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Abstract

Modular plants using intensified continuous processes represent an appealing concept for the production of pharmaceuticals. It
can improve quality, safety, sustainability, and profitability compared to batch processes; besides, it enables plug-and-produce
reconfiguration for fast product changes. To facilitate this flexibility by real-time quality control, we developed a solution that can
be adapted quickly to new processes and is based on a compact nuclear magnetic resonance (NMR) spectrometer. The NMR
sensor is a benchtop device enhanced to the requirements of automated chemical production including robust evaluation of sensor
data. Beyond monitoring the product quality, online NMR data was used in a new iterative optimization approach to maximize
the plant profit and served as a reliable reference for the calibration of a near-infrared (NIR) spectrometer. The overall approach
was demonstrated on a commercial-scale pilot plant using a metal-organic reaction with pharmaceutical relevance.

Keywords NMR spectroscopy - NIR spectroscopy - Real-time process monitoring - Real-time quality control - Continuous

processes

Introduction

The pharmaceutical industry is making considerable efforts to
establish continuous manufacturing of active pharmaceutical
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ingredients (API) as an alternative to batch production. A
study released by representatives of ten prominent phar-
maceutical companies demonstrates the value of intensi-
fied continuous manufacturing with regard to improved
quality, safety, sustainability, throughput time, speed of
implementation, and profitability [1-3]. The combination
of continuous processes with a modular plant concept
supporting plug-and-produce reconfiguration enables effi-
cient and flexible production of different substances using
standardized modular equipment [4, 5].

Online quality monitoring and model-based control of crit-
ical quality attributes (CQAs) are required to ensure the de-
sired product quality and to run a continuous process in an
optimal way [6]. The effort to develop such integrated control
solutions slows down the implementation of new continuous
API processes considerably and hampers flexibility when
making many different products. Process analytical methods
such as online near infrared (NIR), UV/VIS, or Raman spec-
troscopy are typically employed for online quality monitoring
[7-9]. The calibration of such instruments is usually expen-
sive and time consuming. A considerable set of different me-
dium samples has to be obtained and a suitable reference an-
alytical method has to be developed to determine the

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00216-019-01752-y&domain=pdf
https://doi.org/10.1007/s00216-019-01752-y
mailto:michael.maiwald@bam.de

3038

Kern S. et al.

compositions of the samples. Furthermore, a calibration mod-
el correlating spectral sensor data to the corresponding chem-
ical compositions has to be fitted, validated, and maintained.

Seeking for appropriate process analytical methods, quan-
titative NMR spectroscopy was considered in this study,
which features a high linearity between absolute peak areas
in the spectra and the concentrations of analyte molecules in
the samples. This makes it an absolute analytical comparison
method being strictly independent on the sample matrix, e.g.,
solvent effects. NMR spectroscopy provides information
about the structure of the molecules in the sample as well as
quantitative information. "H NMR spectroscopy provides sev-
eral concentration readings as well as structural information
per minute. The high rate of data points helps in understanding
the dynamics of the investigated pilot plant. Most NMR spec-
trometers use cryo-cooled superconductors to establish a very
strong magnetic field (>5 T), but they are not suitable for
process applications because of the need for cryogenic liquids,
the high operational costs, and the large size of these devices.
Nowadays, compact NMR systems are available using perma-
nent magnets with a lower magnetic flux density (i.e., 1 T) and
sufficient field homogeneity below 1 Hz. These devices are
small, relatively inexpensive, and very appealing for process
applications [10, 11]. Automated systems including compact
NMR spectrometers have been reported in literature lately
focusing on reaction monitoring [12], self-optimizing reactor
systems [13], or in combination with an organic synthesis
robot for the prediction of reactivities [14]. However, these
prototype devices and commercially available instruments
are primarily intended for laboratory use.

In this contribution, we present a real-time quality control
solution that can be adapted quickly to new processes. It in-
cludes a compact NMR spectrometer for online quality mon-
itoring and a new data and model-based process control ap-
proach. The integrated solution was developed for a lithiation
reaction running on a commercial-scale modular pilot plant
and it was tested under industrial conditions within the
European Union’s Horizon 2020 project CONSENS
(Integrated Control and Sensing for Sustainable Operation of
Flexible Intensified Processes, 2015-2017). A benchtop
NMR spectrometer was converted into a smart, compact
(57 %57 %85 cm), portable process analytical sensor which
easily benefits the modular plant concept. It rapidly and non-
invasively measures the chemical composition with minor
calibration effort and without the need for sample preparation,
or deuterated solvents. The analytes are quantified with mod-
ular, physically motivated models. These models can be
adapted to new substances solely by the use of their corre-
sponding pure component spectra. Beyond that, we compre-
hensively calibrated an NIR spectrometer based on real NMR
process data for the first time within an industrial plant. The
advantage of this approach allowed us to include reaction
components, which are typically not accessible for offline

@ Springer

reference analytics. This comprises intermediates usually de-
pleted after quenching of the technical samples and additional
components such as contaminants and side products. The it-
erative control approach leads to the economically optimal
operation of the plant even though the process model is not
accurate.

Materials and methods
Experimental setup in pilot scale

The pilot plant considered here was built in a previous re-
search project to demonstrate the feasibility of mobile and
modular intensified continuous production [15]. It is charac-
terized by a strictly modular architecture based on a standard
20-ft shipping container with the dimensions 6.0 m x 2.4 m X
2.6 m (L x W x H). The plant was designed to produce an API
intermediate with a capacity of several tons per year including
two reaction steps and two purification steps. In this study,
only the first reaction unit is considered which is an air-
cooled tubular reactor. A highly exothermal metal-organic re-
action is used in which two aromatic compounds, aniline and
1-fluoro-2-nitrobenzene (o-FNB), are coupled using lithium
hexamethyldisilazane (LIHMDS) as a base yielding lithium-
2-nitrodiphenylamine (Li-NDPA) and lithium fluoride.

The setup of the relevant parts of the plant and the reaction
scheme are illustrated in Fig. 1. Three separate dosing units
provide the reactants each dissolved in tetrahydrofuran (THF).
After pre-mixing of anline and o-FNB, cooling to 4 °C is
necessary to avoid THF from boiling in the tubular reactor.
At least 2 mol of LIHMDS has to be applied to 1 mol aniline
and 1 mol o-FNB. Due to the rather loose raw material spec-
ification of the lithium base and side reactions with residual
moisture, LIHMDS is used in excess. In this study, the initial
stoichiometric factor of the lithium base was set to 2.14. The
flow rates for the THF solutions of 0-FNB (5.60 kg hY, an-
iline (3.68 kg h™ ') and LiHMDS (6.89 kg h™') were selected
accordingly, assuming concentrations 0.63, 0.96, and
1.10 mol L™" of the analytes, respectively. These concentra-
tions may vary during production when the tanks of the dosing
units are filled up with new batches of raw material solutions.
Hence, these flow rates are used for start-up and are adjusted
during production by the control algorithm to compensate
variations of feed compositions and temperatures, and to op-
timize the operation of the plant. The pilot plant has to be
considered as a hazardous area prone to explosive atmo-
spheres, due to the use of THF and other organic substances.
Thus, all devices used in the plant, including the online NMR
sensor, are required to meet explosion protection regulations
for zone 1 according to ATEX (European Directives for con-
trolling explosive atmospheres).
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Reaction scheme
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Fig. 1 Schematic visualization of
the modular pilot plant for the
production of an API
intermediate. The modular plant
is comprised of dosing units
feeding the reactants aniline, o-
FNB, and LiHMDS into a tubular
reactor. A bypass is used to route
a filtered fraction of the product
stream through an online NMR
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During the start-up procedure on each production day, the
pure 0-FNB solution was pumped through the analytic mod-
ules for one-point calibration of the NMR spectrometer.
Subsequently, initial flowrates based on stochiometric as-
sumptions were set manually. The iterative optimization
scheme based on online NMR data was initialized subsequent-
ly. It performed step changes in the raw material flow rates to
identify the plant optimum while the process was running.
After each iteration step, the flow rates were kept constant
for about 10 min to reach steady-state concentrations. After
commissioning the plant, a total of 4 days of plant operation,
spread over a period of 3 weeks, yielded a total of 40 h of
process data.

Chemicals

Lithium hexamethyldisilazane (LiHMDS), typically in the
form of 1.1 mol L' solution in THF/ethylbenzene was pur-
chased from Albemarle Corporation (Charlotte, NC, USA).
The ethylbenzene content within the LIHMDS solution was
specified maximal 9 wt%. The raw materials aniline, o-FNB
(both AK Scientific Inc., Union City, USA), and THF
(Brenntag GmbH, Essen, Germany) were purchased in tech-
nical grade and used without prior purification.

11:00 12:00 13:00

Time, t/ hh:mm

13:00 10:00

Online low-field NMR spectroscopy

The NMR instrument (Spinsolve Proton, Magritek,
Aachen, Germany), operating at 43.32 MHz 'H frequen-
cy, comes with 5-mm ID bore for standard NMR tubes at
a magnet temperature of 28.5 °C. The system was oper-
ated with a Windows computer and was triggered via
XML commands. For the studies presented here, a 5-
mm glass flow cell (ID =4 mm) was used. Online proton
spectra were acquired with single scans, 90° pulse, 6.5-s
acquisition time, and 8.5-s recycle delay yielding a repe-
tition time of 15 s.

NMR data was saved locally in binary files and proc-
essed in real time via MATLAB (R2017a, The
MathWorks, Natick, MA, USA) using automatic folder
monitoring. The free induction decay (FID) was zero
filled to 64 k data points and subsequently apodized by
exponential multiplication with a line broadening factor of
0.5 Hz. After Fourier transformation, spectra were treated
with automated data preparation algorithms. These were
baseline correction [16], phasing [17], and spectral align-
ment to a reference spectrum (neat THF) using the
icoshift algorithm [18]. Concentration values were calcu-
lated based on the processed spectra using indirect hard
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modeling (IHM). For automation purposes, component
fitting and calculation of concentration values during
real-time optimization experiments at the pilot plant was
implemented in MATLAB. Reference concentration
values for calibrating the NIR spectrometer were calculat-
ed offline with the PEAXACT software (SPACT GmbH,
Aachen, Germany). Small differences exist between the
MATLAB and PEAXACT (not shown) approach.

Model parameters for IHM were adopted from previous
studies of the same reaction system at lab-scale [19]. For the
absolute quantification method, the use of a concentration
conversion factor £ was applied to convert signal areas to
molar concentration ¢;. £ was determined via one-point cali-
bration obtained from the known concentration of the o-FNB
solution using Eq. 1:

A
R ) 1
o=t 1)
where v is the number of nuclei and A is the corresponding

absolute integral.

Online NIR spectroscopy

FT-NIR absorbance spectra were measured with a fiber
optic transmission probe (Knauer A4081) using a
Matrix-F spectrometer (Bruker Optik GmbH, Ettlingen,
Germany). 64 consecutive sample scans were accumulat-
ed in the spectral range of 4000-12,000 cm™ ' with a spec-
tral resolution of 8 cm™'. Zero filling with factor 2 and
apodization using a Blackman-Harris-3-Term function
yielded a total of 2074 data points per spectrum.
Measurement intervals were set to 160 s. Data evaluation
including preprocessing and multivariate calibrations was
performed using The Unscrambler X, Version 10.5
(CAMO Software, Oslo, Norway).

Fig. 2 Labeled photograph of modular pilot plant (a) for the continuous

2-nitrodiphenylamine synthesis. (b) Close-up example of tubular reactor

(d, ID=12.4 mm) and the filter section (e). (¢) Photograph of the
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Field integration of analytical instrumentations

The compact NMR spectrometer was integrated into an online
sensor unit, equipped with a pressurized enclosure with nitro-
gen purge (see Electronic Supplementary Material (ESM) Fig.
S2 and S3). The resulting sensor module was certified by a
notified body according to ATEX regulations which allows
the usage of the sensor in the hazardous area of the pilot plant.
The product flow through the NMR instrument was controlled
inside the module to 1.5 mL min~' to assure complete pre-
magnetization of the sample flow. A detailed piping and in-
strumentation diagram (P&ID) and the spatial arrangement
depicted in Figs. S2 and S3 (see ESM) show the working
principle of the whole NMR sensor. The NMR unit was fully
automated, including acquisition, processing, and communi-
cation of data. The concentration values of the selected sub-
stances were transmitted to the distributed control system
through the standardized communication protocol OPC
Unified Architecture.

A small fraction of the product stream, approximately
1% of total flow, was separated in a bypass for online
analytics with NMR (Fig. 2, (C)) and NIR spectroscopy
(Fig. 2, (F)). The flow rate through the online analytical
modules was induced by a pressure drop of 3 bars from
the main product stream. Since particle formation from
water residue precipitation of LiF and LiOH is a major
source of clogging in small capillaries of the bypass (ID =
1 mm), a filter module for the reduction of particle loads
was implemented. A combination of redundant 90- and
60-um stainless steel inline filters (Swagelok) has evolved
as a robust arrangement to prevent clogging in the bypass
(see Fig. 1 and S4).

NMR measurements were taken in 15-s intervals, while
NIR spectra were recorded in 160-s intervals. NIR mea-
surements were recorded in transmission mode in close
proximity to the NMR device, before the product left
the pilot plant.

integrated compact NMR spectrometer (43 MHz) with ATEX certified
pressurized housing for online concentration measurements. (f) indicates
the location of the NIR flow cell
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Real-time optimization experiments

In model-based optimization, exact non-linear process models
are needed to determine the real optimum operating point of a
plant. However, most often a lot of work is needed to describe
all effects of the process behavior precisely enough. In this
case, it is very costly to determine the reaction kinetics, since
the reaction is very fast, and it is assumed that mixing effects
in the tubular reactor influence the conversion considerably.
Instead, a simple control model was built based on the stoi-
chiometry of the reaction system and using rough estimates of
the kinetic parameters based on chemical understanding. Due
to the fast reaction and the short residence time in the reactor,
the plant quickly reaches a steady state after changes of the
feed rates. Therefore, an iterative steady-state optimization
was implemented. The objective function of the optimization
problem considers the prices and the mass flows of, the raw
materials fed to the reactor and the product obtained at the
outlet according to Eq. 2.

3 3

Profit = w4 M ri-NDPA"CLI-NDPA / PMixture” 21 u;— '21 witt;, (2)
i= i=

where u;, u,, and u; are the feed flowrates of the reactants
aniline, LIHMDS, and o-FNB in kg h™', and My ; nppa as well
as ¢ ;.nppa are the molar mass in kg mol ! and the measured
concentration in mol m > of the product Li-NDPA. Weights
for each term in the profit function (w;—w,) reflect the relative
costs of the reactants and the product and were set to 10,000,
25,000, 12,000, and 450,000 kgﬁl, respectively. The density
of the reaction mixture (pPyixure) Was set to 900 kg m .

In contrast to the traditional non-linear process modeling
approach, no estimation of model parameters was performed,
but the optimization problem itself was adapted by introduc-
ing correction terms, the so-called modifiers [20]. These mod-
ifiers describe the differences between the observed stationary
behavior of the plant and its model and of the gradients of the
cost function and of the constraints with respect to the

6 6 85 8 75 7 65 6
ppim

A Model data base D Selected pure component models

Fig. 3 Indirect Hard Modeling (IHM) workflow for quantitative evalua-
tion of measured NMR spectra (d) by building a mixture model (c).
Relevant pure component models (b) for each process can be selected

manipulated variables. In this manner, the necessary condi-
tions for optimality of the true plant operation are satisfied
upon convergence. To use this kind of correction without
identifying model parameters was first proposed by
Tatjewski [21] and later extended to include the handling of
constraints [22]. The critical element of this iterative optimi-
zation algorithm is the computation of the gradients from the
plan measurements. To compute the gradients from finite dif-
ferences is vulnerable to measurement noise and can lead to
erratic control moves. A recently proposed modifier adapta-
tion with quadratic approximation (MAWQA), in which the
iterative gradient correction [22] is combined with elements
from derivative-free optimization (DFO) to estimate the plant
gradients [23], was adopted to the given optimization
problem.

Results and discussion
Flexible data evaluation approach for NMR spectra

Peak signals within the spectra of compact NMR devices
tend to spread and overlap due to the weaker magnetic field
of permanent magnets compared to instruments with
higher magnetic field strengths. Since the individual peak
areas are not directly accessible, deriving chemical compo-
sitions from such NMR spectra is challenging. A spectral
deconvolution method was applied that relies solely on
pure component NMR spectra of the substances expected
in the chemical process (reactants, products, and major
impurities). The chemical composition of an unknown
mixture is determined by fitting a superposition of the pure
component spectra to the measured NMR spectrum of the
mixture (Fig. 3). This component fitting is realized by an
advanced line fitting approach called IHM in which the
pure component spectra are modeled by sums of basic peak
functions (i.e., Lorentzian-Gaussian functions represented

S Width
Height

Component
Fitting

. Position

Intensity
o = N W N

9 85 8 75 7 65 @
ppm

959 858 757 656 55
ppm

C Fitted mixture model

d Experimental Spectra

from pure a component model database (a) and employed together with
model constraints. Cyan lines represent peak functions of each spectral
model
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by Pseudo-Voigt functions). The IHM algorithm adjusts
heights, widths, and positions of the basic peak functions
within predefined model constraints to minimize the resid-
uals between measured data and the mixture model, but it
maintains the peak area ratios in each pure component
model for physical plausibility [24, 25]. The compositions
can then be derived from the resulting areas of the sub-
stance models. IHM applied to complex NMR spectra en-
ables a calibration-free access to molar ratios and provides
absolute concentrations with low calibration effort (one-
point calibration) [26].

Prior to deployment at the modular plant, the proof of
principle for the NMR sensor and of the flexibility of the
data evaluation concept was validated in the laboratory
for various sets of starting materials and the resulting
products. The functional groups R of the aromatic amine
within the metal-organic reaction (Fig. 1) comprised ani-
line (R=H), 4-flouroaniline (R=F), and toluidine (R =
CH;). Initially, a spectral library of various analytes for
the investigated reaction system was created, including
pure component spectra measured offline in standard
NMR tubes (ESM Fig. S1) and their derived spectral
models (Fig. 3, (a)). For each experiment within the lab-
oratory setup, relevant pure component models were se-
lected (Fig. 3, (b)). The experimental setup of this study
as well as model constraints of IHM for the reaction sys-
tem with R =H were recently published [19]. The inves-
tigation of various starting materials revealed that model
constraints from [19] could be universally applied for data
evaluation in all three cases. Root-mean-square errors
(RMSE) for the concentration measurements of each re-
action system are depicted in Table 1. RMSE values in the
range of 5-16 mmol L' were achieved. Online high-field
NMR spectroscopy (500 MHz) served as a reference
method for validation since metal-organic reactants are
problematic to analyze via offline sampling due to their
sensitivity to air and moisture.

Table 1 RMSE values for quantitative analysis of NMR spectra
(43 MHz) using Indirect Hard Modeling (IHM) for the synthesis of prod-
ucts NDPA (2-nitrodiphenylamine), MNDPA (2-nitro-4'-
methyldiphenylamine), and FNDPA (2-nitro-4'-fluorodiphenylamine).
Depending on the desired product, the applied aromatic amine for the
reaction was aniline, p-toluidine, or p-fluoroaniline

Reaction system NDPA  MNDPA FNDPA
Process mode Batch  Continuous  Continuous
Number of NMR spectra 529 1395 50
RMSE values

Product /mmol L' 12 12

o-FNB fmmol L' 14 5 9

Arom. amine /mmol L' 16 12

Li-arom. amine  /mmol L' — 10 10

@ Springer

Iterative optimization of the plant performance

The goal of the control solution was to guarantee a consistent
product quality, to make sure that the safety constraints of the
process are not violated, and to drive the plant to its econom-
ically optimal operating point at the same time. This is not
trivial, because there are external disturbances that need to
be compensated. For instance, when a feed buffer is refilled
with a new batch of raw material, the composition of the
respective feed stream may shift. In addition, temperature var-
iations in the cooling system and in the environment can in-
fluence the process. The implemented control solution reads
temperature measurements and the chemical composition
from the NMR sensor and manipulates the set points of the
local flow controllers of the dosing units.

In order to validate the performance of the iterative optimi-
zation scheme, it was started far from the plant optimum. To
begin with, a feed flowrate of 3.58 kg h™! for aniline,
LiHMDS, and o-FNB was used. Upon initiation, several prob-
ing moves were performed to compute the plant gradients.
Subsequently, optimization by MAWQA was started. The in-
put moves generated by the iterative optimization scheme on
day 4 of the experiments and the corresponding plant mea-
surements are shown in Fig. S13 (see ESM), as the most
prominent example. The plant profit during iterative optimi-
zation using the NMR measurements was significantly im-
proved, as shown in Fig. 4. Changing the feed material caused
an unknown change to the feed concentration of LiHMDS.
The algorithm then further improved the plant profit. This
improvement was not predicted by the nominal plant model.

Novel approach for NIR calibration

Near-infrared (NIR), Raman, and mid-infrared (MIR or
IR) spectroscopy are increasingly used for online

—4— Measurements
7X105 —0— Predicted

= 2

§15

E

3 1 Change in

e feed material

@]

5_0.5

g 0O

o 0 2 4 6 8 10

lteration number

Fig. 4 Plant profit in cost units per hour over MAWQA iterations
performed at the modular pilot plant on day 4 (17.10.2017). Diamonds:
real plant profit computed from the NMR measurements. Circles: plant
profit computed from the nominal model, which has both structural and
parametric plant model mismatch. Dashed line: the LIHMDS feed
module was filled up with a new batch
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monitoring of product quality in the industry [7, 27]. NIR
can be easily implemented in industrial environments de-
spite additional explosion protection requirements. Most
complex analytical sensors do not yet fulfill safety integ-
rity level (SIL) demands. Similar chemical information
simultaneously provided by NIR and NMR spectroscopy
might improve their acceptance in safety functions due to
the redundancy they offer. In complex mixtures, such as
the lithiation reaction, calibration of NIR instruments of-
ten relies on a multivariate approach. To cover all possible
chemical states of the reaction mixture in a calibration
model, design of experiments is typically applied. For
each variation in the chemical structure of raw materials,
near-infrared spectra combined with reference data is re-
quired to develop new calibration models. Those refer-
ence values are conventionally obtained from labor-
intensive laboratory experiments and offline analytics
(e.g., HPLC or GC-MS), which requires sampling from
the continuous production stream. Since combined sam-
pling errors are usually one or two orders of magnitude
larger than the analytical uncertainty, the dominant impact
on data quality is the sampling process [28]. Using online
analytics for calibration also grants access to formerly (via
offline methods) inaccessible intermediates (i.e., Li-ani-
line), which are vanishing during sampling or quenching
of the reaction mixture.

By using the aforementioned calibration workflows for op-
tical sensors, calibration model development for spectroscopic
data can be time-consuming and significantly slows down
implementation of the final process. Recent cost decreases
and performance improvements will increase the number of
NIR sensors in chemical plants [29], demanding innovative
alternatives to reduce setup times and analytical lead time. We
propose a new calibration approach of NIR sensors using con-
centration values provided by an online NMR module as a
reference.

Selection of reference values

The difference of delay time for both sensors (2 min) was
compensated for prior to correlating the measurements, ac-
cording to the mean residence times. For reliable calibration
of the NIR sensor with NMR data, only measurements during
steady-state phases were considered. Steady-state conditions
of the system were important to prevent reference concentra-
tions from being affected by concentration gradients moving
through both spectrometers while acquiring spectra. For each
analyte, a moving linear fit was calculated from 11 consecu-
tive online NMR concentration values. Linear fit results with
both a slope below 0.1 mol h™" and standard deviation below
0.01 mol L™" among the data points were classified as steady
states. If these conditions were not fulfilled, the respective
spectrum was classified as a transient state. Additionally, dur-
ing steady states, NMR concentration values were smoothed
using a moving average with a block size of six data points.
Figure 5 shows the reference data selection process in detail.
The 211 NIR spectra available during the steady-state condi-
tion were split into a calibration set (day 1, 2, and 4) and a test
set (day 3), which yielded 157 and 54 spectra, respectively. An
even distribution of the assigned reference concentration
values within the calibration set and the test set was main-
tained (see ESM Fig. S6).

Exploratory data analysis

The recorded NIR spectra were characterized by three differ-
ent spectral regions (ESM Fig. S5 A). At high wavenumbers
(12,000-8975 cm™ "), strong absorption and noise dominate
spectra with high product concentrations, and strong purple
color can be observed in the product solution. Absorption of
high energies in NIR spectra is often present in colored solu-
tions as a result of electronic transition. In addition, particles
are formed during Li-NDPA formation due to the low
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8000 4 a NMR: reference NIR: PLSR modeling e i
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Fig.5 Visualization of the data selection prior to PLSR modeling. A total
0f 8040 NMR and 762 NIR spectra were recorded during four runs at the
pilot plant on four different days (a, ). NMR spectra measured during
steady concentration states (b) were extracted. Due to shorter
measurement intervals, more NMR spectra than NIR spectra were
available. By a nearest-neighbor approach, the corresponding NMR and

NIR spectra during steady states were matched (¢, d). Based on the two
data sets (c) and (d), PLSR models were developed. NIR data acquired
during steady states (d) were therefore split into a calibration and a test
set. The remaining NIR spectra during transient states were used as an
additional test set
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Table2 RMSE values from the quantitative analysis of NIR spectra by
PLSR. Models were optimized based on RMSE values of (i) cross-
validation (CV) over 20 randomly chosen segments, (i) systematic CV
and (iif) prediction of the test set. The optimal number of factors of each
approach is indicated in parenthesis

Substance Factors ~ Random CV/  Systematic CV/  Test set/
chosen mmol L™ mmol L™ mmol L™
Aniline 1 12 (1) 14 (1) 10 (1)
o-FNB 3 12(3) 16 (3) 12 (3)
Li-NDPA 5 9(5) 16 (5) 14 (5)
Li-aniline 4 7 (4) 9(Q2) 7 (4)

solubility of LiF in THF. Despite the presence of a filter sec-
tion, small particles (<30 pum) are a possible source of light
scattering. Additional noise is present at the lower energy limit
of the spectra (46114000 cm ). The central region (8957—
4611 cm™") is feasible for quantitative analysis.

Multivariate data analysis

For quantitative prediction of each of the four analytes (ani-
line, o-FNB, Li-NDPA, and Li-aniline), partial least squares
regression (PLSR) was performed. At first, PLSR models for
pooled spectral data of runs occurring on day 1, day 2, and day
4 were optimized by cross-validation over 20 randomly cho-
sen segments. PLSR models were calculated for all analytes
separately using the resulting RMSE of cross-validation (cf.
Table 2) as a figure of merit for model optimization. Among
the mathematical pretreatments tested [30], the best results
were obtained with standard normal variate (SNV) trans-
formed spectra in the range of 89574611 cm ' as an initial
step for aniline, Li-NDPA, and the lithiated aniline species.

For 0-FNB, a baseline correction in the range 6307-
5995 cm ' using a third-order polynomial yielded best results.
For aniline and Li-aniline, the performance of the PLSR mod-
el was further improved by selecting characteristic absorption
features followed by an additional baseline correction by
subtracting either a second-order polynomial or a constant
offset (see ESM Fig. S5 and Table S1). Unlike the three
analytes mentioned, for Li-NDPA, the entire spectral range
was evaluated.

The optimized PLSR models were validated using the re-
maining data set (day 3) which was not part of the calibration
data. The resulting RMSE for the test set were close to those
obtained by random cross-validation (Table 2). Moreover, a
systematic cross-validation over all four batches was per-
formed yielding comparable RMSE values indicating high
reproducibility among the runs tested.

Quantitative results

The prediction of analytes within the steady states based on
the established PLSR models for NIR exhibited a respectable
predictive performance (Fig. 6). Besides the product Li-
NDPA, the intermediate lithiated form of aniline, Li-aniline
could successfully be detected by NIR spectroscopy. NIR
spectra recorded during transient states were used for the pre-
diction of aniline, 0-FNB, Li-aniline, and Li-NDPA (ESM
Figs. S7-S14). With minor exceptions, the predicted concen-
tration values presented the course of the reaction very well
when compared to NMR data. Small deviations between NIR-
and NMR-derived concentrations can be explained by the fact
that the calibration data did not fully cover the range of reac-
tion states occurring in the transient phase.

O Calibration O Ext. Validation —— Target Line

—— Regression Line

0.7 — T — T
0.6 1r
0.5F 1r
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-0.02 B a
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o
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Fig. 6 Calibration results of NIR data within the continuous production
of 2-nitrodiphenylamine (NDPA). The parity plots show the predicted
concentration values versus the online reference method (43-MHz proton
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NMR spectra). The test data set yielded RMSE values of 10, 12, 7, and
14 mmol L', respectively, for aniline (a), 0o-FNB (a), Li-aniline (c), and
the product Li-NDPA (d), cf. Table 2
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The largest contribution to the observed uncertainty origi-
nates from the reference data (low-field NMR, 43 MHz,
Table 1), as is known from the validation of the presented
NMR module by high-field NMR spectroscopy at 500 MHz
[19]. The RMSE values obtained during this validation cam-
paign represent the deviation of the low-field from the high-
field NMR data and range from 12 mmol L ™" for Li-NDPA to
16 mmol L™ for aniline. In fact, the RMSE values obtained
from systematic cross-validation of NIR spectra are in the
same order of magnitude suggesting a successful calibration
transfer between both methods.

Conclusion

An explosion-proof online NMR sensor with sampling rates
of 15 s was used to monitor the chemical composition of the
product stream of a metal-organic reaction in a pharmaceutical
pilot plant. The applied modularized data evaluation approach
requires only NMR spectra of the pure components as spectral
model input. Absolute quantification was achieved in the pilot
plant by one-point calibration based on a known raw material
concentration. This method tremendously reduces set-up
times of the NMR module. A quick adaption to new products
can be realized by exchanging the spectral models according
to the altered chemistry.

Concentration values provided by the online NMR sensor
were utilized for iterative optimization of the plant perfor-
mance. This approach has driven the process quickly to its
economic optimum using a simple process model. The
scheme adapted autonomously to a sudden change of feed
composition which was not measured. In addition, the NMR
sensor was successfully used as an online reference method
for the calibration of a NIR spectrometer. Unstable lithiated
intermediates, which could not be calibrated using conven-
tional offline analytical methods like HPLC, were accessible
using the online NMR sensor. Quantitative NMR spectrosco-
py carried out with compact instruments has the potential to
substitute offline laboratory analysis for calibration purposes
by delivering quantitative reference data as an online method.
However, the accuracy of NIR predictions is limited by the
accuracy of the NMR reference values.

It is to be expected that the accuracy of the NMR sensor
prototype will increase due to current device developments
focusing on increasing magnetic field strengths and improved
line shape specifications. Online NMR spectroscopy extends
the capabilities for measuring compositions to completely
new application areas where existing technologies (NIR,
Raman, UV/VIS, etc.) cannot be applied due to a lack of
reference data. The online NMR sensor supports a very flex-
ible operation of multi-product plants and model-based con-
trol already in the launching phase of new products.
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