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Abstract Mutations in genes encoding key players in oncogenic signaling pathways trigger specific

downstream gene expression profiles in the respective tumor cell populations. While regulation of genes

related to cell growth, survival, and death has been extensively studied, much less is known on the regu-

lation of drug-metabolizing enzymes (DMEs) by oncogenic signaling. Here, a comprehensive review of

the available literature is presented summarizing the impact of the most relevant genetic alterations in

human and rodent liver tumors on the expression of DMEs with a focus on phases I and II of xenobiotic

metabolism. Comparably few data are available with respect to DME regulation by p53-dependent

signaling, telomerase expression or altered chromatin remodeling. By contrast, DME regulation by

constitutive activation of oncogenic signaling via the RAS/RAF/mitogen-activated protein kinase

(MAPK) cascade or via the canonical WNT/b-catenin signaling pathway has been analyzed in greater

depth, demonstrating mostly positive-regulatory effects of WNT/b-catenin signaling and negative-

regulatory effects of MAPK signaling. Mechanistic studies have revealed molecular interactions between

oncogenic signaling and nuclear xeno-sensing receptors which underlie the observed alterations in DME

expression in liver tumors. Observations of altered DME expression and inducibility in liver tumors with

a specific gene expression profile may impact pharmacological treatment options.
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1. Introduction
The group of drug-metabolizing enzymes (DMEs) consists of
families of enzymes which are involved in the metabolic con-
version of both endogenous and exogenous compounds. The latter
are often referred to as “xenobiotics” and may comprise drugs,
pesticides, herbicides, food additives, and many environmental
chemicals of all kind. According to their primary function the
underlying proteins are grouped into metabolic enzymes involved
in the so-called phase I (target functionalization) and phase II
(target conjugation with endogenous molecules) of xenobiotic
metabolism, while functionally related transporters of phase 0 and
phase III are responsible for the uptake of xenobiotics into cells, or
for the active excretion of metabolites out of cells, respectively.
For an overview of xenobiotic metabolism see Fig. 1. In mam-
mals, the level and activity of DMEs is highest in the liver;
however, many DMEs are also expressed in other organ systems
such as for example the gastrointestinal tract. This review will
concentrate on the liver and on enzymes of phases I and II.

A key group of proteins involved in phase I of xenobiotic
metabolism are enzymes belonging to one of the various cyto-
chrome P450 (CYP) subfamilies. In the early 70s of the last
century, it was discovered that the content of some CYPs was
decreased in experimentally induced hepatomas in rats as
compared to normal liver1,2. Present day omics analysis on global
gene expression patterns demonstrates a similar decrease in CYP
expression in human hepatocellular carcinoma (HCC); a
comprehensive meta-analysis is available by use of the HCCDB
database which is available at: www.lifeome.net/database/hccdb/
home.html.3 Based on the observation of decreased DME-
expression in liver tumors, it was postulated that preneoplastic
and neoplastic cells are less sensitive to the toxic action of 2-
acetylaminofluorene and other hepatocarcinogens or
Figure 1 Overview of the phases and important enzymes and transporter
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hepatotoxins which need metabolic activation of the parental
compound to toxic intermediates by CYP enzymes1,4. Based on
this observation Farber’s group developed the so-called Solt-
Farber model which allows for rapid induction of neoplastic
nodules in rat liver based on selective pressure given by 2-
acetylaminofluorene on preneoplastically transformed hepato-
cytes produced by single injection of a strong hepatocarcinogen
such as N-nitrosodiethylamine5. While potentially toxin-activating
enzymes such as CYPs are generally decreased in hyperplastic
nodules and hepatomas1,6, preferentially detoxifying enzymes
such as microsomal epoxide hydrolase (mEH), glutathione-S-
transferases (GSTs) and UDP-glucuronosyltransferases (UGTs)
were found to be increased in premalignant lesions7. This further
confers a selective advantage to the preneoplastic and neoplastic
liver cells and led to the “selective toxicity resistance” model
postulated by Farber8 to be a generalized model for chemical
hepatocarcinogenesis.

In a comprehensive immunohistochemical study, Buchmann
et al.9 demonstrated that the decreases in phase I enzymes (shown
for two phenobarbital (PB)-inducible and two 3-
methylcholanthrene-inducible CYPs) along with increases in
phase II enzymes (including cytosolic GSTs B and C, and mEH)
occurred very early during the carcinogenic process in rat liver,
presumably already during its initiation. Since individual lesions
showed heterogeneity in DME expression and since some of the
DMEs in the preneoplastic lesions were still inducible by PB, it
was suggested that the focal enzyme alterations result from gen-
otoxic effects of the carcinogen on “regulatory systems of a higher
order” rather than from mutational events in individual genes
encoding DMEs10. The nature of these higher order regulatory
systems operative in the rat liver lesions was entirely unknown at
the time and remained obscure during the following decades.
Then, activating mutations in Ctnnb1, encoding b-catenin, were
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found to be present in about 30% of chemically induced rat liver
tumors11 which corresponds in frequency to CTNNB1 mutations
found in HCC12. Mutation of Ctnnb1 is associated with consti-
tutive activation of the canonical WNT/b-catenin signaling
pathway which, for reasons discussed later, is very unlikely to be
responsible for down-regulation of CYP enzymes observed in the
rat liver tumors. Mutations in one of the Ras oncogenes,
frequently detected in mouse liver tumors, would in principle be
much better candidates for reduction of CYP enzymes, but are
very rarely present in rat and human liver tumors.

2. Species differences in mutational patterns of liver tumors

The genes most frequently affected by mutation in human12,
rat11,13,14 and mouse15,16 primary liver tumors do show some
overlap but also divergence, as summarized in Table 1. The rea-
sons for the observed species-specific differences in the muta-
tional patterns of the driver genes affected are not known.
However, part of it may be linked to differences in the etiology of
the tumors: while rodent liver tumors were mostly experimentally
induced by the use of known hepatocarcinogenic chemicals, the
occurrence of liver tumors in humans is mostly linked to chronic
hepatitis B and C virus infection, alcohol abuse and, to a minor
part, to exposure to aflatoxins. In addition, species-specific dif-
ferences in the biology underlying tumor manifestation and pro-
gression are likely to play a role. While primary liver tumors in
humans reflect a very heterogeneous group of neoplasms with
distinctive clinical and pathologic features17, liver tumors in mice
are much more homogeneous in appearance. In the following, we
will very briefly discuss effects produced by the mutational
changes on cellular signaling pathways before we discuss their
consequences for DME expression and drug metabolism in the
affected tumor cells.

2.1. Human liver tumors

TERT (telomerase reverse-transcriptase, coding for the catalytic
subunit of telomerase) promoter mutations are the most frequent
genetic alterations found in human primary liver tumors and one
of the earliest genomic events in human liver carcinogenesis12,18.
TERT promoter mutations are a common feature of human cancers
and are predicted to increase promoter activity and TERT tran-
scription. In fact, in contrast to normal liver, TERT activity is
restored in over 90% of human HCCs investigated19. Interestingly,
TERT promoter mutations are often found together with mutations
in a second gene frequently mutated in human HCC, namely
CTNNB118,20, which encodes the oncoprotein b-catenin, a mem-
ber of the WNT signaling pathway (see below). The available data
suggest that TERT promoter mutations and activation of the WNT/
Table 1 Genes frequently affected by mutation in human

and rodent primary liver tumors.

Human Rat Mouse

TERT Nrf2/Keap1 Hras

TP53 Ctnnb1 Braf

CTNNB1/AXIN1 Tp53 Ctnnb1a

ARID1A/2 Egfr

aCtnnb1 mutations specifically found after tumor promotion with

PB-like compounds.
b-catenin pathway cooperate in HCC progression in humans18.
Underlying cause may be a recently discovered cross-talk between
TERT and the WNT/b-catenin pathway, in which telomerase
functions in a “non-canonical” fashion as a cofactor in the b-
catenin transcriptional complex, as reviewed by Li and Tergaon-
kar21, resulting in activation of WNT/b-catenin-dependent tran-
scription. Interestingly, this cofactor-function of TERT is
mediated by BRG1, a protein of the SWI/SNF (SWItch/Sucrose
Non-Fermentable) complex required for chromatin remodeling.
Other SWI/SNF members include ARID1A and ARID2, as dis-
cussed below.

TP53 encodes the tumor suppressor protein p53, which has a
key function in controlling, amongst others, the induction of
senescence and apoptosis; for review see e.g. Hafner et al.22 or
Mello and Attardi23. P53 is known to mediate cellular senescence,
following e.g. the inappropriate activation of oncogenic signaling
pathways, which explains why TP53 is frequently inactivated by
mutation in HCC and many other human cancers. Among the
various oncogenic pathways that may trigger a p53-senescence-
inducing response is the WNT/b-catenin pathway, constitutively
activated by mutation of CTNNB124.

CTNNB1 and its rodent ortholog Ctnnb1 encode b-catenin, a
central player in the canonical WNT/b-catenin signaling pathway.
Cytosolic levels of b-catenin are stringently regulated by a multi-
protein complex, which mediates phosphorylation of the protein
thus initiating its ubiquitinylation and subsequent degradation by
the proteasome; for review see Lustig and Behrens25. Mutation of
one of the phosphorylation sites leads to b-catenin accumulation
followed by nuclear transfer, where it associates with transcription
factors of the T-cell factor (TCF)/lymphoid enhancer factor family
and induces target gene transcription. Part of the cytosolic b-
catenin degradation complex is AXIN1, the gene of which is also
mutated in a certain fraction of human HCC12.

ARID (AT-rich interactive domain-containing protein) 1A and
2 are both members of the ATP-dependent chromatin remodeling
SWI/SNF complex, which is required for transcriptional activation
of genes normally repressed by chromatin; for review see Savas
and Skardasi26. ARID1A (also termed BAF250a) and ARID2 are
frequently mutated in diverse human cancers including HCC12.
Even though ARID1A and 2 are generally assumed to act as tumor
suppressors, their role in HCC development is not entirely clear,
since up-regulation of ARID1A expression is observed in a
considerable number of HCC27. Deficiency in Arid1a in the
respective knockout mouse induces steatohepatitis and HCC28.
However, since ARID1A was highly expressed in the primary tu-
mors but was lost in expression in metastatic HCC cases, it may
promote carcinogenesis during the early phases of tumor initiation
but suppress tumor progression in late-stage HCC29.

It is interesting to note that mutations in one of the oncogenic
Ras genes, which are very frequently mutated in mouse liver tu-
mors15,30, are only very rarely observed in human and rat liver
tumors31. The reason for this species difference is not known, but
despite the lack of Ras mutations, activation of RAS-downstream
mitogen-activated protein kinase (MAPK) signaling is observed in
50%e100% of human HCC and is associated with poor
prognosis32.

Another interesting note is that many of the genes recurrently
mutated in human HCC encode proteins that have a direct or in-
direct link to b-catenin, which plays a central role in regulation of
DME expression in hepatocytes, as will be discussed in detail
later.



Figure 2 DME characteristics of chemically induced mouse liver tumors with activating mutations in the Ctnnb1, Hras, or Braf proto-

oncogenes. Spontaneous tumors or tumors induced by application of the genotoxic tumor initiator N-nitrosodiethylamine (DEN) mostly leads

to tumors with activated MAPK signaling due to mutations in Hras or Braf. By contrast, chronic treatment with the tumor promoter phenobarbital

(PB) or similarly acting compounds leads to the outgrowth of liver tumors with activated b-catenin due to activating Ctnnb1 mutations. Tumors

with Hras and Braf mutations generally express low basal levels of DMEs (esp. CYPs and GSTs). In contrast to Hras-mutated tumors which are

refractory to DME induction by constitutive androstane receptor (CAR) agonists, mouse liver tumors with Braf mutations respond to CAR

activation with CYP and GST induction. Hepatomas with activated b-catenin display high constitutive expression of DMEs. For more details,

please refer to the main text.

116 Albert Braeuning, Michael Schwarz
2.2. Rat liver tumors

NRF2/KEAP1: Following the observation that in about 6%e
8% of cases human HCCs harbor mutations in either the
NFE2L2 gene encoding NRF2 [Nuclear factor (erythroid-
derived 2)-like 2], or in KEAP1 which encodes the NRF2
inhibitor KEAP1 (Kelch-like ECH-associated protein 1),
respectively33,34, rat liver tumors were also screened for
mutations in the two underlying genes13. In this study, pre-
neoplastic lesions as well as tumors of differing stages were
induced by a modified Solt-Farber protocol including 2-
acetylaminofluorene as selective chemical. More than 70%
of preneoplastic lesions and about 60%e80% of HCCs were
found to be mutated in Nfe2l2 or, to a lesser extent, in
Keap113. The mutations detected in Nfe2l2 or Keap1 all
impair the binding between the two proteins and therefore
attenuate the inhibitory activity of KEAP1 onto NRF2-
mediated signaling. Therefore they should be considered as
activating mutations. However, whether NRF2 plays a pro- or
anti-tumorigenic role during the early phases of the malignant
process is unclear35.

Ctnnb1 mutations are detected in about 20%e30% of chemi-
cally induced rat liver tumors11,13. Since no such mutations were
detected in preneoplastic lesions or early HCC, Ctnnb1 mutations
are likely associated with a late stage in malignant progression in
rat hepatocarcinogenesis13.

Tp53 mutations leading to inactivation of the protein as tran-
scription factor have been described to occur in about 30%e40%
of chemically induced rat liver tumors, both in pre-cancerous and
cancerous lesions14,36.
2.3. Mouse liver tumors

Hras mutations leading to the constitutive activation of the HA-
RAS/p21 oncoprotein are very frequent in both, spontaneous
and chemically-induced mouse liver tumors15,37,38. HA-RAS is a
monomeric G protein which forwards mitogenic signals received
by growth factor receptors to a cascade of downstream kinases, as
reviewed by Sun and coworkers39. Interestingly, the frequency of
occurrence is dependent on the susceptibility of spontaneous liver
tumor development and susceptibility towards chemical induction
of liver tumors which differs considerably between different
mouse strains: susceptible strains show a high prevalence of Hras
mutations in their liver tumors while the prevalence of such mu-
tations is much lower in resistant strains38.

Braf encodes a signaling protein directly downstream of HA-
RAS. While Hras is predominantly mutated in mouse liver tu-
mors from susceptible strains, the prevalence of Braf mutations is
higher in resistant strains such as C57BL40. Together, mutations in
either Hras or Braf are observed in more than 70% of mouse liver
tumors40. Very likely, they occur already during initiation of the
carcinogenic process41.

Ctnnb1 mutations are the most prominent type of genetic
lesion in mouse liver tumors, occurring in more than 80% of cases.
However, this only applies to tumors induced by a regimen
including PB or a PB-like agent as tumor promoter16,42; see also
Fig. 2. By contrast, mouse liver tumors chemically induced under
a protocol without PB-mediated tumor promotion are often Hras-
or Braf-, but not Ctnnb1-mutated16,30. This finding strongly sug-
gests that in mouse liver PB or similarly acting agents select for
hepatocytes mutated in Ctnnb1.
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Interestingly, mutations in TP53/Tp53, which are very frequent
in both human and rat primary liver tumors, are very rare in mouse
liver tumors but occur frequently in cell lines established from the
mouse liver tumors43. This evidence suggests that mutational
inactivation of the murine p53 tumor suppressor does not confer a
selective advantage to the mutated tumor cells. The same seems to
be true for the human ortholog TP53 which, when introduced as
transgene into mouse hepatocytes in vivo, is also not found inac-
tivated by mutation in liver tumors experimentally induced in the
transgenic mice44.

3. Observations on DME expression in liver tumors with
specific mutational patterns

3.1. Telomerase-activation and DME expression

To the best of our knowledge, no studies about the regulation of
DME expression or activity in liver tumor cells by the promoter-
mutated TERT protein have been published so far. Immortaliza-
tion of human fetal hepatocytes by over-expression of telomerase
resulted in some changes to CYP expression, with diminished
levels of CYP1A1, CYP2C9, CYP2E1, and CYP3A4, but elevated
levels of CYP2B45. In addition, indirect effects through modula-
tion of b-catenin-dependent gene expression programs appears
theoretically possible, since TERTaffects transcription of WNT/b-
catenin target genes through BRG1-mediated interaction with b-
catenin/TCF at WNT-responsive gene promoters (for review see
Li and Tergaonkar21). Effects of b-catenin on DME expression are
discussed below.

3.2. Inactivation of p53 tumor suppressor function and DME
expression

To the best of our knowledge, no systematic comparisons of DME
expression in TP53/Tp53 wildtype and mutant human or rodent
liver tumors are available. However, in vitro evidence suggests a
possible role of the p53 tumor suppressor protein in the regulation
of some DMEs: a study with human liver tumor cells revealed an
induction of various CYPs from families 1e3, including the
important isoform CYP3A4, by p5346. Similarly, loss of p53 in
mice resulted in decreased metabolism of a CYP3A substrate47.

Mechanistically it appears plausible that interactions of p53
and DMEs are mediated by the transcription factor activity of p53,
as has been shown for example for the human CYP2A6 promoter
in human liver tumor cells in vitro48. Additional evidence suggests
interactions with signaling via nuclear receptors regulating DMEs:
inhibition of pregnane-X-receptor (PXR), the prototype CYP3A4-
inducing nuclear receptor, by p53 has been reported49. This
finding appears to contrast the above observations of p53-
dependently increased CYP3A4 expression. An inhibition of the
AHR and its target gene CYP1A1 by p53 has also been described,
even though not in liver cells50,51. Thus, more research is needed
to clarify the interplay of p53, nuclear receptors and DMEs under
varying conditions in different cell types.

3.3. Alterations in chromatin remodeling and DME expression

ARID1A, a member of the SWI/SNF chromatin remodeling
complex is often overexpressed in early HCC, while being
downregulated in metastatic cancer. In mice, overexpression of
ARID1A has been demonstrated to be associated with increased
expression of several CYP isoforms including Cyp2e129. Poten-
tially, this increase in CYP expression in the tumor cells may
promote the generation of reactive oxygen species mediating liver
injury and hepatocarcinogenesis29.

3.4. NRF2-mediated changes in DME expression

NRF2 and KEAP1 are central within a redox-sensitive signaling
system that regulates up to 10% of human genes52. Well-known
target genes include those encoding reactive oxygen- or
electrophiles-inactivating enzymes such as NQO1 [NAD(P)
H:quinone oxidoreductase 1], heme oxygenase-1, GSTs, UGTs,
and multidrug resistance-associated proteins53. Keap1 knockdown
mice showed an increase in NRF2 protein in liver and increases in
the expression of NQO1 and GSTs54. Interestingly, there exists an
intimate cross-interaction between NRF2- and aryl hydrocarbon
receptor (AHR)-dependent signaling pathways (for review see
Kohle and Bock55): murine Nfe2l2 is a target gene of the AHR56,
while Ahr, on the other hand, is a transcriptional target of NRF257.
Therefore, the expression of Ahr and some of its downstream
targets, such as Cyp1a1, Cyp1b1 and Gsta1 are higher in
expression in Keap1 knockout cells57.

The level of expression of CYPs was not determined in Nfe2l2/
Keap1-mutated rat liver tumors, but the NRF2 target genes Nqo1
and Gsta4 were evaluated and found to be increased13. Therefore
constitutive activation of NRF2 signaling in Nfe2l2/Keap1-
mutated rat liver tumors might potentially explain the observed
upregulation of (some) phase II enzymes including GSTs and
UGTs. It does not explain, however, why phase I enzymes
including CYPs are reduced in expression in these tumors. Rather,
one would expect an increase in expression of e.g. CYP1A iso-
forms, which was not observed in any of in those studies where
CYP expression was analyzed. Therefore, other “higher order
regulators” must play a role in the regulation of these enzymes in
rat liver tumors.

3.5. Activation of the WNT/b-catenin signaling pathway and
associated changes in DME expression

In 2005 our group was, to the best of our knowledge, the first to
report on the positive regulatory activity of WNT/b-catenin
signaling on the expression of CYP enzymes in liver cells58; see
also Fig. 2. This conclusion was based on the observation that
mouse liver tumors harboring activating mutations in the Ctnnb1
gene, encoding b-catenin, showed higher levels of several CYP
isoforms (CYP1A, CYP2B, CYP2C and CYP2E1 proteins), while
Ctnnb1 wildtype tumors exhibited decreased levels of these CYP
isoforms58. The increase in CYP protein level corresponded to
increases in the respective mRNAs indicating that mutation of
Ctnnb1 leads to transcriptional activation of a number of CYP
isoforms in mouse liver tumors. In the initial studies, the Ctnnb1-
mutated tumors in mouse liver were generated by a sequential
initiation-promotion regimen: for tumor initiation, mice were first
treated with a single dose of N-nitrosodiethylamine, which is
converted in hepatocytes to an electrophilic DNA-reactive
mutagen; this was then followed by chronic treatment with PB
acting as a tumor promoter. PB, however, is also a potent DME
inducer. Increased expression of CYPs and other DMEs could
therefore, in principle, also result from inducing effects of PB in
the Ctnnb1-mutated mouse liver tumors. Later studies, however,
confirmed that Ctnnb1-mutated mouse liver tumors show
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increased DME expression, even after PB had been withdrawn,
demonstrating that activated b-catenin by itself is sufficient to
drive DME expression in mouse liver (unpublished observation).
This was substantiated in a transgenic mouse strain with
hepatocyte-specific expression of a point-mutated, constitutively
active version of b-catenin, where strongly elevated CYP levels
were seen even in periportal hepatocytes, where these enzymes
normally are not expressed59.

In wildtype liver, CYPs and other important DMEs are pref-
erentially expressed in perivenous hepatocytes60 which also
display physiological activation of the WNT/b-catenin
pathway61,62. It was demonstrated that the preferential perivenous
expression of DMEs in mouse liver is regulated by WNT/b-cat-
enin-activating signals derived from the endothelial cells of the
central veins63,64. In line with the aforementioned observations,
results from studies conducted by several different groups
including ours demonstrated that various CYP isoforms, espe-
cially CYP2E1 and CYP1A, are no longer expressed at the mRNA
and protein level in livers of mice with conditional hepatocyte-
specific knockdown of Ctnnb165,66. Similarly, down-regulation
of a number of GSTs from phase II of xenobiotic metabolism67

and of enzymes engaged in the synthesis of the CYP prosthetic
group heme68 were observed in that mouse model. Experiments
with xenobiotic inducers of DMEs demonstrated that the knockout
of Ctnnb1 resulted in diminished DME induction following
exposure to xenobiotics acting via activation of the receptors CAR
or AHR66,69. These results clearly demonstrate that WNT/b-cat-
enin signaling is a key player in regulating CYP expression in
Ctnnb1-mutated mouse hepatocytes.

Less is known about human liver tumors. In human hepato-
blastoma, a pediatric tumor very frequently mutated in
CTNNB1, the human ortholog of mouse Ctnnb1, up-regulation
of various CYP isoforms (in particular CYP2E1) was observed
in the epithelial parts of the tumors70. By contrast, most CYPs
are generally down-regulated in human HCCs71,72. Of note,
in vitro analyses with human HepaRG hepatocarcinoma cells
and primary human hepatocytes demonstrated transcriptional
regulation of a number of CYPs, especially CYP2E1, by WNT/
b-catenin signaling73,74. In a study from our group, Ctnnb1-
mutated and Ctnnb1-wildtype mouse liver tumors were analyzed
in parallel with human CTNNB1-mutated or -wildtype HCCs75:
glutamine synthetase, a biomarker for increased b-catenin-
mediated signaling, and various CYP isoforms were increased in
expression in the Ctnnb1-mutated tumors from mice as
compared to the surrounding normal liver tissue75. By contrast,
while glutamine synthetase was also over-expressed in the
CTNNB1-mutated human HCCs, all CYP isoforms investigated
were lower in expression in the tumors when compared to
normal liver (unpublished observation). However, when CYP
expression levels in the CTNNB1-mutated HCCs were compared
to those in the corresponding CTNNB1-wildtype tumors, higher
expression levels were detected in CTNNB1-mutated tumors
(unpublished observation). Interestingly, CTNNB1 mutations
were only seen in HCCs associated with hepatitis C virus
infection but not in those associated with hepatitis B virus75.
This preference of CTNNB1 mutations in HCC with hepatitis C
virus association has also been observed by others (e.g. see
Pezzuto et al.20 or Tornesello et al.76). This is of interest, since
other studies have reported higher expression of CYPs, in
particular CYP2E1, in human hepatitis C virusdas compared to
hepatitis B virus-associated HCCs77,78.
3.6. Effects on DME expression upon activation of Ras-
downstream signaling

Hras mutations are frequent in spontaneous and chemically-
induced mouse liver tumors, particularly in those strains
showing a high background prevalence of liver tumor formation38.
However, mutations in Hras or one of the other oncogenic Ras
genes, Kras or Nras, are only very rarely observed in rat or human
liver tumors31. Nonetheless, frequently detected activation of RAS
downstream kinases in human HCC32 argues for a relevance of
activation of this signaling pathway also in human liver tumors.

With regard to DME expression, the situation in Hras-mutated
mouse liver tumors is quite clear: many important enzymes from
phase I and II are strongly down-regulated in expression in these
tumors at the mRNA and protein levels (Fig. 2). This phenomenon
is similarly observed in mouse liver tumors with mutations in
Braf, which are indiscernible from their Hras-mutated cousins in
terms of global transcriptomic or proteomic expression pat-
terns75,79,80. Nonetheless, it has been observed that Hras-mutated
mouse liver tumors are refractory to DME induction via activation
of the constitutive androstane receptor (CAR), whereas Braf-
mutated tumors responded to the presence of the CAR activator
PB with pronounced induction of CYPs and GSTs81. Studies with
transgenic mice expressing a mutationally activated human HRAS
oncogene in some hepatocytes show that the perivenous gene
expression profile, including the expression of important DMEs, is
abolished in liver cells with activated HA-RAS68,82.

4. In vitro studies and mechanistic considerations

4.1. WNT/b-catenin signaling

A number of molecular mechanisms have been identified by
which signaling through the WNT/b-catenin pathway regulates
the transcription of different DMEs (Fig. 3). First, the xeno-
sensing receptors CAR and AHR are transcriptionally regulated
by the b-catenin pathway66,69,83e86. This way, activated b-catenin
may contribute to elevated levels of DME-regulating receptors.
Nonetheless, in vitro analyses suggest that AHR up-regulation by
b-catenin activation might not be crucial for the observed effects
of b-catenin signaling on the expression of the model AHR target
gene Cyp1a187. Second, direct transcriptional activation of DMEs
by the b-catenin/TCF transcription factor complex has been
demonstrated by in vitro gene promoter analyses, for example in
case of murine Cyp2e1 and human CYP1A169,87,88. Cyp2e1 and
Cyp1a2 promoter occupancy by b-catenin/TCF has also been
confirmed in mice in vivo86,88. Third, there is in vitro evidence for
a cooperative behavior of b-catenin/TCF and the AHR at the
human CYP1A1 promoter, where specific binding sites for these
transcription factors are located in close proximity69,87,89. Simi-
larly, a cooperation of transcription factor binding sites for he-
patocyte nuclear factor 1 alpha (HNF1a) and b-catenin/TCF has
been shown for the mouse Cyp2e1 promoter88. Fourth, b-catenin
enhances the transcriptional activity of the AHR at its binding
sites at the DNA87. The molecular basis of the decreased response
of Ctnnb1 knockout hepatocytes to CAR activators66,85,90 remains
to be studied. In summary, the b-catenin pathway constitutes a
master positive regulator of DME expression in hepatocytes,
acting through a variety of different molecular mechanisms,
especially via a complex interplay with xenobiotic-sensing nuclear
receptors; for review see also Braeuning and Schwarz91 or



Figure 3 Mechanistic aspects of DME regulation in mouse liver tumors with mutations in either the Ctnnb1, Hras, or Braf oncogene. Signaling

through b-catenin affects DME gene expression by different mechanisms involving b-catenin/TCF-dependent promoter activation and various

ways of cooperation with nuclear xeno-sensing receptors, e.g., AHR and CAR. Moreover, synthesis of the CYP prosthetic group heme is

augmented by b-catenin signaling in hepatocytes. Tumors with mutationally activated HA-RAS harbor high levels of phosphorylated, active

extracellular signal-regulated kinase (ERK) 1/2. Phosphorylated ERK retains the constitutive androstane receptor (CAR) in the cytosol to inhibit

DME induction by CAR agonists. This phenomenon is not observed in tumors with mutationally activated B-RAF, where ERK phosphorylation is

much less pronounced. Antagonistic action of the DME-inhibiting mitogen-activated protein kinase (MAPK) pathway and the DME-inducing b-

catenin pathway have been described, for example via the induction of dual-specificity phosphatases (DUSP) by the b-catenin pathway. For more

details, please refer to the main text.
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Braeuning92. Moreover, there is evidence that b-catenin activation
in mouse liver is able to suppress the DME-repressing signaling
program orchestrated by signaling through the MAPK cascade via
the induction of dual-specificity phosphatases (DUSPs), negative
regulators of the RAS/MAPK pathway93,94.

4.2. RAS/RAF/MAPK-dependent signaling

Much less is known about the molecular mechanisms by which
activation of the MAPK signaling pathway due to mutations in
Hras or Braf is able to suppress DME expression (Fig. 3). Ob-
servations from mouse liver tumors growing directly next to a
branch of the hepatic central vein show that the perivenous gene
expression program, including DME expression, which is nor-
mally activated in perivenous hepatocytes in close contact to the
venous endothelial cells, is not getting activated in Hras-mutated
tumor cells82.

This indicates that MAPK-dependent signaling has the ability
to block the activation of the b-catenin pathway. Similarly,
perivenous-specific gene expression is abolished in hepatocytes
from a transgenic mouse model expressing constitutively active
HRAS in a fraction of perivenous hepatocytes82. This indicates
that MAPK signaling is able to suppress activation of the DME
expression-promoting b-catenin signaling pathway94. Based on
the antagonistic behavior of both signaling pathways, it has been
proposed that gradients of MAPK- and b-catenin-dependent
signaling regulate DME expression along the portoecentral axis
in healthy liver84,91. Down-regulation of DMEs in liver is also
observed under conditions of chronic inflammation95. In this case,
suppression of DME expression is mediated by release of in-
flammatory cytokines which act on receptors located e.g. upstream
of the RAS/MAPK pathway. Overexpression of the oncoprotein
C-MYC, often seen in human HCC, may also be part of cytokine-
mediated DME-repression in liver96, and may also explain down-
regulation of DME expression in HCC. Furthermore, interference
of interleukins with drug-metabolizing enzymes has been
observed, which is based on an inhibition of the retinoid X re-
ceptor, the dimerization partner of several nuclear receptors
involved in DME regulation97e99.

A very interesting observation is the fact that Hras- and Braf-
mutated mouse liver tumors, even though highly similar with
respect to their basal gene expression levels79,80, behave strikingly
different when exposed to PB, a model xenobiotic inducer of
CAR-dependent gene expression: transcriptional induction of
various CYPs and GSTs is observed in Braf-mutated tumors, but
not or only to a very limited degree in their Hras-mutated
cousins81. The underlying reason of the latter phenomenon is
likely to be the difference in the activating phosphorylation of
extracellular signal-regulated kinase (ERK) 1/2, an important ki-
nase within the MAPK cascade: ERK phosphorylation is detected
at very high levels in Hras-mutated tumors, whereas the degree of
EKR phosphorylation is considerably lower in Braf-mutated tu-
mors81. It has been previously reported that CAR-mediated
functions are counteracted by ERK activation, as the phosphory-
lated kinase retains the receptor in the cytosol thus counteracting
its transcriptional activity100. Thus, the different levels of ERK
phosphorylation may explain the differences between the two
tumors types when exposed to a CAR activator82.

5. Conclusions

Mutations in key proto-oncogenes or tumor suppressor genes
trigger specific downstream gene expression profiles in the
respective tumor cell populations, with important DMEs being
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part of the gene batteries regulated by oncogenic signaling. Our
synopsis of published literature demonstrates that still a lot of
research is needed to fully understand the mechanisms by which
oncogenic signaling pathways affect the expression of DMEs in
human liver tumors. Most information is availablewith respect to the
oncogenic WNT/b-catenin and MAPK-dependent signaling cas-
cades, which show largely opposing effects on DME expression.
Several molecular mechanisms, especially interactions with nuclear
xeno-sensing receptors, have been identified by which oncogenic
signaling can affect DMEs at the transcriptional level. Many anti-
cancer drugs, including novel targeted therapeutics, are subject to
metabolism by DMEs. Thus knowledge on the connection of onco-
genic signaling and DME expression may provide information rele-
vant for tumor therapy. For example, it has been demonstrated that the
WNT/b-catenin-dependent up-regulation of Cyp2e1 in chemically
induced mouse liver adenomas renders these tumors susceptible to
selective poisoning with acetaminophen101. Future research will
show towhich degree oncogene-induced changes inDMEexpression
may be utilized for the optimization of anti-neoplastic therapy.
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