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Background: Alternative splicing (AS), e.g. the tandem alternative polyadenylation
(TAPA), has emerged as major post-transcriptional modification events in human
disease. However, the roles of the AS and TAPA in early-onset gastric cancer (EOGC)
have not been revealed.

Methods: The global AS profiles of 80 EOGC patients were analyzed. The EOGC-specific
AS events (ESASs) were identified in both the EOGC and adjacent non-tumor tissues. The
functional enrichment analysis, Splicing network, Alternative Polyadenylation (APA) core
factor network, and cell abundancy analysis were performed. Furthermore, the
landscapes of the AS events in the varied subtypes of the EOGC patients were evaluated.

Results: Overall, 66,075 AS events and 267 ESASs were identified in the EOGC.
Furthermore, 4809 genes and 6152 gene isoforms were found to be aberrantly
expressed in the EOGC. The Gene Ontology (GO) and Kyoto Encyclopedia of Gene
and Genome (KEGG) pathway analyses showed that the significant pathway alterations
might exist in these AS events, genes, and gene isoforms. Moreover, the Protein-protein
interaction (PPI) network analysis revealed that the UBC, NEK2, EPHB2, and DCTN1
genes were the hub genes in the AS events in the EOGC. The immune cell infiltration
analysis indicated a correlation between the AS events and the cancer immune
microenvironment. The distribution of the AS events in varied EOGC subtypes, protein
phosphorylation and glycosylation was uneven.

Conclusion: The study highlighted the vital roles of the AS in the EOGC, including
modulating the specific protein modification and reshaping the cancer immune
microenvironment, and yielded new insights into the diagnosis of the EOGC as well as
cancer treatment.

Keywords: alternative splicing, immune microenvironment, early-onset gastric cancer, protein phosphorylation,
protein glycosylation, alternative polyadenylation
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INTRODUCTION

Gastric cancer (GC), a morbid and frequently lethal malignancy,
is one of the most common cancers and the leading cause of
cancer death worldwide, especially in East Asia (1). For most
patients, the GC is usually associated with the unfavorable
prognoses and can be only diagnosed at the relatively late
stages, resulting in the limited treatment options. The major
types of cancer, including the brain, cervix, esophageal squamous
cell carcinoma, Kaposi sarcoma, larynx, lung, and non-Hodgkin
lymphoma, remain a relatively low incidence rate among young
adults. However, the cases of gastric non-cardia cancer in young
adults kept increasing from 1995 to 2014 in the US (2). The GC
occurring in the patients under the age of 45 is defined as EOGC
(3). Though the genetic and environmental factors have been
identified to be associated with the GC, the occurrence of EOGC
remains largely unexplained.

Studies have profiled the alternative splicing (AS) events in
The Cancer Genome Atlas (TCGA) gastric carcinomas (4),
Epstein-Barr virus (EBV) associated gastric carcinomas (5),
and gastric cell lines (6, 7), which ascertained the important
roles of the AS events in the GC. Other accumulating evidence
also show that the somatic CDH1 or TGFBR1 gene mutation and
proteogenomic alteration are remarkable and may unleash the
GC in younger adults (8, 9), suggesting the importance of
the post-transcriptional regulation in the EOGC. The AS, one
of the key post-transcriptional events, can generate various
mRNA transcripts (isoforms) and affect their stability as well.
As a result, the downstream protein variants translated from
these mRNA isoforms vary in their sequences (10). On the one
hand, the protein synthesis is directed by the human genome, but
on the other hand, the protein diversity is ensured to satisfy
various biological processes (11). Li et al. found the novel AS
events and peptides during the mouse stomach formation (12).
Furthermore, a comparative genomic study has been performed
and identified a distinct molecular expression profile in the
EOGC rather than the late onset gastric cancer (LOGC) (13).
All these studies suggest that EOGC may have a varied AS event
landscape compared to other types of GC.

The TAPA event introduces two or more poly(A) sites to the
3′ UTR of a gene which is distributed across a wide variety of
cancers and modulates the sensitivity of certain anticancer drugs
(14, 15). The shift of the TAPA events shows a cancer-specific
and cell organelle-specific mode (16). It was reported that the
APA-guided shortening of the NET1 gene 3’ UTR enhanced the
mRNA transcriptional activity and promoted the metastasis of
gastric cancer cells (17). Some studies defined the TAPA as a
subtype of AS, while others consider it a pre-mRNA processing
(18). In this study, the TAPA was analyzed as the AS.

So far, only a few genome-wide association studies on the
EOGC have been performed and none of them have taken into
account the effects of the AS events on the EOGC. To our
knowledge, the role of the AS in the EOGC remains vogue.
Herein, the major aims of this study are to analyze the AS events
including the TAPA events and to evaluate their roles in the
EOGC. The study contains the large-scale RNA sequencing data
generated from the EOGC samples. The human transcriptome is
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surveyed to identify the genome-wide AS events in the EOGC
and the ESAS are identified thereafter. Furthermore, the
biological functions of these events are explored. The AS
events in different EOGC subtypes are elucidated and their
association with the molecular features and tumor immune
microenvironment are also profiled.
METHODS

Data Source
The RNA-Seq data of an independent cohort (tumor tissues and
adjacent normal tissues from 80 EOGC patients) was retrieved
from the European Nucleotide Archive (study accession:
PRJNA508414). One adjacent normal tissue sample
(SRR8281377) was excluded from this dataset due to the file
error when the Whippet software read and processed the data.
These patients were histologically diagnosed as GC and with the
age at the time of surgery ≤ 45 years.

RNA-Seq Analysis of the AS Events
Paired-end reads per sample data were generated using the
HiSeq 2500 platform sequencer (Illumina). The fastq file was
processed by Whippet (version 0.11) on our Linux system (19)
and aligned to the Homo sapiens GRCh37.75 genome assembly
(ftp://ftp.ensembl.org/pub/release-75//fasta/homo_sapiens/dna/
Homo_sapiens.GRCh37.75.dna.primary_assembly.fa.gz).
Besides default settings, Whippet was run with the “biascorrect”
option to implement the GC-content and 5’ sequence bias
correction. The Percent Spliced-in Index (PSI or y) value for
the AS events as well as read count of genes and gene isoforms
were generated by Whippet. The output file (diff. format) for the
comparative analysis of PSI was generated by Whippet-delta.jl
using default parameters. The comparative analysis of genes and
gene isoforms was computed by the limma (20) and/or edgeR
(21) package.

The PSI value (ranging from 0.0 to 1.0) was defined as the
proportional abundance of certain AS events and was calculated
for the eight types of the AS events. The AS events were
determined using the maximum likelihood estimation by the
expectation-maximization (EM) algorithm. To generate more
accurate AS event profiling, the stringent filters (percentage of
samples with PSI values > 95%, minimum PSI value > 0.05) were
implemented. For the gene and gene isoform profiles, genes or
gene isoforms with the minimum Counts Per Million (CPM) >
0.5 and percentage of samples with the read count values > 95%
were included.

Identification and Pathway Analysis of the
ESAS, Genes, and Gene Isoforms
To filter the ESAS in the gastric cancer, the PSI values of the
AS events were compared between the tumor and the matched
adjacent normal tissues. The AS events with the missing data
exceeding 90% of all subjects were excluded. Statistical
analysis was performed in the differentially expressed AS
events with > 0.9 probability and absolute log2 fold change
June 2021 | Volume 11 | Article 640272
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≥ 1. The genes or gene isoforms with the absolute log2 fold
change ≥1 and false discovery rate (FDR) < 0.05 were defined
as the EOGC-specific genes or gene isoforms. Interactive sets
among the eight types of the AS were visualized by UpSetR
(version 1.4.4) (22).

The associations between the parent genes of the ESAS and
biological annotation terms (Gene Ontology [GO] and Kyoto
Encyclopedia of Gene and Genome [KEGG] pathway) were
detected using the clusterProfiler package (3.16.0) (23). The
NetworkAnalyst updated on 05/2020 was applied to analyze
the parent genes of each ESAS for constructing the visualized PPI
network (24). The STRING Interactome was selected in the PPI
database (confidence score cut-off value 900).

Immune Cell Infiltration and ESAS
Event Analysis
The differential gene expression between the tumor and normal
tissues and the percentage of the cell abundance in the TCGA
STAD cohort were calculated by TIMER 2.0 (25). The gene
expression data from our study was input into ImmuCellAI (26)
to impute the abundance of 24 types of immune cells in the
EOGC. Spearman’s rank correlation analysis was used to
calculate the correlations between the PSI values of the ESAS
and immune cell type. The threshold of Spearman’s rank
correlation coefficients was set to > 0.4 or < -0.4, and the BH
adjusted p-value < 0.05.

Construction of Correlation Network
Among the Splicing Factors, APA Core
Factors, and ESAS Events
From the database (27) and publication (28), we selected 71
experimentally validated human splicing factors and 22 APA
core factors to build the splicing factor correlation network and
APA core factor correlation network. Spearman’s rank
correlation analysis was used to impute the correlations
between the expression of splicing factors or APA core factors
and PSI values of ESASs or TAPAs. The threshold of Spearman’s
rank correlation coefficients was set to > 0.4 or < -0.4, and the BH
adjusted p-value < 0.05. The correlation network was
constructed and visualized by Cytoscape (version 3.7) (29). All
statistical analyses were performed by the R language (30) and
p-value < 0.05 was considered statistically significant
unless specified.

Identification of the EOGC Subtype
Relevant AS Events
The data of the EOGC EBV status, microsatellite instability
(MSI) status, protein phosphorylation subtype, and protein
glycosylation subtype were accessed from Mun et al. (9). The
AS events which have > 0.9 probability of being differentially
expressed among the different EBV status, MSI status, protein
phosphorylation subtypes, and protein glycosylation subtypes
were defined as the subtype relevant AS events in the EOGC. The
groups with the sample numbers of less than four were not
included in the analysis. The PSI difference among the groups
was required to be larger or equal 0.1 for at least two groups to
Frontiers in Oncology | www.frontiersin.org 3
ensuring the biological significance. The analysis was performed
for each subtype separately.
RESULTS

Overview of the AS Events in the EOGC
Cohort
The corresponding RNA-Seq data of 80 EOGC patients were used
to establish the integrated AS event profiling. We identified 66,075
AS events from 11,282 genes, which accounted for 53.0% of non-
redundant human protein-coding genes (31). Beside two special
patterns of the AS events including the tandem transcription start
site (TSS) and tandem alternative polyadenylation site (TAPA),
these AS events were classified into six canonical splicing patterns:
core exon (CE), alternative acceptor splice site (AA), alternative
donor splice site (AD), retained intron (RI), alternative first exon
(AF), and alternative last exon (AL), as illustrated in Figure 1A.
Among these splicingpatterns, theTAPAoccurredmost frequently
(71.0%) (Figure 1B).

Some gene isoforms showed very low redundancy, thus, we
screened the AS events with a series of filters (percentage of
samples with PSI values ≥ 75%, PSI value ≥ 0.05). Consequently,
a total of 15,803 AS events from 8,359 genes were obtained. After
filtering, the AF events were excluded. The analysis indicated that
the TAPA was still the top AS pattern (54.0%) (Figure 1C). After
removal of the duplicated genes in one AS pattern, the Upset
plots were created to quantitatively analyze the interactive sets of
the remaining seven patterns of the AS events. As shown in
Figure 1C, most of the genes had more than one pattern of the
AS events, among which some genes had up to three different
splicing patterns.

Identification of the ESAS Events
To identify the EOGC-specific AS events, we compared the PSI
values between 80 paired tumor tissues and 79 adjacent normal
tissues. A total of 267 EOGC-specific AS events (ESASs) from
228 genes were identified (Figure 2A and Table S1). Although a
large number of the AS events were detected in the EOGC
cohort, a relatively small proportion of the AS events were
identified as the ESAS. The TSS and TAPA events accounted
for 36.3% and 24.0% of the ESAS, respectively (Figure 2B). The
uneven distribution of the AS patterns in the tumor and adjacent
normal tissues indicated that they might play important roles in
the early-onset gastric tumorigenesis.

For the single gene with multiple ESAS events, the regulatory
directions (up- or down-regulation) of varied ESAS events
between the tumor and normal tissues can be either the same
or opposite. Eight genes (COL5A1, CBWD1, SLC47A2, SSPO,
AL020989.1, RPL5P1, AACSP1, and AC022905.1) exhibited the
same regulatory direction of AS events; while the other 22 genes
showed the opposite regulatory direction (Table S2).
Interestingly, the proportions of certain AS patterns between
the ESAS and entire AS events were inconsistent. The TAPA, a
top pattern among all AS events (54.0%), only contributed to
24.0% of the ESAS events.
June 2021 | Volume 11 | Article 640272
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Profile of the EOGC-Specific Genes and
Gene Isoforms
Based on the above results, we further studied how the
dysregulated AS events affected the expressions of the genes
and gene isoforms. We identified 4809 genes from a total of
Frontiers in Oncology | www.frontiersin.org 4
16383 genes, and also identified 6152 gene isoforms from a total
of 16283 gene isoforms (CPM > 0.5 and the percentage of
samples with read count values > 95%).

To generate EOGC-specific genes and gene isoforms, we
compared the read count value of the genes or gene isoforms
A B

C

FIGURE 1 | Profiling of the AS events in the EOGC. (A) Scheme of six canonical and two novel patterns of the AS events: CE, AA, AD, RI, AF, and AL, TSS and
TAPA; (B) Number of the AS events and their parent genes in the EOGC patients. The bar color represents the filtered AS events and their parent genes. The black
bars represent the AS events and their parent genes filtered using the stringent filters; (C) Interactive sets among seven patterns of the AS events (n = 15,803)
shown in an UpSet plot.
A B

FIGURE 2 | Identification of the EOGC-specific AS events. (A) Heatmap of the ESAS between 80 paired tumor tissues and 79 adjacent normal tissues (absolute
fold change ≥ 0.1, probability > 0.9); (B) The landscape of 267 ESAS shown in an UpSet plot.
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from the tumor and normal or adjacent non-tumor tissues by the
limma-voom (32). After refining, 373 genes and 469 gene
isoforms were identified as the EOGC-specific genes and gene
isoforms, respectively (absolute log2 fold change ≥1 and FDR <
0.05, Figures 3A, B and Table S3). In addition, we profiled the
enriched TF binding motifs in the promoters of the EOGC-
specific genes and gene isoforms (Table S4). A total of four genes
and three gene isoforms with ESASs were differentially expressed
in the EOGC (Figure 3C).

Pathway and Protein-Protein Interaction
(PPI) Network of the ESAS Events and
EOGC-Specific Genes and Gene Isoforms
To understand the biological roles of the ESAS and EOGC-
specific genes and gene isoforms, the GO and KEGG pathway
analyses were performed. The results showed that the ESAS
parent genes were linked to the GO terms of carboxylic acid
biosynthetic process (GO:0046394), organic acid biosynthetic
process (GO:0016053), purine-containing compound metabolic
process (GO:0072521), collagen-containing extracellular matrix
(GO:0062023), etc. These ESAS parent genes were also found to
be enriched in the KEGG signaling pathways, including Nicotine
addiction (hsa05033) and Arginine and proline metabolism
Frontiers in Oncology | www.frontiersin.org 5
(hsa00330) (Figure 4A and Table S5). The GO and KEGG
pathway results of the EOGC-specific genes and gene isoforms
were also included in the supplementary table (Table S5).

The pathway analysis results showed that the parent genes of
ESAS might play a vital role in regulating the cancer-related
biological processes. The parent genes of the ESAS were further
analyzed by the PPI network. Using the Zero-order network, we
built the PPI network of the ESAS parent genes, which contained
15 nodes, 14 edges and 15 seeds (Figure 4B and Table S6). We
found that the UBC was the hub gene in the network.
Meanwhile, based on the first-order network, we also built 29
and 27 PPI networks using the EOGC-specific genes and gene
isoforms, respectively (Figures 4C, D and Table S6). The UBC,
NEK2, EPHB2, and DCTN1 genes were identified as the hub
genes in two or more of these networks (DCTN1 was identified
as hub gene in the section of protein modification analysis).

Relationship Between the ESAS and
Immune Cell Infiltration
To untangle the relationship between the hub genes and gastric
tumorigenesis, we analyzed the hub genes in TCGA STAD
dataset using the TIMER 2.0 database. We found that the
UBC, NEK2, EPHB2, and DCTN1 genes were dysregulated in
A B

C

FIGURE 3 | Identification of the EOGC-specific genes and gene isoforms. (A)Heatmap of the EOGC-specific genes between 80 paired tumor tissues and 79 adjacent
normal tissues (absolute fold change ≥ 1, FDR < 0.05); (B) Heatmap of the EOGC-specific gene isoforms between 80 paired tumor tissues and 79 adjacent normal tissues
(absolute fold change ≥ 1, FDR < 0.05); (C) Illustration of the intersection set of the ESAS, EOGC-specific genes, and gene isoforms by the Venn diagram.
June 2021 | Volume 11 | Article 640272
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the TCGA STAD dataset (p-value <0.001, Figure 5A). The
correlation between the expression of the hub genes and cell
abundances in the STAD dataset was analyzed. We found that
the expression of the UBC gene was positively correlated with
the infiltration level of common lymphoid progenitor cells but
was negatively correlated with the infiltration level of neutrophil
cells. The expression of the NEK2 gene was positively correlated
with the infiltration level of myeloid-derived suppressor cells
(MDSC) but was negatively correlated with the infiltration
level of hematopoietic stem cells. The expression of the EPHB2
gene was positively correlated with the infiltration level of NK
cells but was negatively correlated with the infiltration level
of activated myeloid dendritic cells. The expression of the
DCTN1 gene was positively correlated with the infiltration
level of endothelial cells but was negatively correlated with
Frontiers in Oncology | www.frontiersin.org 6
the infiltration level of common lymphoid progenitor cells
(Figure 5B and Table S7). The above findings supported our
conclusion that the hub genes played vital roles in the gastric
tumorigenesis and indicated the potential relationships between
the AS events and cell abundance.

Here, we postulated that the ESAS might be also involved in
the immune cell infiltration. To test the hypothesis, the immune
cell abundancy in the EOGC was calculated using the
ImmuCellAI database. Then, Spearman’s rank correlation
analyses were performed to indicate the relationship between
the ESAS and immune cell infiltration in the EOGC. In total, 24
types of immune cells (including the infiltration score) were
correlated with 77 ESAS events (Spearman’s rank correlation
coefficients > 0.4 or < -0.4, BH adjusted p-value < 0.05, Figure 5C
and Table S8).
A

B

D

C

FIGURE 4 | Pathway and protein-protein interaction (PPI) network of the ESAS events, EOGC-specific genes, and gene isoforms. (A) Top 10 GO and KEGG
pathways with a P-value < 0.05; (B) Protein-protein interaction network of the ESAS events (Zero-order network); (C, D) Protein-protein interaction network of the
EOGC-specific genes and gene isoforms, respectively (first-order network). Red: up-regulation; Green: down-regulation.
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Network of the ESAS and Regulatory
Factors
The AS events are regulated by various factors, including
splicing factors (SFs) and APA core factors. However, it is
unknown how the ESAS are regulated by these factors in the
EOGC. To gain insights into this, we built the correlation
network between the expression of 71 experimentally
validated SFs, 22 APA core factors, and the PSI values of
ESASs (27, 28).

In the network of the ESAS and SFs, 70 ESASs were associated
with 25 SFs (Figure 6A and Table S9). All SFs were significantly
correlated with at least five AS events. Moreover, one AS event
could be regulated by up to 28 different SFs. We also constructed
a network of APA core factors and TAPAs, which included seven
APA core factors and ten ESAS events, respectively (Figure 6B
and Table S9).
Frontiers in Oncology | www.frontiersin.org 7
Clinically Relevant and Protein
Modification Associated AS Events
There are few analyses to identify clinically relevant and
protein modification associated AS events in the EOGC or
GC. In this study, we identified 864 differentially expressed AS
events from 577 genes between the EBV positive and negative
tumor tissues (Figure 7A), 574 AS events from 533 genes
associated with the MSI-High (MSI-H) and MSI-Low (MSI-L)
tumor (Table S10).

The patients were subtyped according to the status of
protein modifications, including phosphorylation and
glycosylation, by a previous study (9). We found that 82 AS
events from 60 genes were differentially expressed among the
phosphorylation subtypes one to three, while the other 85
AS events from 65 genes were differentially expressed among
the glycosylation subtypes one to three (Figures 7B, C and
A

B

C

FIGURE 5 | Relationship between the ESAS and immune cell infiltration. (A) Expressions of the UBC, NEK2, EPHB2, and DCTN1 in the TCGA STAD cohort
(***p-value < 0.001); (B) Representative plots of the immune infiltration and the expressions of the UBC, NEK2, EPHB2, and DCTN1 in the TCGA STAD cohort;
(C) Spearman’s rank correlation network of the ESAS and 24 types of immune cells (including the infiltration score). Red: positive correlation; Green: Negative
correlation. ***p < 0.001.
June 2021 | Volume 11 | Article 640272
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Table S10). In addition, a total of 27 AS events were
dysregulated in both the phosphorylation and glycosylation
subtypes (Figure 7A). The DCTN1 gene is a key hub gene in
both phosphorylation and glycosylation networks.
Frontiers in Oncology | www.frontiersin.org 8
DISCUSSION

Investigation of the AS events using the TCGA dataset has been a
promising method and resulted in better understanding of the
A B

FIGURE 6 | Network of the ESAS and regulatory factors. (A) Spearman’s rank correlation network of the ESAS and SFs; (B) Spearman’s rank correlation network
of the TAPA and APA core factors. Red: positive correlation; Green: Negative correlation.
A

B C

FIGURE 7 | Clinically relevant and protein modification associated AS events. (A) Clinically relevant AS events; (B, C) Protein-protein interaction (first-order) networks
of the glycosylation subtype and phosphorylation subtype related AS event parent genes, respectively.
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roles of the mRNA processing in the malignancy diseases (33–35).
However, it remains challenging to reveal the roles of the AS
events in certain subtypes of cancer (7). The unique subtype of
cancer can be contributed by the AS events during the
tumorigenesis. For example, the DOCK5 gene variant was
identified as an oncogenic isoform in the HPV-negative head
and neck squamous cell carcinoma (36). Herein, we conducted a
systematic study to profile the AS events in the EOGC. In
addition, we elucidated the roles of ESAS events with the
splicing factors, APA core factors, immune cell infiltration, and
protein modifications.

The distribution of the AS events in the gastric cancer was
tissue-specific and related to the prognosis of patients (37).
Furthermore, the expression patterns of the AS events in
gastric cancer could be altered due to the Epstein-Barr virus
infection (5). In this study, the RNA-Seq data with the protein
modification status for subjects obtained from a published report
were analyzed (9). In addition, we usedWhippet to map the fastq
format file to the reference genome, which generated two
additional AS patterns (TSS and TAPA) than SpliceSeq (38) or
MATS (39). These two approaches made the results more
accurate and comprehensive than studies based on the TCGA
SpliceSeq database (40).

According to our results, 267 ESAS, 6152 gene isoforms, and
4809 genes were aberrantly expressed in the EOGC patients. The
parent genes of the ESAS were significantly enriched in the GO
and KEGG. Further analyses indicated that the UBC, NEK2,
EPHB2, and DCTN1 genes were the hub genes in PPI networks.
It was reported that the UBC gene regulated the cell ubiquitin
under normal and stressful conditions and the TSS events
were identified within the promoter region of the UBC gene
(41). The NEK2 protein was considered a splicing factor kinase
through phosphorylation of the splicing factors, including the
oncogenic SRSF1 protein (42). Alternative splicing and alternative
polyadenylation encoded a variant of the EPHB2 gene which is a
member of the EPH receptor protein-tyrosine kinase (43). The
genetic structure variability of the DCTN1 gene was involved
in the development of the limb-girdle muscular dystrophy (44)
and neuron differentiation (45). These reports might shed light
on the roles of the AS events and hub genes in the gastric
cancer pathogenesis.

The distribution of tumor-infiltrating lymphocytes in the
gastric cancer was correlated with the tumor histological type
and clinical outcome (46). On the basis of the immune infiltration
data, the immunoscore, a prognostic signature, was established for
prognostic predictions of gastric cancer (47, 48). Our results
showed that the hub genes and ESAS were correlated with
distinct immune cell populations in the EOGC. For example, the
TRIM45 gene encodes a protein to regulate the MAPK and NF-kB
pathways which may inhibit the cancer cell proliferation (49). In
our study, the TSS events of the TRIM 45 gene were positively
correlated with macrophages but negatively correlated with NK T
cells. Thus, we postulated that the alternative splicing of the genes
might have potential roles in regulating the abundance of certain
immune cells in the EOGC.

Two major types of regulatory factors, SFs and APA core factors,
participated in the modulation of the AS events (15, 50). Hence, we
Frontiers in Oncology | www.frontiersin.org 9
built two networks (SFs vs. ESAS and APA core factors vs. TAPA)
based on the Spearman’s rank correlation. We found that the
dysregulation of SFs was highly associated with the ESAS
expression and the APA core factors were linked to the TAPA
events, which is consistent with the findings in previous reports (51,
52). Our results suggests that the SF and APA core factor contributes
to the post-transcriptional mRNA processing of the EOGC.

Alternative splicing modulates the protein modification such
as the protein phosphorylation (53) and protein glycosylation
(54). The alternative splicing might modulate the protein
modification through the isoform switch and change of the
binding domain for N-linked glycosylation (55). One CD44
isoform has been shown to activate the RAS through the
phosphorylation of the Erk (56). In addition, the small molecule,
SM08502, reduced the phosphorylation of the splicing factors
and generated the isoforms of the Wnt pathway genes which
inhibited the gastrointestinal tumors (57). The reports about the
alternative splicing and protein glycosylation are limited. Several
studies focused on the CD44 variant 9 in the gastric cancer (58)
and variant 6 in the colon cancer (59).

To our knowledge, the current study is the first to conduct a
systematic analysis of the alternative splicing and protein
modification based on the RNA sequence and mass spectrometry
data in gastric cancer. The differential expressions of the AS events
among the subtypes of the protein modification as well as EBV
status and MSI status in the EOGC indicated that the AS events of
the EOGC are subtype-specific. However, the shared AS events
among different subtypes might demonstrate the close association
of the subgroups defined by the protein modification or viral
infection in the EOGC.

In conclusion, implementation of the rigorous criteria
ensured the identification of the specific AS events related to
the EOGC. In total, 267 ESAS events, 6152 gene isoforms, and
4809 genes were identified and might play vital roles in the
EOGC tumorigenesis. The hub genes of the PPI networks and
ESAS events might be valuable in deciphering the immune
microenvironment in the early-onset gastric carcinogenesis. In
addition, the SF and APA core factor correlation networks
revealed the underlying pathways of the splicing modulation.
Furthermore, a comprehensive analysis of the subtype-specific
AS events suggested certain connection between the protein
modification and viral infection in the EOGC. The findings in
this study might be valuable in the clinical diagnosis and
prediction of the early-onset gastric cancer.
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