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Autophagy is a cellular degradative process that has multiple important actions in cancer.
Autophagy modulation is under consideration as a promising new approach to cancer
therapy. However, complete autophagy dysregulation is likely to have substantial
undesirable side effects. Thus, more targeted approaches to autophagy modulation
may prove clinically beneficial. One potential avenue to achieving this goal is to focus
on the actions of tripartite motif-containing protein family members (TRIMs). TRIMs have
key roles in an array of cellular processes, and their dysregulation has been extensively
linked to cancer risk and prognosis. As detailed here, emerging data shows that TRIMs
can play important yet context-dependent roles in controlling autophagy and in the
selective targeting of autophagic substrates. This review covers how the autophagy-
related actions of TRIM proteins contribute to cancer and the possibility of targeting TRIM-
directed autophagy in cancer therapy.

Keywords: autophagy, cancer therapy, tripartite motif (TRIM) family, Sequestosome 1 (p62/SQSTM1), selective
autophagy cargo receptor, autophagy regulation, cancer, autophagy modulating drugs
INTRODUCTION

Macroautophagy is a promising new target for cancer treatment as this cellular pathway has both
cancer-suppressing and cancer-promoting mechanisms. Macroautophagy (autophagy hereafter) is a
process of cellular self-digestion that involves the sequestration of cytoplasmic contents into a
vesicle (the autophagosome) that fuses with the lysosome where it is degraded. The “core”molecular
machinery that is required for autophagy consists of more than 30 proteins. These proteins were
mostly identified in yeast and their functions are conserved in human cells (Klionsky et al., 2011).
However, as the physiological roles of autophagy have been expanded in higher organisms, the
number of proteins involved in mammalian autophagy is increased relative to what is seen in single-
celled organisms. Autophagy has been classified as being either “bulk” or “selective”, the latter
indicating the ability of the autophagy machinery to identify and selectively degrade substrates.
Selective autophagy is further classified into “–phagies”, denoting the particular substrates degraded:
for example, mitophagy is the autophagic degradation of mitochondria, ERphagy involves
autophagy of endoplasmic reticulum, ferritinophagy refers to autophagic degradation of ferritin,
and so forth. While the different “phagies” all require the same core autophagy machinery, they can
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vary in terms of their upstream regulators and in the factors
required for specific cargo identification (Kirkin and Rogov,
2019). This variability in mechanism opens the possibility to
the selective pharmacological modulation of certain
autophagic activities.

Autophagic degradation of cytoplasmic contents can
generate molecules for biosynthesis or energy during times of
cellular starvation. Additionally, autophagy plays an important
cytoplasmic quality control function that can eliminate specific
proteins, toxic protein aggregates, unnecessary or non-
functional organelles, and intracellular pathogens from cells.
These pro-survival functions of autophagy have been of interest
as potential targets of cancer therapy (Levy et al., 2017), and
work in experimental rodent cancer models has demonstrated
that a variety of tumors require functional autophagy in the
tumor cells themselves and in healthy tissue (Poillet-Perez and
White, 2019). Furthermore, there are indications that
autophagy can render cancer cells more resistant to
chemotherapy (Sui et al., 2013; Pan et al., 2019). Together,
these findings strongly indicate that pharmacological inhibition
of autophagy may be a promising approach to cancer therapy.
Nevertheless, there is a problem: complete inhibition of
autophagy by inducible whole-body knockout of the core
autophagy factor ATG7 is lethal in mice (Karsli-Uzunbas
et al., 2014), suggesting the strong likelihood of unacceptably
severe side effects if autophagy inhibition were to be tried in
human cancer patients. A more tractable approach to modulate
autophagy in cancer may be to target specific components of
the varieties of autophagic processes.

The challenge of targeting specific elements of autophagy
could potentially be alleviated if there was some way to
specifically target a cancer-promoting phagy while allowing
other variet ies of autophagy to proceed normal ly.
Conceptually, this would be done by targeting proteins with
phagy-specific functions rather than by targeting the core
machinery or lysosomal function to block all autophagy. One
possible way of doing this is through the tripartite motif family of
proteins (TRIMs). This large protein family has emerged as
possessing a wide variety of actions on autophagy regulation
and action. Importantly, many TRIMs have very strong
connections to oncogenesis or cancer progression. The purpose
of this review is to detail how TRIMs intersect with and
orchestrate autophagy and to discuss how TRIM-mediated
autophagy may affect oncogenesis, cancer progression, and
cancer therapy.

The TRIM Family
The TRIM family of proteins is structurally distinguished by
having a cluster of domains starting with an N-terminal RING
domain, followed by one or two B box domains, and then a
coiled-coil domain (CCD; Figure 1A) (Reymond et al., 2001).
The RING domain confers upon TRIMs their catalytic function
as E3 ligases, and individual TRIMs have been shown to directly
ubiquitylate, SUMOylate, or NEDDylate themselves and/or their
interacting partners (Ivanov et al., 2007; Noguchi et al., 2011;
Fletcher et al., 2015). While the overwhelming majority of
TRIMs possess a RING domain, there are some exceptions
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(e.g. TRIM16, TRIM20). Interestingly, TRIM16 still has
ubiquitin ligase activity due to a cryptic RING-like fold in its B
box domain (Bell et al., 2012), emphasizing that the enzymatic
activity of TRIMs should be determined empirically. The B box
and CCD both mediate protein-protein interactions, with the
CCD allowing for TRIM hetero- and homodimerization. At their
C terminus, most TRIMs have one or more additional domains
with the SPRY domain being the most common variant in
human TRIMs. The SPRY domain is important for mediating
protein-protein interactions such as the interaction between
TRIM5 and retroviral capsids, while other C terminal domains
have different interacting specificities (e.g. PHD domain can bind
to chromatin) or even have enzymatic activities (the ADP-
ribosylation factor/ARF domain of TRIM23).

TRIMs are a metazoan-specific protein family, with seven
TRIMs found in the genome the fruit fly Drosophila
melanogaster and 18 TRIMs in the Caenorhabditis elegans
genome (Sardiello et al., 2008). The number of TRIM genes is
substantially elevated in vertebrates, with more than 200 TRIMs
or TRIM-like genes found in the zebrafish (Danio rerio) genome
(Sardiello et al., 2008). The human genome includes more than
80 TRIMs which have been assigned into eleven sub-families
based on their domain organization (Short and Cox, 2006; Ozato
et al., 2008). Many of these genes encode for multiple isoforms,
thus further expanding the protein sequence diversity and
possibly the functionality of TRIM proteins. At a cellular level,
these functions include governing gene expression, regulating
signal transduction pathways, contributing to cytoplasmic
quality control, direct antiviral action, and effects on cell
survival and metabolism. At the organismal level, TRIMs play
important roles in development and in immune regulation, and
alterations in TRIM protein function/expression are linked to a
variety of diseases including cancer (Watanabe and Hatakeyama,
2017; Park et al., 2020).
Alterations in TRIM Expression Is a
Hallmark of Many Cancers
Many TRIM proteins are found as relevant biomarkers of cancer,
where they may show decreased or increased levels of expression
(Table 1). A significant decrease in TRIM expression associated
with cancers is suggestive of a tumor suppressive role. In
contrast, a significant overexpression of TRIM proteins may
reflect a contribution to cancer development and/or cancer
progression. TRIMs with the greatest association with cancer
include 11, 14, 24, 25, 27, 28, 29, 33, 37, 44, and 59, each
associated with at least five different cancers. It is likely the
expression of TRIMs in cancers is relevant to the development
and/or progression of the disease and TRIM expression may
have prognostic value for cancer. Furthermore, TRIMs
associated with specific cancers may provide insight into the
development of novel TRIM targeted cancer therapies.
Importantly, associations between individual TRIMs and
different cancers are regularly being discovered, strongly
predicting that the list presented in Table 1 will grow with
further study. The following paragraphs details a few of the
connections between TRIMs and individual cancers.
March 2020 | Volume 11 | Article 308

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Mandell et al. TRIM-Directed Autophagy in Cancer
FIGURE 1 | Many tripartite motif-containing protein family members (TRIMs) act as autophagy regulators. (A) Left, schematic of generic TRIM protein domain
organization. Typical TRIMs have N-terminal RING domains (RING), one or two B box domains (BB), a coiled-coil (CC) domain and may have one or more C terminal
domains. Right, list of C terminal domains present in TRIM family proteins. (B) The results of several previously published TRIM siRNA or over-expression screens are
summarized here in heat map format. In all experiments, cells were transfected with TRIM siRNA or expression plasmids and treated or not with a known inducer of
autophagy (e.g. pp242) prior to imaging-based quantitation of cytoplasmic LC3B or GFP-LC3B puncta (autophagosomes). TRIMs that significantly increased or
decreased autophagosome abundance relative to negative controls are colored red or blue, respectively. Changes in the abundance of autophagosomes can result
from either increased autophagy activation or decreased autophagy flux, thus in isolation these data do not indicate mechanisms of individual TRIMs on autophagy
but illustrate the broad involvement of TRIMS in autophagy regulation.
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Lung Cancer
Lung cancer has the highest mortality among cancers in the U.S.
(Siegel et al., 2020), in part due to the poor response of current cancer
chemotherapeutic regimens for lung cancer. In addition to the
importance of identifying new lung cancer biomarkers, the
identification of novel therapeutic targets or approaches to
increase the efficacy of lung cancer chemotherapies is critically
needed. Many TRIMs are altered in expression in lung cancer
Frontiers in Pharmacology | www.frontiersin.org 4
(Table 1). Of these, TRIMs 13, 16, 58, and 62 have reduced levels
of expression, whereas the majority of TRIMs associated with lung
cancer are increased in expression. TRIM13 expression is reduced in
non-small-cell lung cancer (NSCLC), where its overexpression was
found to inactivate NF-kB (Xu L. et al., 2019). TRIM16 was also
found decreased in NSCLC with concurrent upregulation of the
sonic hedgehog pathway, suggesting a role for TRIM16 in epithelial-
mesenchymal-transition in NSCLC (Huo et al., 2015). Interestingly,
TABLE 1 | TRIM expression changes found in cancers.

TRIM (Alias) Cancer(s) Reference(s)

2* Colorectal; clear cell renal cell↓; osteosarcoma Cao et al. (2019); Xiao et al. (2018); Qin et al. (2018)
3* (BERP) Gastric↓; Liver↓ Fu et al. (2018); Chao et al. (2014)
8* (GERP) Glioma↓; laryngeal↓ Micale et al. (2015); Carinci et al. (2007)
11* Breast; glioma; liver; lung; ovarian Song W. et al. (2019); Di et al. (2013); Chen et al., (2017b); Liu J. et al. (2017); Zhang et al. (2017);

Huang et al. (2019); Wang X. et al. (2016); Chen et al. (2017a)
13* Breast↓; lung↓; multiple myeloma Chen et al. (2019); Xu L. et al. (2019); Gatt et al. (2013)
14* Gastric; glioma; glioblastoma; liver; tongue

squamous cell carcinoma
Wang F. et al. (2018); Tan Z. et al. (2018); Feng et al. (2019); Dong and Zhang (2018); Su et al.
(2016)

15 Gastric↓ Chen W. et al. (2018)
16* (EBBP) Breast↓; liver↓; lung↓; melanoma↓; prostate↓ Yao et al. (2016); Li et al. (2016); Huo et al. (2015); Sutton et al. (2014); Qi L. et al. (2016)
21* (Ro52) B-cell lymphoma; breast↓; liver↓ Brauner et al. (2015); Zhou et al. (2018); Ding et al. (2015)
22* Lung; Wilm's tumor↓ Liu et al. (2017b); Zirn et al. (2006)
24 (TIF1a) Bladder; breast; cervical; colorectal;

esophageal↓; gastric; glioblastoma; glioma; head
& neck; liver; lung; nasopharyngeal; prostate

Xue D. et al. (2015); Tsai et al. (2010); Lin et al. (2017); Wang et al. (2017); Chi et al. (2016); Miao
et al. (2015); Lv et al. (2017); Zhang et al. (2015); Cui et al. (2013); Zhu et al. (2018); Li et al. (2012);
Wang P. et al. (2018); Groner et al. (2016); Offermann et al. (2019)

25* (EFP) Breast; colorectal; endometrial↓; lung; ovarian;
prostate

Suzuki (2005); Ivanov et al. (2007); Dai et al. (2010); Qin et al. (2016); Sakuma et al. (2005); Takayama
et al. (2018)

26* Liver↓ Wang et al. (2015b)
27* (RFP) Breast; colorectal; endometrial; lung; ovarian Tezel et al. (2009); Zhang Y. et al. (2018); Tsukamoto et al. (2009); Iwakoshi et al. (2012); Ma et al.

(2016)
28* (TIF1b;
KAP1)

B-cell non-Hodgkin lymphoma; breast;
colorectal; gastric; glioma; liver; lung; ovarian;
pancreatic; prostate; thyroid; Wilm's tumor

Zhang P.-P. et al. (2018); Ho et al. (2009); Fitzgerald et al. (2013); Yokoe et al. (2010); Wang et al.
(2013); Qi Z.-X. et al. (2016); Wang Y. et al. (2016); Liu et al. (2017a); Cui et al. (2015); Yu et al.
(2014); Fong et al. (2018); Martins et al. (2013); Halliday et al. (2018)

29* (ATDC) Bladder; cervical; colorectal; esophageal; liver↓;
lung; nasopharyngeal; oral↓; osteosarcoma;
pancreatic; prostate↓

Palmbos et al. (2015); Tan et al. (2016); Xu R. et al. (2016); Jiang et al. (2013); Xu W. et al. (2016); Lai
et al. (2013); Xu M. et al. (2019); Song et al. (2015); Chen et al. (2016); Zhou et al. (2016); Harris et al.
(2015); Zeng et al. (2017); Sun et al. (2014); Kanno et al. (2014)

31* Liver; pancreatic Guo et al. (2018); Yu et al. (2018)
32* (HT2A) Breast; gastric; liver; lung Zhao et al. (2018); Ito et al. (2017); Wang C. et al. (2018); Cui et al. (2016); Yin et al. (2019)
33* (TIF1g) Breast; colorectal; glioblastoma↓; liver↓; renal↓ Kassem et al. (2015); Xue J .et al. (2015); Ding et al. (2014); Jingushi et al. (2015)
35* Liver Jia et al. (2011)
36 Prostate↓ Fujimura et al. (2014); Liang et al. (2018); Kimura et al. (2018)
37* Breast; colorectal; esophageal; gastric; glioma;

liver; lung; osteosarcoma
Bhatnagar et al. (2014); Tuna et al. (2012); Hu and Gan (2017); Wu et al. (2018); Chen D. et al.
(2018); Tang et al. (2018); Jiang et al. (2015); Dong et al. (2018); Li et al. (2018); Tao et al. (2017)

44* Breast; cervical; esophageal; gastric; lung;
melanoma; ovarian; testicular

Kawabata et al. (2017); Liu et al. (2019); Peters et al. (2010); Ong et al. (2013); Kawaguchi et al.
(2017); Kashimoto et al. (2012); Xing et al. (2016); Wei et al. (2019); Liu S. et al. (2018); Yamada et al.
(2017)

47 Breast; colorectal; lung; prostate Wang et al. (2020); Liang et al. (2019); Han et al. (2017); Fujimura et al. (2016)
50* Ovarian↓ Qiu et al. (2019)
58* Lung↓ Diaz-Lagares et al. (2016)
59* (IFT80) Breast; cervical; colorectal; gastric; lung;

osteosarcoma; ovarian
Liu Y. et al. (2018); Tan P. et al. (2018); Aierken et al. (2017); Wu et al. (2017); Zhou et al. (2014); Hao
et al. (2017); Liang et al. (2016); Wang Y. et al. (2018); Zhang et al. (2019)

62 (DEAR1) Acute myeloid leukemia↓; breast↓; lung↓ Quintás-Cardama et al. (2015); Lott et al. (2009); Quintás-Cardama et al. (2014)
63* (MuRF1) Breast Li et al. (2019)
65* Bladder; liver; lung Wei et al. (2018); Yang Y.-F. et al. (2017); Wang X.L. et al. (2016a)
66* (TIF1d) Osteosarcoma Chen et al. (2015)
68* Prostate Miyajima et al. (2008)
72* (MG53) Colorectal↓ Chen Z. et al. (2018); Fernández-Aceñero et al. (2019)
L2 (SPRYD6) Oral; triple-negative breast cancer Hayashi et al. (2019); Song X. et al. (2019)
*Autophagy associated TRIMs per Figures 1 and 2.
↓indicates the TRIM protein was found to be decreased in expression compared to normal tissue. No arrow indicates the TRIM protein was overexpressed in the corresponding cancer
compared to normal tissue.
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hypermethylation of TRIM58 in lung cancer may account for its
down-regulation (Diaz-Lagares et al., 2016). Overexpression of
TRIMs 11, 22, 44, 47, 59, and 65 were correlated with poor
prognosis in lung cancers (Liu et al., 2013; Wang X.-L. et al., 2016;
Xing et al., 2016; Han et al., 2017; Hao et al., 2017; Liu et al., 2017b;
Huang et al., 2019; Yin et al., 2019). Overexpression of TRIM44
induced mTOR signaling, epithelial-mesenchymal transition, and
cyclin/CDKupregulation in lung cancer cells (Xing et al., 2016). Poor
prognosis of lung cancer patients was observed in those
overexpressing TRIM27 (RFP) and possessing epidermal growth
factor receptor mutations (Iwakoshi et al., 2012). The multitude of
TRIMs found increased in lung cancers may serve as promising
targets for improved lung cancer therapy.
Frontiers in Pharmacology | www.frontiersin.org 5
Breast Cancer
As listed in Table 1, breast cancer has been associated with at least
15 different TRIM proteins. Decreased levels of TRIM expression
in breast cancer were observed with TRIMs 13, 21, and 62. Chen
et al. (2019) found that decreased TRIM13 expression was
associated with worse distant metastasis free survival, disease
specific survival, metastatic relapse free survival, and relapse free
survival. Zhou et al. (2018) found decreased TRIM21 expression
correlated with poor overall survival in breast cancer patients.
Reduced TRIM62 (DEAR1) expression was found in many breast
cancer tissues and was found to strongly correlate with early-onset
breast cancer (Lott et al., 2009). In a 3D cell culture model,
restoration of TRIM62 expression inhibited uncontrolled cell
FIGURE 2 | Tripartite motif-containing protein family members (TRIMs) regulate the autophagy pathway at multiple points. Top, schematic of different steps/stages
of the autophagy pathway. Circled numbers indicate steps of the autophagy pathway or autophagy regulators and factors that are impacted by individual TRIMs.
Bottom, summary of TRIM actions in autophagy. Circled numbers correspond with those on the schematic. ♠ symbol indicates proteins with reported cancer
relevance.
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growth and directed the cells to form organoids reminiscent of
health breast tissue (Lott et al., 2009). In contrast, TRIM11 levels
were found increased in breast cancer tissues, where TRIM11 may
act through the AKT/GLUT1 signaling pathway in breast cancer
(Song W. et al., 2019). Elevated TRIM24 and TRIM37 in breast
cancer may act through modifications of histone proteins, H2A
and H3, respectively (Tsai et al., 2010; Bhatnagar et al., 2014).
Elevated levels of TRIM32 and TRIM44 were associated with
actions on NF-kB pathways in breast cancer (Kawabata et al.,
2017; Zhao et al., 2018). Interestingly, TRIM59 was found
upregulated in metastatic breast cancer, where it was observed
to suppress the selective autophagic degradation of a tumor
suppressor (Tan P. et al., 2018), underscoring an autophagic
role for TRIM proteins in cancer.

Liver Cancer
Though the incidence of liver cancer is relatively low in the U.S.,
the mortality rate for this cancer is high (Siegel et al., 2020).
TRIMs 3, 16, 21, and 29 were found at reduced levels in liver
cancers (Table 1), where this reduced expression was
consistently found associated with poorer prognosis among
liver cancer patients. In contrast, TRIMs 11, 14, 24, 28, 31, 32,
37, and 65 have been found elevated in human liver cancers.

Colorectal Cancer
Colorectal cancer is the third most common cancer in both
incidence and mortality among men and women in the U.S.
(Siegel et al., 2020). TRIM72 expression is reduced in the serum
of colon cancer patients and in colon cancer tumors (Chen Z.
et al., 2018; Fernández-Aceñero et al., 2019). In contrast, most
TRIMs associated with colorectal cancers have been found up-
regulated, including TRIMs 2, 24, 25, 27, 29, 33, 37, 47, and 59
(Table 1). Up-regulation of TRIM47 in colorectal cancers was
associated with SMAD4 degradation, enhancing growth and
invasion of colorectal cancer cells (Liang et al., 2019).

Prostate Cancer
The androgen receptor possesses a key function in prostate
cancer progression serving as the main target for the treatment
of advanced, hormone-responsive disease (Yuan et al., 2014).
TRIM36 expression is increased in response to androgen and has
a prostate cancer suppressive role that includes inhibiting
prostate cancer cell proliferation and migration while
promoting prostate cancer cell death (Kimura et al., 2018;
Liang et al., 2018). Reduced levels of TRIM36 are associated
with advanced stages of prostate cancer (Fujimura et al., 2014;
Kimura et al., 2018; Liang et al., 2018) and TRIM36 was reported
to be an independent predictor of survival in prostate cancer
patients (Kimura et al., 2018). Like TRIM36, expression TRIMs
16 and 29 is decreased in prostate cancer, suggesting that these
proteins may act as tumor suppressors in normal prostate tissue.
In contrast, high expression levels of TRIMs 24 and 28 are
associated with more advanced prostate cancer disease,
particularly in androgen non-responsive, castration resistant
cancer. TRIM24 can augment androgen receptor signaling
(Groner et al., 2016), apparently downstream of the actions of
Frontiers in Pharmacology | www.frontiersin.org 6
TRIM28 (Fong et al., 2018). Increased levels of TRIMs 25, 47,
and 68 are also associated with poorer prognosis of prostate
cancer (Table 1).

TRIMs Impact Cancer Through Multiple
Mechanisms
Chromosomal Translocations Involving TRIMs That
Result in Oncogenic Gain-Of-Function
A number of TRIM genes are associated with chromosomal
translocations that likely contribute to oncogenesis. One of the
most investigated involves a translocation between the TRIM19
gene (also known as PML) on chromosome 15 and the retinoic
acid receptor alpha (RARa) gene located on chromosome 17,
which is associated with acute promyelocytic leukemia
(Cambiaghi et al., 2012). This fusion protein acts by repressing
genes associated with retinoic acid signaling. The RET gene on
chromosome 10 has been found in translocations with a number
of TRIM genes including TRIM24, TRIM27, and TRIM33
associated with papillary thyroid cancer (Klugbauer and Rabes,
1999), lymphoma (Takahashi et al., 1985), and non-small cell
lung carcinoma (Lin et al., 2015), respectively. Similarly, the
BRAF gene has been found translocated with TRIM4 in lung
cancer (Shim et al., 2015) and TRIM24 in both melanoma
(Hutchinson et al., 2013) and lung cancer (Nakaoku et al.,
2014) and the FGFR1 gene is translocated with TRIM24 in
myeloproliferative syndrome (Belloni et al., 2005). These fusion
proteins lead to the unregulated activity of the RET, BRAF, or
FGFR1 kinases, resulting in the activation of multiple pro-
survival signaling pathways. In summary, a number of TRIM-
containing oncogenic gain-of-function fusion genes have been
found with profound effects in oncogenesis.

Contribution of TRIMs to Cancer “Stemness”
A small sub-population of cancer cells have properties
reminiscent of embryonic stem cells including a high degree of
cellular plasticity, resistance to cell death, and the capacity of self-
renewal. These cancer stem cells are important contributors to
metastasis, drug resistance, and cancer recurrence, leading to an
interest in targeting them as part of cancer therapy (Yang et al.,
2020). Several TRIMs can regulate pathways seminal to cancer
stemness including STAT signaling, AKT signaling, NANOG-
Sox2-Oct-3/4 networks, and pathways related to epithelial-
mesenchymal transition (EMT). In this section we cite a few
examples of how TRIMs can regulate stemness, a topic that was
recently reviewed by Jaworska et al. (2020). TRIM28 is reported
to maintain of Oct-3/4-Sox2-NANOG expression in breast
cancer cells (Czerwinska et al., 2017). TRIM24 is also reported
to promote cancer stemness in glioblastoma by enhancing
STAT3-mediate transcriptional activation (Lv et al., 2017).
Additionally, TRIMs 14 and 24 have been shown to enhance
EMT through promoting AKT signaling in gastric and colorectal
cancer, respectively (Wang F. et al., 2018; Zhang Y. et al., 2018).
In contrast to TRIMs that up-regulate stemness pathways,
TRIM16 has been associated as a negative regulator of
stemness in breast and ovarian cancer cells (Yao et al., 2016;
Tan et al., 2017). In both cases, TRIM16 acted to reduce
March 2020 | Volume 11 | Article 308
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expression of the Hh signaling-activated transcription factor Gli-
1, a positive regulator of cancer stem cell self-renewal.
Importantly, autophagy is another key contributor to cancer
stem cells promoting their longevity as quiescent cells (Vera-
Ramirez et al., 2018) and its downregulation is associated with
cancer stem cell reactivation (La Belle Flynn et al., 2019). TRIMs
are major regulators of autophagic processes, and their
autophagic actions may constitute another TRIM-dependent
contribution to cancer stemness.

Modulation of p53 Stability and Activity by TRIMs
The tumor suppressor protein p53 promotes genomic stability
and can induce cell cycle arrest and apoptosis resulting from
extensive cellular DNA damage. Interactions between TRIM
proteins and p53 are well-established and have recently been
reviewed in detail (Valletti et al., 2019). TRIMs 11, 21, 24, 25, 28,
29, 31, 32, 39, and 59 all negatively regulate p53. Mechanistically,
TRIMs can directly ubiquitylate p53, leading to its consequent
degradation or sequestration in the cytoplasm where it cannot
impact gene expression or carry out its pro-apoptotic or cell-
cycle controlling functions.

In addition to being subject to proteasomal degradation,
multiple studies have demonstrated that p53 can also be
regulated by delivery to the lysosome for degradation by the
autophagy pathway (White, 2016). Autophagy regulation is a
very prominent feature of many TRIMs. Collectively, recent
studies have identified individual TRIMs that impact stages of
the autophagy pathway. The following sections will focus on the
mechanisms whereby TRIMs impact autophagy and highlight
examples of how TRIM-directed autophagy contributes
to cancer.

Regulation of Autophagy by TRIMs
In addition to these activities in cancer, TRIMs also have been
shown to impact oncogenesis and tumor progression through
their actions on autophagy. A panel of published siRNA screens
have demonstrated that a surprisingly high percentage of human
TRIMs appear to regulate autophagy in cells under basal
autophagy conditions (Mandell et al., 2014) or in response to
autophagy induction by mTOR inhibition (Mandell et al., 2014;
Sparrer et al., 2017), interferon g stimulation (Kimura et al.,
2015), lysosomal damage (Chauhan et al., 2016), or viral
infection (Sparrer et al., 2017). Collectively, these screens
identified 49 TRIMs whose knockdown either decreased or
increased the number of autophagosomes in cells (Figure 1B).
Additional sets of TRIMs have been identified as having
autophagy regulatory roles under other experimental
conditions. The fact that so many TRIMs were identified in
these screens illustrated that some of the actions of TRIMs in
autophagy are context dependent with some TRIMs contributing
to defined subsets of autophagic outputs. For example, TRIM16
was uniquely required among TRIMs for an autophagic response
to lysosomal damage but was dispensable for autophagy induced
by mTOR inhibition, interferon g, or viruses. The context-
specific action of TRIMs in autophagy is important because it
suggests that the modulation of a specific TRIM may affect only
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the subset of autophagic activities governed by that TRIM. The
ability to precisely alter the cancer-related subset of autophagic
activities may be therapeutically beneficial. Additionally, the
broad requirement for TRIMs in autophagy suggested that
they may act via non-redundant mechanisms. This notion is
supported by subsequent studies, which have demonstrated that
some TRIMs affect the cellular abundance of autophagy-related
proteins whereas other TRIMs appear to affect the activation
status of autophagy regulators and/or alter their protein-protein
interactions (Figure 2).

TRIMs Regulate Autophagy at the mRNA Level
Several TRIMs have been shown to affect the transcription of
autophagy genes. In some cases, this is through TRIM actions on
transcription factors that activate expression of autophagy-
related genes. For example, the expression of TRIM59 in the
lung carcinoma cell line H1299 inhibits autophagy by negatively
regulating the expression of Becn1 mRNA (Han et al., 2018), an
effect that was connected to TRIM59's observed inhibitory action
on NF-kB activation. TRIM37, a known oncogene (Bhatnagar
et al., 2014), suppresses autophagic flux and inhibits the
activation and nuclear translocation of the pro-autophagy
transcription factor TFEB (Wang W. et al., 2018). Conversely,
TRIM16 promotes its own expression along with that of the
autophagy receptor p62 by driving Nrf2 activation under
conditions of oxidative stress (Jena et al., 2018). TRIM16 is
also found in protein complexes with TFEB (Chauhan et al.,
2016), but how this interaction shapes TFEB activation
separately from the role of TRIM16 in maintaining lysosomal
health has not been fully explored. It is likely that additional
TRIMs will be identified that can regulate autophagy by effecting
diverse signal transduction pathways that result in the activation
of transcription factors (e.g. IRF3, AP1, Nf-kB).

In addition to regulating transcription factor activity, some
TRIMs localize to the nucleus and can directly act as
transcriptional regulators or co-regulators. While a subset of
TRIMs have a C terminal domain (plant homeodomain, PHD)
that mediates chromatin binding, some TRIMs lacking these
domains can localize to the nucleus and affect gene expression:
an example being TRIM22 which was shown to reduce retroviral
gene expression (Kajaste-Rudnitski et al., 2011). The
transcriptional regulatory activities of a TRIM on autophagy
was first demonstrated for the PHD domain-containing TRIM28
(also known as KAP1, Table 1) (Barde et al., 2013).
Hematopoietic-specific knockout of TRIM28 resulted in
abnormal erythroblasts that contained elevated numbers of
mitochondria. Accordingly, TRIM28 knockout erythroblasts
expressed substantially lower levels of mRNAs coding for core
autophagy factors (e.g. Ulk1, Becn1, Atg12) and for proteins with
mitophagy-specific functions (Nix and Bnip3L). Mechanistically,
TRIM28 was found to repress the expression of miRNAs that
target autophagy factors. Similarly, TRIM65 promotes
autophagy by preventing miRNA-based down-regulation of
ATG7 in a non-small-cell lung cancer cell line (Pan et al.,
2019). In this study, the TRIM65 knockdown potentiated the
cytotoxic effects of cisplatin.
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Actions of TRIMs on Autophagy-Regulating
Signaling Pathways
The autophagy pathway is central to many cellular functions
under both homeostatic and stress conditions, and hence a large
number of signal transduction pathways have roles in positively
or negatively regulating autophagy. The mTOR and AMPK
signaling pathways, both of which are involved in sensing a
cell's nutritional status and are of critical importance to cancer,
are the best-known autophagy regulating pathways. mTOR
(mammalian target of rapamycin) is activated under amino
acid replete conditions and in turn activates signaling that
promotes anabolic processes and cellular growth. Active
mTOR attenuates the expression of autophagy genes by
inhibiting the activation and nuclear localization of TFEB and
other MiTF t ransc r ip t i on fac tor s through d i rec t
phosphorylation. mTOR also directly inhibits the activation of
autophagosome initiation by phosphorylation of the most
upstream autophagy factor ULK1 at serine 757. AMPK (5'
AMP-activated protein kinase) is activated by low glucose
conditions in cells and directly opposes the actions of mTOR.
When activated, AMPK phosphorylates mTOR, leading to the
disassembly and inactivation of mTOR complexes. AMPK also
phosphorylates ULK1 in an activating manner at Ser317, Ser555,
and Ser777, resulting in autophagy activation (Galluzzi
et al., 2014).

Several TRIMs are now known to regulate autophagy through
actions on mTOR or AMPK signaling. For instance, TRIM37
(Table 1) was recently reported to physically interact with
mTOR complex components and to promote the assembly of
active mTOR complexes at the lysosome (Wang W. et al., 2018).
TRIM37-deficient cells carryout unregulated autophagy.
Interestingly, TRIM37-deficient cells become “autophagy
addicted”, and so inhibition of autophagy flux in these cells
leads to pronounced cell death (Wang W. et al., 2018). TRIM29
and TRIM44 (Table 1) are also reported to affect mTOR
signaling (Xing et al., 2016; Zhou et al., 2016).

The ability of AMPK to induce autophagy is also subject to
regulation by TRIMs. In a subset of cancers, TRIM28
ubiquitylates the AMPKa1 subunit, resulting in its
proteasomal degradation and repression of autophagy (Pineda
et al., 2015). This effect is mediated by two proteins whose
expression is largely cancer-specific, the melanoma antigen A3
and A6 (MAGE-A3/6), which interact with TRIM28 and recruit
it to AMPKa1. AMPK activity has also been linked to the pro-
cancer kinase TAK1 (Xie et al., 2006; Herrero-Martin et al.,
2009), and TAK1 is in turn activated by TRIMs 5 (Pertel et al.,
2011) and 8 (Li et al., 2011) and inhibited by TRIM38 (Hu et al.,
2014), likely through autophagic degradation of TAK1
complex components.

The STING-TBK1 signaling axis is another autophagy-
regulating pathway whose activity is orchestrated by multiple
TRIMs. STING is a crucial component of cytosolic DNA
signaling pathways. Under homeostatic conditions, STING,
which contains four transmembrane domains, is localized to
the endoplasmic reticulum membrane in an inactive state. In
response to cytosolic DNA detection, STING undergoes a
Frontiers in Pharmacology | www.frontiersin.org 8
conformational change that allows for the recruitment of the
kinase TBK1. The STING-TBK1 complex re-localizes to the ER-
Golgi intermediate compartment, where TBK1 can
phosphorylate and activate the transcription factor IRF3 (Chen
Q. et al., 2016). TBK1 can also be activated by other pattern
recognition receptors (Louis et al., 2018). These two proteins
have key roles in autophagy regulation. STING has been shown
to be important for autophagy induction in response to various
microbial stimuli (Watson et al., 2015; Moretti et al., 2017), and
cytosolic DNA-activated STING was recently shown to provide a
membrane source for autophagosome formation independently
of the “core” autophagy upstream regulator ULK1 and the
hVPS34/Beclin 1 complex (Gui et al., 2019). TBK1 also plays
important roles in autophagy regulation, at least some of which
are independent of STING. For instance, TBK1-mediated
phosphorylation of syntaxin 17 is required for the earliest steps
of autophagosome formation (Kumar et al., 2019) and TBK1 also
has a role in allowing for autophagic maturation (Pilli et al.,
2012). These activities may be in addition to or in conjunction
with TBK1's roles in promoting autophagic cargo selectivity
through actions on autophagy receptors p62, NDP52, and
optineurin (Pilli et al., 2012; Richter et al., 2016; Vargas et al.,
2019). Both TRIM56 and TRIM32 have been shown to potentiate
the STING-TBK1 pathway by carrying out the K63-linked poly-
ubiquitylation of STING (Tsuchida et al., 2010; Zhang et al.,
2012), while the mouse-specific TRIM30a catalyzes K48-linked
ubiquitylation of STING, resulting in its degradation (Wang
et al., 2015a). TRIM27 promotes the proteasomal degradation of
TBK1 (Zheng et al., 2015), while other TRIMs can affect the
activity of TBK1 by modifying its protein-protein interactions
(Qin et al., 2016; Ye et al., 2017). Whereas autophagy was not
addressed in the studies cited above, TRIM23 has been
demonstrated to affect virus-induced autophagy through direct
actions on TBK1 (Sparrer et al., 2017). TRIM23 is unique among
the human TRIM family in that it is the only TRIM to feature an
ADP ribosylation factor-like ARF domain as a C terminal
domain. This domain is required for the interaction between
TRIM23 and TBK1 and for TRIM23-mediated autophagy. Both
genetic and pharmacological inhibition of TBK1 impaired
autophagy driven by TRIM23 expression. This finding
provided the first evidence that a TRIM could regulate
autophagy by acting on TBK1, suggesting the possibility that
other TRIMs may act similarly.

Actions of TRIMs on Autophagy Machinery
The previous sections dealt with mechanisms whereby TRIMs
regulate autophagy indirectly at the transcriptional level or by
affecting upstream signal transduction pathways that affect
autophagy. In this section, we discuss evidence that multiple
TRIMs directly interact with and modulate the activity of the
conserved core autophagy machinery. The first indication that
TRIMs as a family could directly intersect with the autophagy
machinery was published in 2014, when TRIM5, TRIM6,
TRIM17, TRIM22, and TRIM49 were shown to interact with
the autophagy regulators ULK1 and Beclin 1 (Mandell et al.,
2014). ULK1 (the mammalian homologue of yeast Atg1) is the
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most upstream autophagy regulator. One of the roles of ULK1 in
autophagy is to activate the Beclin 1/hVPS34 complex, which it
does through phosphorylation of Beclin 1 (Russell et al., 2013).
This process was potentially enhanced by expression of the
TRIMs listed above, which recruited ULK1 into Beclin 1 multi-
molecular complexes (Mandell et al . , 2014) in co-
immunoprecipitation experiments. Further studies with TRIM5
showed that it also interacted with ATG14L1 and AMBRA1,
both proteins that interact with the Beclin 1 complex. Additional
studies have broadened the list of TRIMs that interact with the
ULK1 and/or Beclin 1 complexes to include TRIMs 13, 16, 20, 21,
28, 32, and 50 (Yang et al., 2013; Kimura et al., 2015; Chauhan
et al., 2016; Fusco et al., 2018; Di Rienzo et al., 2019; Ji et al.,
2019). However, the finding that a TRIM interacts with these
upstream regulators of autophagy does not necessarily prove that
it acts to promote autophagy, as exemplified by TRIM17 which
binds to ULK1 and Beclin 1 yet was found to inhibit
autophagosome formation (Mandell et al., 2014; Mandell et al.,
2016). Instead, TRIM17 promoted the formation of inhibitory
Beclin 1 complexes including the protein Mcl-1 (Mandell
et al., 2016).

Active Beclin 1 complexes generate phosphatidylinositol 3-
phosphate (PI3P) at autophagosome initiation sites. PI3P
recruits proteins including ATG16L1 and ATG5 that carry out
the elongation of the autophagosome membrane. A key part of
this process involves the lipidation of the mammalian Atg8
orthologues (LC3 and GABARAP proteins; mAtg8s). Lipidated
mAtg8 proteins are important for the elongation of the
autophagosome membrane, the closure of the autophagosome,
and its fusion with lysosomes. TRIM5, TRIM16, and TRIM20
have all been reported to form protein complexes with ATG16L1
and TRIM5 was also shown to co-immunoprecipitate with
ATG5 (Kimura et al., 2015; Ribeiro et al., 2016). Whether
these interactions specifically modulate mAtg8 lipidation and
autophagosome membrane e longat ion has not yet
been demonstrated.

One critical question is whether the enzymatic activity of
TRIMs as E3 ligases is important for their actions in autophagy.
The answer to this question appears to be “sometimes”. For
example, TRIM20 lacks a catalytic RING domain but can still
assemble active autophagy initiation complexes (Kimura et al.,
2015). On the other hand, TRIM28 has been shown to enhance
the PI3 kinase activity of Beclin 1 complexes by directly
SUMOylating hVPS34, and TRIM50 attaches K63-linked poly-
ubiquitin to Beclin 1 in an autophagy-activating manner (Yang
et al., 2013; Fusco et al., 2018). TRIM32 has been reported to
promote the activity of the ULK1 complex through the
generation of unattached K63-linked poly-ubiquitin chains (Di
Rienzo et al., 2019). Whether the enzymatic activity of other
autophagy-regulating TRIMs is required for their actions in
autophagy remains to be answered.

TRIMs Control Autophagic Substrate
Selectivity
One of the primary ways that autophagy can impact cellular health
and physiology is through the degradative elimination of
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cytoplasmic contents. Once considered a bulk cellular recycling
mechanism, the autophagy pathway is now known to selectively
target certain substrates for degradation. This selective autophagy
presents an opportunity for the potential deployment of autophagy-
modulating therapies. While the wholesale induction or inhibition
of autophagy may have deleterious side effects, the still-theoretical
ability to activate or inhibit the autophagic degradation of a specific
cancer-related target could be considerably safer since only some of
autophagy's many physiological roles would be impacted.

The autophagy machinery's ability to selectively recognize
substrates is based on proteins that act as autophagy receptors.
These receptors are thought to act by bridging autophagic
cargoes with mAtg8s assoc ia ted with the nascent
autophagosomal/phagophore membrane. Receptors can
interact with cargos directly or indirectly through a protein
“eat-me” tag; these tags are often ubiquitin-based (Kirkin et al.,
2009). Receptors interact with mAtg8s via two different defined
peptide sequences termed LC3-interacting regions (LIRs)
(Birgisdottir et al., 2013) or ubiquitin interacting motif-like
(UIM) (Marshall et al., 2019). The best recognized autophagy
receptors are the sequestosome-like receptors (SLRs), which
include the proteins p62/Sequestosome 1, NDP52, NBR1,
Optineurin, and TAX1BP1. These proteins all include
ubiquitin binding domains for substrate recognition and LIRs,
and these domains have been shown to be important for these
proteins to carry out the autophagic degradation of specific
proteins, organelles, or intracellular pathogens. Autophagy
receptors also have autophagy-regulatory roles by linking
selective autophagy substrates with upstream autophagy
regulators as exemplified by NDP52, which recruits the ULK1/
FIP200 complex to depolarized mitochondria during mitophagy
(Vargas et al., 2019). In addition to regulating the autophagy
pathway, multiple TRIMs impact the autophagic targeting and
degradation of select substrates by themselves acting as
autophagy receptors or by modulating the actions of SLRs.

Most TRIM family members have N-terminal RING catalytic
domains that act as E3 ubiquitin ligases. As such, it may be
expected that TRIM-mediated ubiquitination of autophagy
substrates leading to their recognition by ubiquitin binding
receptors such as the SLRs would be a common mechanism of
TRIM-mediated selective autophagy. However, to date this
mechanism is not well-established; although there is an
indication that TRIM21-mediated ubiquitination of the kinase
IKKbmay facilitate IKKb degradation by autophagy (Niida et al.,
2010). On the contrary, TRIM14 and TRIM59 have been shown
to prevent the ubiquitination and subsequent p62-mediated
autophagic degradation of the DNA sensing enzyme cGAS
(Chen M. et al., 2016) and PDCD10 (programmed cell death
protein 10) (Tan P. et al., 2018). Interestingly, the TRIM59-
mediated protection of PDCD10 from autophagy was shown to
promote the survival and growth of breast cancer cells (Tan P.
et al., 2018).

Instead of tagging autophagy substrates with ubiquitin “eat-me
tags”, TRIMs appear to act as autophagy receptors that directly
bind to their substrates (Table 2). This was originally
demonstrated for TRIM5 (Mandell et al., 2014), a protein that is
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known to assemble into a lattice around incoming retroviral cores
in a host- and viral-species specific manner (Ganser-Pornillos and
Pornillos, 2019). TRIM5 was found to include two LIR motifs and
to bind directly to mAtg8 proteins (Mandell et al., 2014; Keown
et al., 2018). Rhesus TRIM5 promoted the autophagy-dependent
degradation of HIV-1 viral components (Mandell et al., 2014),
which can be recognized and bound by the TRIM5 SPRY domain
(Stremlau et al., 2006). Binding to mAtg8s appears to be a feature
of multiple TRIMs in addition to TRIM5 (Pizon et al., 2013;
Mandell et al., 2014; Kimura et al., 2015; Kimura et al., 2016;
Overå et al., 2019). This feature puts these mAtg8-binding TRIMs
into a position where they can recruit their interacting partners to
autophagosomes for degradation. Autophagic degradation of
cancer-relevant targets is one possible mechanism explaining
how autophagy may impact cancer progression (Table 2).
Given the large size of the TRIM family, it is possible that
TRIMs prov ide ce l l s wi th a breadth of se l ec t ive
autophagy receptors.

While ubiquitin tagging of substrates by TRIMs has not yet
been definitively reported, several studies indicate that auto-
ubiquitination of TRIMs when bound to their substrates is
important for their actions as autophagy receptors. For instance,
TRIM11 binds to the DNA sensor AIM2 following activation by
Frontiers in Pharmacology | www.frontiersin.org 10
cytoplasmic DNA. TRIM11 then auto-ubiquitinates at lysine 458.
This modification is required for p62 recruitment and AIM2
degradation by autophagy (Liu et al., 2016). AIM2 has been
suggested to play roles in several cancers, and the TRIM11-p62-
autophagy axis attenuated AIM2 signaling. Auto-ubiquitination is
required for the recently uncovered roles of TRIM13 in ER-phagy
(the autophagic targeting of damaged endoplasmic reticulum) (Ji
et al., 2019). Analogously, auto-ubiquitinated TRIM32 binds to
the signaling adapter TRIF and acts as an autophagic “eat-me”
signal that is detected by TAX1BP1 (Yang Q. et al., 2017). This
raises the question as to how TRIM auto-ubiquitination is
regulated. In the case of TRIM5, the spatial arrangement of
TRIM5 dimers scaffolded on a retroviral core allows the RING
domain of one TRIM5 molecule to poly-ubiquitylate the RING
domain on another TRIM5 molecule (Fletcher et al., 2018). Thus,
substrate recognition may be required for TRIM auto-
ubiquitination and action as autophagy receptors. This is likely
the case for TRIM17. Under normal conditions, TRIM17
assembles Beclin 1 with an inhibitory binding partner to inhibit
autophagy. However, TRIM17-Beclin 1 complexes localized to
midbody rings lack this inhibitory binding partner, and TRIM17
contributes to the autophagic elimination of midbody rings
(Mandell et al., 2016). Whether and how TRIMs coordinate
TABLE 2 | Substrates whose autophagic degradation is controlled by TRIMs. Top, in some cases, TRIMs promote the selective autophagic degradation of the listed
substrates. In other cases (bottom), TRIMs ‘deselect’ potential autophagic substrates allowing them to accumulate in cells.

Autophagic substrate TRIMs involved Cancer relevance

TRIM-mediated
selective
autophagy

Cleaved caspase-3 TRIM8 (Roy et al., 2018) Cleaved (active) Caspase-3 is essential to apoptosis.
AIM2 inflammasome TRIM11 (Liu et al.,

2016)
AIM2 inflammasome inhibits the development of colorectal cancer but promotes squamous cell
carcinoma. AIM2 inflammasome triggers cell death and inflammation in response to DNA
damage.

Endoplasmic reticulum TRIM13 (Ji et al.,
2019)

Endoplasmic stress can enhance tumorigenesis, metastasis, and drug resistance. ER stress
can also attenuate anti-cancer immunity.

Aggregated proteins TRIM16 (Jena et al.,
2018), 50 (Fusco
et al., 2012)

Misfolded proteins lead to aggregate formation. Cancer cells utilize the degradation of
aggregates through autophagy to facilitate cell survival.

Damaged lysosomes TRIM16 (Chauhan
et al., 2016)

Induced lysosomal damage has been considered as an approach to cancer chemotherapy.

Midbody rings TRIM17, 21, 76
(Mandell et al., 2016)

The midbody is the compacted remains of the cytokinesis machinery. Midbodies accumulate in
cancer stem cells and have been linked to cancer invasiveness.

NLRP3 inflammasome
components

TRIM20 (Kimura et al.,
2015)

NLRP3 inflammasome regulates the activation of pro-inflammatory cytokines that can have
strong effects (protective and pathogenic are both reported) on cancer.

IRF3 TRIM21 (Kimura et al.,
2015)

IRF3 is a transcription factor that is activated in response to cellular pathogen detection. IRF3
inhibition slows gastric tumor growth.

Active IKKb TRIM21 (Niida et al.,
2010)

IKKb de-represses NF-kB-based gene expression

TRIF TRIM32 (Yang et al.,
2017)

TRIF is an adaptor protein that is important for Toll-like receptor signaling. TLR signaling has
been linked to cancer progression.

TRIM-mediated
deselective
autophagy

TGFb activated kinase 1
(TAK1) complex
components

TRIM5 (Kehl et al.,
2019)

TAK1 is a kinase that integrates signaling downstream of TGFb and other cytokines and has
been extensively linked to cancer. TAK1 inhibition has been considered in cancer therapy.

Cyclic GMP-AMP
synthase (cGAS)

TRIM14 (Chen M.
et al., 2016)

cGAS is crucial for cytosolic DNA sensing. cGAS Acute activation of cGAS has been shown to
lead to tumor regression in mice, whereas chronic cGAS activation may lead to inflammation-
induced tumorogenesis.

Intraflagellar transport
20 (IFT20)

TRIM17 (Mandell
et al., 2016)

IFT20 is involved in ciliogenesis and microtubule-driven transport. Primary cilia are thought to
inhibit cell growth and are lost in many cancers.

Oral-facial-digital
syndrome 1 (OFD1)

TRIM17 (Mandell
et al., 2016)

OFD1 is an inhibitor of primary ciliogenesis. Primary cilia are thought to inhibit cell growth and
are lost in many cancers.

TRIM22 TRIM17 (Mandell
et al., 2016)

TRIM22 expression is associated with poor prognosis in non-small cell lung cancer (Liu et al.,
2017b).

Programmed cell death
protein 10 (PDCD10)

TRIM59 (Tan P. et al.,
2018)

PDCD10 inhibits RhoA/ROCK signaling, thus promoting cancer cell survival and metastasis.
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their substrate binding activities as selective autophagy receptors
with their enzymatic activities and their actions as autophagy
regulators (described above) remains an open question.

By definition, autophagy receptors are co-degraded with their
targets in the autolysosome. So far, autophagic degradation has
been demonstrated for at least TRIMs 5, 13, 16, 20, 21, 23, 27, 31,
32, 45, 49, 50, and 56 (Imam et al., 2016; Mandell et al., 2016; Ji
et al., 2019; Overå et al., 2019), several of which have known
connection to cancer (Table 1). This finding raises the
autophagic degradation can also regulate the cancer-related
activities of these TRIMs. Interestingly, this effect is seen with
the oncogenic fusion protein PML-RARa (TRIM19), whose
autophagic degradation is induced in following exposure to all-
trans retinoic acid (Isakson et al., 2010; Wang et al., 2011), which
is a standard treatment for acute promyelocytic leukemia (Wang
and Chen, 2008).

TRIMs Control the Activities of the
Cancer-Related Autophagy Receptor and
Signaling Platform p62/Sequestosome 1
The protein p62/Sequestosome 1 (p62) has multiple known roles
in a variety of cancers (Moscat et al., 2016; Sanchez-Martin et al.,
2019). The best known cellular function of p62 is as a selective
autophagy receptor (Pankiv et al., 2007; Deretic, 2012). Separate
from its actions in autophagy, p62 also plays a key role in a
number of cellular signaling pathways that can profoundly affect
cellular survival and growth (Sanz et al., 2000; Jin et al., 2009; Jain
et al., 2010; Komatsu et al., 2010; Duran et al., 2011; Linares et al.,
2013; Paul et al., 2014; Moscat et al., 2016; Goodall et al., 2016;
Sanchez-Martin and Komatsu, 2018). Numerous studies have
reported p62 over-expression in tumors and have associated
elevated p62 expression with poor prognosis (Duran et al., 2008;
Inui et al., 2013; Li et al., 2013; Adams et al., 2016; Saito et al.,
2016; Umemura et al., 2016; Karras et al., 2019; Nguyen et al.,
2019; Polonen et al., 2019). Furthermore, p62 has been shown to
limit the efficacy of sorafenib treatment against liver cancer (Sun
et al., 2016). Given its multifunctional nature, it is unsurprising
that dysregulation of p62 in cancer cells can promote their
growth by several mechanisms including through selective
autophagy (Nguyen et al., 2019), activation of pro-survival
signaling and gene expression (Duran et al., 2011; Linares
et al., 2013; Umemura et al., 2016; Lam et al., 2017; Polonen
et al., 2019), or stabilization of a set of pro-metastatic mRNAs
(Karras et al., 2019). In contrast, p62 expression in non-
transformed cells can reduce cancer progression (Valencia
et al., 2014; Huang et al., 2018). In light of all of p62's possible
pathogenic or protective effects in cancer, a key question is how
p62 coordinates its various cellular activities and what factors
govern its behavior.

The control of p62 action is emerging as a conserved feature of
TRIM family members. As discussed above, TRIMs can regulate
the levels of p62 indirectly through their actions as autophagy
regulators. However, TRIMs employ additional mechanisms for
affecting p62 abundance and activity. TRIMs 5,11,13, 17, 21, 22,
23, 32, 49, 50, 55, and 63 have been demonstrated to biochemically
interact with p62 (Witt et al., 2008; O'Connor et al., 2010; Fusco
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et al., 2012; Tomar et al., 2012; Mandell et al., 2014; Kimura et al.,
2015; Liu et al., 2016; Pan et al., 2016; Sparrer et al., 2017; Overå
et al., 2019), and additional TRIMs such as TRIM19 colocalize
with p62 in cellular structures (Clausen et al., 2010). A primary
cellular function of p62 is to organize and sequester ubiquitylated
proteins into cytoplasmic punctate structures termed p62 bodies
which have liquid droplet-like properties (Zaffagnini et al., 2018)
and that may function as platforms for p62-mediated signaling
while also concentrating cellular wastes destined for autophagic
degradation. At least 14 TRIMs have roles in regulating the
formation and/or clearance of these structures, with TRIMs 5,
16, 17, 32, 50, 52, and 58 increasing their abundance in cells while
TRIMs 14, 19, 21, 22, 25, 65, and 76 having the opposite effect
(Mandell et al., 2016; Pan et al., 2016; Jena et al., 2018; Kehl et al.,
2019; Overå et al., 2019). The relevance of TRIM-regulated p62
localization to cancer is illustrated by TRIM21 and TRIM16,
which act in opposing manners on p62 condensation into
cytoplasmic bodies and on activation of the transcription
factor Nrf2.

As a master transcriptional regulator of antioxidant stress
resistance genes, Nrf2 is a prominent actor in cancers (Kitamura
and Motohashi, 2018). Under homeostatic conditions, Nrf2 is
targeted for proteasomal degradation through its interaction
with Keap1. In response to oxidative stress, p62 binds to
Keap1, leading to Keap1's sequestration and eventual
autophagic degradation. This liberates Nrf2 from Keap1,
allowing Nrf2 to enter the nucleus and to activate its target
genes (Komatsu et al., 2010; Taguchi et al., 2012; Ichimura et al.,
2013). TRIM21 directly catalyzes the K63-linked poly-
ubiquitylation of p62 at lysine 7 in the p62 PB1 domain, a
region required for p62 dimerization and cytoplasmic body
formation. Consequently, K7-ubiquitylated p62 loses its ability
to sequester Keap1, establishing TRIM21 as a negative regulator
of Nrf2-directed cytoprotective antioxidant responses and
providing a possible mechanism explaining the observation
that reduced TRIM21 expression is associated with poor
prognosis in hepatocellular carcinoma and B cell lymphoma
(Brauner et al., 2015; Ding et al., 2015). In contrast, TRIM16 is
required for the formation of p62 bodies in response to
proteotoxic or oxidative stress, and its expression decouples
Nrf2 from its inhibitor Keap1 (Jena et al., 2018). Knockout of
TRIM16 reduces cellular survival and growth under stress
conditions in vitro and in a mouse xenograft tumor model (Jin
et al., 2009). While the precise molecular mechanism of TRIM16
action on the p62-Nrf2 system has not been completely defined,
TRIM16 expression is associated with increased p62
phosphorylation (Ichimura et al., 2013), suggesting that
TRIM16 may be involved in the activation of a kinase that
controls p62 action. A likely candidate for this role is TAK1, a
kinase activated downstream of TRIM5 (Pertel et al., 2011) and
other TRIMs (Versteeg Gijs et al., 2013), that phosphorylates p62
(Hashimoto et al., 2016; Kehl et al., 2019) and is required for p62
body formation in response to multiple cellular stresses (Kehl
et al., 2019). How other TRIMs affect p62 localization and Nrf2
activation, and what role(s) these activities play in cancer has not
been fully elucidated.
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Possible Approaches to Drugging TRIMs
in Cancer Therapy
Can the connections between TRIMs and autophagy be
leveraged for the therapeutic benefit of cancer patients? While
this concept has not yet been tested, there is reason to believe that
TRIMs could be druggable targets. TRIMs are a heterogeneous
group of proteins organized into subclasses that possess a
defining cluster of domains (e.g. RING, B-box, coiled-coil,
FN3, SPRY, bromobox/bromodomain, etc.) (Gushchina et al.,
2018). One approach to drug design would be to target the
activity of specific domains critical to TRIM function in cancer.
In fact, efforts to identify inhibitors of TRIM bromodomains are
underway, with the bromodomains present in TRIM24, 28, and
33 being of particular interest to cancer therapy. These three
TRIMs are transcriptional modulators associated with multiple
cancers (Table 1). Bromodomains are involved in the
recognition of acetylated lysines on histones and can recruit
chromatin remodeling enzymes, resulting in transcriptional
activation or repression including of autophagy-related genes
(Sakamaki et al., 2017). Small-molecule bromodomain inhibitors
have been identified that display robust target specificity,
including against TRIM24 (Zhan et al., 2015; Bennett et al.,
2016; Romero et al., 2016). Such agents may serve as useful
epigenetic based anti-cancer therapies. As discussed above,
bromodomain-containing TRIM28 has multiple connections to
autophagy, and TRIM33 was among TRIM “hits” as regulators of
autophagy. The role of the bromodomain of these TRIMs in their
autophagic function(s) has not yet been tested, but one could
imagine that bromodomain-targeted therapies could also impact
autophagy directed by bromodomain-containing TRIMs.

The RING domain found in most TRIMs may also present an
opportunity for therapeutic targeting. Most TRIM RINGs possess
E3 ubiquitin ligase activity that is often crucial to TRIM
functionality. While inhibitors specific to TRIM RING domains
have not yet been reported, the fact that small molecule inhibitors
of the RING domains from other protein families exist (Bulatov
et al., 2018) suggests that TRIM RING inhibition may be feasible.
The search for E3 ligase inhibitors in general has been sparked by
the desire to identify molecules that could modulate
ubiquitination-dependent proteasomal degradation of selected
proteins. This process has been targeted therapeutically using
drugs such as bortezomib, a 26S proteasome inhibitor, which is
used in the treatment of cancers including multiple myeloma.
Bortezomib's utility in cancer therapy is limited by toxicity,
possibly resulting from the general, non-specific nature of
proteasomal inhibition. However, because E3 ubiquitin ligases
have some level of specificity in their action, their pharmacological
targeting may provide greater therapeutic utility. A prime example
of this approach that is currently under investigation is to target
interactions between TRIMs and p53, a notable tumor suppressor
(Valletti et al., 2019). Inhibiting the E3 ligase activity of these
TRIMs to improve p53 stability may represent a selective
therapeutic target for cancer. Inhibition of the E3 ligase activity
of TRIMs would also impact their ubiquitination-dependent but
Frontiers in Pharmacology | www.frontiersin.org 12
proteasome independent activities, including those in autophagy
regulation and in autophagic substrate selection.

A third possible modality for TRIM-directed cancer therapy
would be to interfere with or enhance the interactions between a
TRIM and its cancer-relevant binding partners. Depending on
the TRIM and its mechanism of action in cancer, these
interacting partners could include autophagy factors (e.g.
Beclin 1, p62, mAtg8s). Alternatively, compounds capable of
disrupting the oligomerization of cancer-relevant TRIMs would
be expected to block their action, since the higher-order assembly
of TRIMs is thought to be essential for their function. In total,
there is strong support for targeting TRIMs in an effort to
develop effective therapies for a wide-array of cancers.

CONCLUDING REMARKS

TRIM proteins are positioned as hubs connecting cellular
signaling, metabolism, and autophagy. As such, it is
unsurprising that so many of them have prominent roles in
cancer. To date, no efforts to effectively target TRIMs as a
strategy to therapeutically modulate autophagy in cancer have
been reported. However, the strong connections between TRIMs
and a variety of diseases in addition to cancer suggest that TRIM
targeting may hold promise pending future mechanistic studies.
These studies could be initiated by two complementary
approaches. First, the requirement for autophagy should be
investigated in cancers showing TRIM dysregulation. Second,
TRIMs should be assessed for whether they promote the
survival of autophagy-addicted cancers. Either approach might
identify cancers in which TRIM-directed autophagy plays a
significant role in tumor survival and/or resistance to
chemotherapeutic agents. This could justify further cellular,
biochemical, and structural studies aimed at identifying TRIM
structures or activities to target in the development of more
effective cancer therapies.
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