmatis genome (entry 

ID: T00434) are retrieved from the KEGG database (Kanehisa, 2000). The core statistics 

were adopted from the original SAFE implementation (Baryshnikova, 2016). Briefly, the 

neighborhood of any node i in the status graph C is defined as the set of nodes {j, j 
≠i} where Cij is above a predefined weight threshold as indicated in Figures 4A and 

4B. Probabilities of gene sets being enriched in a given neighborhood is estimated by 

a hypergeometric test and corrected for false discovery using the Benjamini-Hochberg 

method (Benjamini et al., 2001). Locally enriched gene sets (adjusted p value below 0.05) 

were grouped and merged into “domains” by hierarchical clustering, consequently, each 

domain may comprise one or multiple gene sets. The criterion for merging two overlapping 

neighborhoods is defined as the minimal distance cutoff (normalized to the maximal 

Euclidean distance between the two neighborhoods) using an agglomerative clustering 
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method. The cutoffs used to make Figures 3E and S13 are arbitrarily set to 0.2 and 

0.85, respectively. Domains with equal or less than 5 overlapping neighborhoods were 

omitted for downstream analysis. Network illustrations of the identified SAFE domains were 

rendered by bespoke Python scripts. Localization consensus of each spatially associated 

protein subset, as depicted in Figures 4A, 5A, and 5G, were constructed by taking the sixth 

matrix of 10 length-binned profiles of each protein and calculated the numeric means of 

corresponding pixels.

Dimension reduction using UMAP—To enable a planar representation of the 

morphological or fluorescence profiles of cells treated with different antibiotics, we 

leveraged UMAP to perform dimension reduction (McInnes et al., 2018). The single cell 

morphological or fluorescence profiles are firstly normalized as Z-scores:

Zi =
Di − mean(D)

std(D)

where D represents the aggregated morphological or fluorescence profiles of all segmented 

cells. The normalized data were subjected to a standard 2-component UMAP embedding 

rendered with the Euclidean distance metric. The 2-dimensional representations were 

visualized using customized Python scripts.

Estimation of axial signal asymmetry by center-of-mass—To calculate the 

normalized center-of-mass of cellular fluorescence, the cell’s centerline coordinates, x, are 

firstly normalized as follows:

xnorm, i =
xi
xn

, 0 ≤ i ≤ n; x0 ≤ xi ≤ xn

The axial center of mass, or geometric center is then defined as:

C =
∑i = 1, 2, … . nli × xnorm, i

∑i = 1, 2, … . nli
, 0 ≤ i ≤ n; xnorm, 0 ≤ xnorm, i ≤ xnorm n

Here Ii denotes the ith intensity measurement measured along the centerline.

Binary classification of membrane and cytoplasmic proteins using feature 2 
profiles—Here we adopted a straightforward Gaussian-Mixture Model (GMM) to coarsely 

separate membrane proteins from cytoplasmic proteins. As the membrane-associated feature 

2 exhibited limited association with cell lengths (Video S4), we calculated the feature 2 

weights averaged over the 10 length bins for each MSR-Dendra entry. The concatenated 

mean feature 2 profile of all MSR-Dendra strains was subsequently passed to a two-

component GMM classifier of the scikit-learn package. The binary output was used to color 

code the membrane and cytoplasmic proteins depicted in Figures 5D and 5E.

Length-resolved reconstruction of Msm protein dynamics—A generic sinusoidal 

function (specified below) is used to approximate the length-dependent feature dynamics:
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fsin(l) = A•sin(2π•(ωl + ρ)) + C

Here l denotes the L length bins (1 through 10 in this work), A, ω, ρ, C are the amplitude, 

frequency, phase shift, and offset terms of the generic sinusoidal function. In our case, the 

frequency parameter ω is fixed as 0.5 based on the presumption that the length distribution 

of extant cells sampled from an exponentially growing bacteria culture roughly span one 

cell cycle (Van Heerden et al., 2017). Given a feature 7 weight profile, Wl = 1,2…L, and its 

corresponding sinusoidal fit fsin, we compute its weight Inter-Quantile Range (IQR, denoted 

as IQR7), maximum weight measure (denoted as max7), and the residual mean squared error 

(goodness of fit, denoted as MSE7). Specifically, MSE7 is calculated as follows:

MSE7 =
∑l = 1, 2…L (W l − fsin(l))2

L

A candidate cell cycle dependent feature 7 variant is arbitrarily defined by having an IQR7 

higher than 0.15; a max7 higher than 0.3; and a MSE7 equal or lower than 0.03 (Figure 

S18A). The phase shifts parameter ρ of the fitted fsin approximates the length-dependent 

dynamics and is used to sort the candidate feature 7 variants in Figure 6F.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• MOMIA and GEMATRIA efficiently model mycobacterial protein 

localization

• Polar exclusion of mycobacterial ribosomes relies on active translation

• GEMATRIA reveals spatial partitioning of mycobacterial membrane proteins
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Figure 1. MOMIA enables streamlined image processing and renders a spatial-temporal 
representation of mycobacterial protein localization
(A) Examples of MSR-Dendra strains with previously established subcellular localization 

patterns. Gene name and/or gene locus index is listed beneath each depiction.

(B) Example images of previously uncharacterized proteins in the MSR-Dendra library.

(C) MOMIA computes the morphological contours (orange lines) and centerlines (blue 

lines) with subpixel precision (STAR Methods). Here the representative cells express a 

single-stranded binding protein, Ssb-Dendra. Cellular fluorescence profiles are straightened 

and illustrated in bottom panels.

(D) Axial intensity profiles of Ssb-Dendra-expressing cells are normalized and stacked 

according to cell length to render the demograph.

(E) The expanse of the mycobacterial cell pole remains constant as the cell elongates. Left 

panel: cartoon illustrating the elongation-invariance of polar hemispheres. Right panel: the 

longitudinal intensity profiles of the polar 0.3 μm of 211 cells are interpolated, normalized, 

and realigned to calculate the averaged distribution (blue line, shaded area denotes one 

standard deviation from the mean) of Wag31-Dendra near the poles.

(F) Schematic of pole-aware transformation of single-cell fluorescence data (STAR 

Methods).

(G and H) (G) The demograph representation of Wag31 protein localization. The phase 

contrast and the fluorescence data of two representative cells of different lengths are shown 

in (H), with their standardized data matrices depicted below.

(I) Length-binned stacks of transformed Wag31-Dendra data, the corresponding length 

profiles are plotted on the right.
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(J) Length-binned transformations of Ssb and TtfA. Scale bars, 2 μm in (C) and 1 μm in (H).
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Figure 2. Schematic of GEMATRIA
(A) Binning-transformed MSR-Dendra dataset comprising 760 MSR-Dendra entries and 17 

spike-in validation entries. The length-binned data are normalized independently for each 

entry before compilation.

(B) Matricized form of the compiled MSR-Dendra dataset. The matrix comprises N × L 
rows, with each row being the flattened form (X × Y of a given length bin.

(C and D) Decomposition of the two-dimensional data from (B) using non-negative matrix 

factorization with M components (features). (C) The basis feature matrices are reformed to 

the shape of X × Y × M, with each one of the M slices being a two-dimensional depiction 

of the basis image. (D) The extracted encoding matrices are reformed to the shape of M × L 
× N. For each entry (strain), the input length-binned data are reduced to M feature profiles, 

with each profile being the length-resolved (L) feature weights.

(E) For each length bin (L in total), a pairwise similarity matrix (Pearson correlation 

coefficient) of the N entries is generated using feature weights from (D).

(F) Illustration of the composite network rendered by similarity network fusion.

(G) Illustration of color-coded length-resolved feature dynamics superimposed on the 

composite network (Video S4).
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Figure 3. GEMATRIA unveils biologically relevant features
(A) Symmetric features indicative of diverse compartments of the protein localization 

network. Top panels depict the two-dimensional feature properties. Bottom panels highlight 

network nodes of high feature weights.

(B) Pairs of asymmetric features highlighting similar but not identical regions of the 

network.

(C) GEMATRIA discriminates proteins of varied degrees of axial symmetry. The major 

and the minor cell pole association is assessed using features 4 and 6, respectively. 

Similarly, features 13 and 16 are used to evaluate peri-polar association. The scattered dots 

and the horizontal and vertical sticks represent the means and the standard deviation of 

corresponding features. Scale bar, 5 μm.

(D) Bar charts illustrating the mean feature weights (features 1, 2, 7, and 12) of the 

8 validation entries. Error bars denote the standard deviations of corresponding feature 

weights over the 10 length bins.

(E) SAFE reveals three major functional domains of the composite network. The 

smoothened convex hull of each functionally enriched subgraph is enclosed by a dashed line. 

The color opacity levels represent the Euclidean density of significantly enriched nodes. The 

sizes of the nodes denote the FDR-corrected p values by hypergeometric test, as specified in 

the bottom right panel.
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Figure 4. Mycobacterial ribosomes are excluded from the cell poles
(A) SAFE revealed subdomains that are enriched for ribosomal proteins. The sizes of the 

nodes denote the FDR-corrected p values, as demonstrated in the top left panel. Ribosomal 

protein localization consensus is created as described in STAR Methods and depicted over 

the top left corner of (A).

(B) Zoom-in view of the ribosomal protein-enriched subdomain in (A).

(C) Example microscopy images of ribosomal proteins (top panels) and co-clustered 

neighbor entries (bottom panels).

(D) Representative slices of RplU (MSMEG_1364) time-lapse imaging data. The 

progression of ribosomes being excluded from a maturing new pole is highlighted by white 

arrowheads.

(E) Schematic of differential antibiotic treatments on cells expressing fluorescently marked 

ribosomes (RplU) or RNA polymerases (RpoZ).
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(F) Representative images of RplU- or RpoZ-Dendra-expressing cells after 3 h exposure to 

50 μg/mL chloramphenicol, 100 μg/mL rifampicin, 5 μg/mL bedaquiline, or 1:200× diluted 

DMSO.

(G) Rifampicin or chloramphenicol exposure caused polar repletion of diffused ribosomes as 

indicated by an elevated prevalence of features 4 and 6 (STAR Methods).

(H) Unsupervised two-dimensional Uniform Manifold Approximation and Projection 

(UMAP) representation of single-cell morpho-phenotypes upon differential antibiotic 

treatment.

(I) Two-dimensional UMAP representation of single-cell GEMATRIA feature profiles. The 

large scatterplot represents the allocation of antibiotic-treated single cells in UMAP space 

with individual cells color coded by their strain identities. UMAP projections of different 

treatment groups are plotted on the right. The two outlined dots represent the geometric 

centers of DMSO cells in UMAP space. The direction of antibiotic-induced changes in 

UMAP space is denoted by color-coded arrows pointing from the geometric centers of 

DMSO-treated cells to that of the antibiotic-treated cells.
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Figure 5. Spatial co-occurrence of functionally associated mycobacterial membrane proteins
(A) Structural components of OXPHOS complex I, III, IV, and V tightly cluster in the 

membrane domain.

(B) Zoom-in view of the OXPHOS component-enriched subdomain in (A).

(C) Example microscopy images of proteins from complex I, III, IV, and V (Ndh, CtaI, 

QcrB, and AtpG, respectively).

(D) Binary classification of membrane and cytosolic proteins using a Gaussian mixture 

model and feature 2 profiles (STAR Methods).

(E) ATP biosynthesis proteins exhibit significantly lower polar (features 4 and 6) prevalence 

compared with other membrane proteins, the averaged features 4 and 6 values of OXPHOS 

components and the remnant membrane protein entries are used to perform Mann-Whitney 

U (MWU) tests, the p values of which are overlayed with the corresponding histograms.

(F) Representative slices of QcrB (MSMEG_4263) time-lapse imaging data. Polar exclusion 

of QcrB is highlighted with white arrowheads.
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(G and H) (G) Full-scale (H) and zoom-in view of the subdomain enriched for IMD proteins. 

Biochemically discovered IMD proteins are highlighted in red, their closely associated 

neighbors are labeled in blue.

(I) Example microscopy images of novel IMD-associated proteins identified in this study. 

Protein complex localization consensuses are created as described in STAR Methods and 

depicted on the top left corners of (A and G).
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Figure 6. GEMATRIA empowers pseudo-temporal reconstruction of mycobacterial mid-cell 
protein dynamics from still image data
(A) Illustrations of length-binned fluorescence patterns of DnaE1, FtsZ, FtsW, and MmpL3.

(B) Time-lapse kymographs (STAR Methods) of DnaE1, FtsZ, FtsW, and MmpL3.

(C) Mid-cell dynamics of proteins in (A). estimated by GEMTRIA (red lines) or directly 

calculated from time-lapse kymographs (blue lines) as indicated in Figure S14B. Blue-

shaded areas indicate the 95% confidence interval of multi-kymograph analysis.

(D) Schematic of sinusoidal modeling of FtsW mid-cell dynamics. Mid-cell dynamics of 

FtsW (left panels) calculated by the two methods as elucidated in (C) are fitted to a modified 

sinusoidal function. The results and the parameters of each sinusoidal fit are plotted on the 

right. A, P, and C denote the amplitude, the phase, and the baseline constant of the sinusoidal 

model.

(E) Sinusoidal phase shifts estimated from GEMATRIA- and kymograph-derived mid-cell 

dynamics are highly correlated. The fluorescence profiles of strains not listed in (A) and 

their representative time-lapse images are listed in Figures S14C and S1D, respectively.
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(F) GEMTRIA-derived mid-cell dynamics correlate with protein function. Top panel: phase-

sorted heatmap of length-dependent feature 7 profiles. Entries with short-cell-associated 

feature 7 enrichment are positioned to the left, and vice versa. Bottom panel: functional 

labels of the candidate feature 7 variants. The four cell-cycle proteins described in (A) are 

highlighted in bold red text. Primary annotations (blue dots) were obtained from manually 

curated GO sets, as listed in Table S3. Additional “cell-cycle” proteins (pink dots) were 

referenced from Wu et al. (2018). IMD (green dots, referenced from Figure 4H) proteins 

identified in this study are superimposed over the “metabolism” subset.

(G) Illustrations of the length-binned patterns (left), time-lapse kymographs (middle), and 

the mid-cell dynamics (right) of MSMEG_6928.

(H) Representative slices of MSMEG_6928 time-lapse imaging data. Scale bar, 5 μm.

(I) MSMEG_6928 and its neighboring genomic regions are highly conserved between Msm 
and Mtb.

(J) CRISPRi silencing of the msmeg_6927–6929 operon and the putative protein partners of 

MSMEG_6928, wag31, and mmpL3 yield similar morphological outcomes (de Wet et al., 

2020). Genes whose protein products reportedly interact with MSMEG_6928 (Belardinelli 

et al., 2019) are colored red.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

M. smegmatis: Strain mc2155 ATCC ATCC 700084

pHW64-pSmyc-SD1-mScarlet-RBS-
mNeonGreen

This work N/A

MSR-Dendra plasmid library Addgene https://www.addgene.org/Keith_Derbyshire/

Chemicals, peptides, and recombinant proteins

Nile red Sigma-Aldrich Cat#N3013

Hoechst 33342 Thermo-Fisher Cat#H3570

Syto-17 Thermo-Fisher Cat#S7579

FM 4-64 Thermo-Fisher Cat#T13320

Chloramphenicol Sigma-Aldrich Cat#R4408

Rifampicin Sigma-Aldrich Cat#R3501

Bedaquiline BioVision Cat#9598

Deposited data

Unprocessed imaging data of the MSR-
Dendra library

Judd et al. 2021; This work N/A

Unprocessed imaging data of reference 
strains

This work N/A

GEMATRIA converted profiles This work https://github.com/jzrolling/MOMIA/blob/master/demo/
MSR_dendra_GEMATRIA_compiled.npy

Time-lapse data of FtsZ-mCherry (CB954) Wu et al., 2018 N/A

Time-lapse data of other proteins specified 
in Figure 6E

This work N/A

Experimental models: Organisms/strains

M. smegmatis: Strains of MSR-Dendra 
library

Judd et al. 2021; This work https://msrdg.org/

M. smegmatis: Strain HW188 (carrying 
pHW64)

This work N/A

M. smegmatis: CB858 Wu et al., 2018 N/A

M. smegmatis: CB954 Wu et al., 2018 N/A

M. smegmatis: CB972 Wu et al., 2018 N/A

M. smegmatis: CB1163 Wu et al., 2018 N/A

M. smegmatis: CB991 Wu et al., 2018 N/A

M. smegmatis: CB989 Wu et al., 2018 N/A

M. smegmatis: CB913 Wu et al., 2018 N/A

Software and algorithms

Fiji Schindelin et al., 2012 https://fiji.sc/

Python 3.7 van Rossum and Drake, 2009 https://www.python.org/downloads/release/python-370/

Scikit-image v0.17.2 Van Der Walt et al., 2014 https://github.com/scikit-image/scikit-image/releases/tag/v0.17.2

Numpy v1.19.4 Harris et al., 2020 https://github.com/numpy/numpy/releases/tag/v1.19.4

Numba v0.51.2 Lam et al., 2015 https://github.com/numba/numba/releases/tag/0.51.2

Scipy v1.5.4 Virtanen et al., 2020 https://github.com/scipy/scipy/tree/v1.5.4
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REAGENT or RESOURCE SOURCE IDENTIFIER

Scikit-learn v0.23.2 Pedregosa et al., 2012 https://github.com/scikit-learn/scikit-learn/releases/tag/0.23.2

SAFEpy Baryshnikova, 2016 http://doi.org/10.1016/j.cels.2016.04.014

Snfpy Wang et al., 2014 https://github.com/rmarkello/snfpy

UMAP McInnes et al., 2018 https://github.com/lmcinnes/umap

MOMIA v0.0.1 This work http://doi.org/10.5281/zenodo.5607009

GEMATRIA v0.0.1 This work http://doi.org/10.5281/zenodo.5607009

Other

Morphological profiles of M. smegmatis 
strains with CRISPRi mediated gene 
knockdown

de Wet et al., 2020 https://osf.io/pdcw2/

KEGG (Kyoto Encyclopedia of Genes and 
Genomes) annotations of M. smegmatis 
CDSs.

Kanehisa, 2000 https://www.genome.jp/entry/gn:T00434

COG (Clusters of Orthologous Genes) 
annotations of M. smegmatis CDSs.

Galperin et al., 2021 https://ftp.ncbi.nih.gov/pub/COG/COG2020/data/
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