
Frontiers in Immunology | www.frontiersin.

Edited by:
Bin Yang,

University of Leicester,
United Kingdom

Reviewed by:
Min Shi,

Sichuan University, China
Xiangchun Liu,

The Second Hospital of Shandong
University, China

*Correspondence:
Zhe Luo

luo.zhe@zs-hospital.sh.cn
Guo-Wei Tu

tu.guowei@zs-hospital.sh.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to
Molecular Innate Immunity,

a section of the journal
Frontiers in Immunology

Received: 23 March 2021
Accepted: 18 May 2021
Published: 03 June 2021

Citation:
Li J-K, Yang C, Su Y, Luo J-C,
Luo M-H, Huang D-L, Tu G-W

and Luo Z (2021) Mesenchymal
Stem Cell-Derived Extracellular

Vesicles: A Potential Therapeutic
Strategy for Acute Kidney Injury.

Front. Immunol. 12:684496.
doi: 10.3389/fimmu.2021.684496

REVIEW
published: 03 June 2021

doi: 10.3389/fimmu.2021.684496
Mesenchymal Stem Cell-Derived
Extracellular Vesicles: A Potential
Therapeutic Strategy for Acute
Kidney Injury
Jia-Kun Li1†, Cheng Yang2†, Ying Su1, Jing-Chao Luo1, Ming-Hao Luo3, Dan-Lei Huang3,
Guo-Wei Tu1* and Zhe Luo1,4*

1 Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China, 2 Department of Urology,
Zhongshan Hospital, Fudan University, Shanghai, China, 3 Shanghai Medical College, Fudan University, Shanghai, China,
4 Department of Critical Care Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China

Acute kidney injury (AKI) is a common and potential life-threatening disease in patients
admitted to hospital, affecting 10%–15% of all hospitalizations and around 50% of
patients in the intensive care unit. Severe, recurrent, and uncontrolled AKI may
progress to chronic kidney disease or end-stage renal disease. AKI thus requires more
efficient, specific therapies, rather than just supportive therapy. Mesenchymal stem cells
(MSCs) are considered to be promising cells for cellular therapy because of their ease of
harvesting, low immunogenicity, and ability to expand in vitro. Recent research indicated
that the main therapeutic effects of MSCs were mediated by MSC-derived extracellular
vesicles (MSC-EVs). Furthermore, compared with MSCs, MSC-EVs have lower
immunogenicity, easier storage, no tumorigenesis, and the potential to be artificially
modified. We reviewed the therapeutic mechanism of MSCs and MSC-EVs in AKI, and
considered recent research on how to improve the efficacy of MSC-EVs in AKI. We also
summarized and analyzed the potential and limitations of EVs for the treatment of AKI to
provide ideas for future clinical trials and the clinical application of MSC-EVs in AKI.
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INTRODUCTION

Acute kidney injury (AKI) is a common and sometimes life-threatening disease in patients admitted
to hospital, affecting 10%–15% of all hospitalizations and around 50% of patients in the intensive care
unit (1). AKI is mainly caused by ischemia reperfusion injury (IRI), medication toxicity, and sepsis
(1). Severe, recurrent, and uncontrolled AKI progresses to chronic kidney disease (CKD) or end-
stage renal disease (2, 3). Treatments are currently limited to dialysis and kidney transplantation;
however, these are restricted by the shortage of donor organs and high costs (4, 5), and there is thus a
need to develop new and effective ways of treating AKI. The common pathological features of AKI
include renal tubular epithelial cell (TEC) damage (6). TECs are injured as a result of an excessive
inflammatory response, and undergo apoptosis via Bax/Bcl pathway activation (7, 8). In addition, the
mechanistic target of rapamycin/mitogen-activated protein kinase (MAPK) signaling is consistently
org June 2021 | Volume 12 | Article 6844961
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activated in TECs and the mitochondria are damaged, leading to
maladaptive repair of the injured TECs, interstitial fibrosis, and
the progression of AKI into CKD (9–12). Meanwhile, expression
changes in various cytokines can be detected in AKI, including
vascular endothelial growth factor (VEGF), hepatocyte growth
factor (HGF), and insulin-like growth factor-1 (IGF-1) (13, 14).
These mechanisms involving TECs are regarded as potential
therapeutic targets in AKI.

Different types of stem cells have recently been transplanted
to prevent kidney damage. Among these, mesenchymal stem
cells (MSCs) are considered to be one of the most promising
types of cells for cellular therapy because of their ease of
harvesting, low immunogenicity, and ability to be stored and
expanded in vitro (15, 16). Notably, numerous preclinical and
clinical studies have confirmed the potential role of MSCs in
kidney protection and repair (17–22). However, the mechanisms
by which MSCs exert their therapeutic effects remain
controversial. Researchers previously believed that MSCs
replaced injured cells through differentiation after introduction
into the body, but this view was challenged by the fact that MSCs
disappeared from the injured kidney and other organs within
72 h after administration, suggesting that differentiation and
replacement of damaged cells by stem cells is probably a rare and
late event in AKI in vivo (22, 23).

Several studies have also demonstrated that MSCs depend on
complex and powerful endocrine and paracrine functions, and
secrete extracellular vesicles to promote the recovery of renal
function in AKI (24, 25). Secretion of growth factors, regulation
of the inflammatory response, promotion of mitosis and cell
proliferation, anti-apoptosis and anti-inflammatory effects, the
reduction of fibrosis, and the promotion of angiogenesis have
been reported in multiple studies (17). However, the main
therapeutic effects of MSCs appear to be mediated by MSC-
EVs, rather than by the MSCs themselves (26). Compared with
MSCs, MSC-EVs have lower immunogenicity, easier storage, no
tumorigenesis, and the ability to be artificially modified (24, 27–
29). Increasing numbers of researchers have accordingly
recognized the curative potential of MSC-EVs for AKI, and
extensive preclinical research has proven their effectiveness and
safety in AKI (30).

In this paper, we review the possible therapeutic mechanisms
of MSCs and MSC-EVs in AKI, and consider recent research
aimed at improving the therapeutic efficacy of MSC-EVs in AKI.
Finally, we summarize and analyze the potential and limitations
of EVs for the treatment of AKI, to provide ideas for future
clinical trials and clinical applications of MSC-EV-based therapy.
MECHANISMS OF MSC THERAPY IN AKI

MSCs are the most widely used cells for AKI treatment and
allograft protocols because they can be obtained from bone
marrow and expanded in culture (17). MSCs originate from
the mesoderm and have the ability to differentiate into
mesenchymal and non-mesenchymal cell lines, including bone
and cartilage (17).
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Although MSCs are mainly obtained from bone marrow, they
can also be isolated from other tissues such as liver, muscle,
adipose tissue, and cord blood. Such cells are distinguished by
their adherent growth in culture, expression of CD90, CD73, and
CD105, and lack of expression of CD34, CD45, CD19, CD11a,
and human leukocyte antigen-DR (18).

Previous studies indicated that the therapeutic effect of MSCs
was largely dependent on their homing ability to injured organs
(31). MSCs rely on their homing ability to localize in damaged
tissues. In addition to their anti-inflammatory and vascular-
support effects, the homing ability of MSCs supplements their
paracrine function, and is involved in protecting microvessel
density (32). Transplanted MSCs detect signals from injured
kidney cells and are chemoattracted to the damaged site (33).
During AKI, endothelial cells express high levels of tumor
necrosis factor (TNF) and interleukins (ILs), which can up-
regulate the b subunit of very late antigen-4 and vascular
adhesion molecule 1 to mediate the effect of bone marrow
MSCs on endothelial cell adhesion (33). CXC motif chemokine
receptor 4 (CXCR4) is a specific receptor for chemokine stromal
cell-derived factor-1 (CXCL12), and CXCR4 cells are responsible
for the renal repair function in AKI (34). Location of the
damaged tissue by MSCs can be mediated by stromal cell-
derived factor-1, which is robustly up-regulated during AKI
and mobilizes CXCR4 cell homing to the injured kidney
tissue (35).

MSCs can exert significant therapeutic effects in terms of
repairing the injured kidney and improving renal function after
AKI, and are distributed to the spleen, lung, lymph nodes, and
kidney following intravenous administration (36). However,
intravenously administered MSCs disappear within 72 h,
although some MSCs can remain around the glomerulus and
perirenal capillaries following renal artery injection (37),
suggesting that MSCs are unlikely to treat AKI through
differentiation and the replacement of damaged cells.
Meanwhile, MSCs located in the lung were also shown to affect
AKI through a secretory function (38), and the hypothesis that
the therapeutic effects of MSCs are mainly caused by a secretory
mechanism appears to be more credible. Indeed, MSCs are
involved in immune regulation, anti-inflammation, anti-
apoptosis, and angiogenesis promotion in the local
microenvironment in injured tissue, unrelated to their
differentiation ability (39). Animal models of AKI are
accompanied by significant changes in cytokines, including
VEGF, HGF, epidermal growth factor (EGF), IGF-1, and
transforming growth factor-b (TGF-b), which participate in
endothelial cell apoptosis during AKI (40). These growth
factors are also widely recognized as essential components in
cell regeneration and kidney repair (41). MSCs secrete molecules
directly or secrete EVs that carry molecules such as VEGF, HGF,
IGF-1, IL-10, fibroblast growth factor (FGF), and TGF-a, and
down-regulate the inducibility of related proinflammatory
molecules (such as IL-1b and TNF-a), thus, having anti-
inflammatory and anti-apoptosis effects and promoting kidney
repair (42). Expression levels of related cytokines have been
shown to be up-regulated during the treatment of AKI with
June 2021 | Volume 12 | Article 684496
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MSCs, while kidney tissue inflammation was reduced, indicating
the relationship between cytokines and kidney repair in MSC-
based therapy; however, more studies are needed to identify the
specific mechanism involved (43).
MSC-EVS MEDIATE THE THERAPEUTIC
EFFECTS OF MSCS IN AKI

Further research into MSC therapy of AKI has shown the
presence of MSC-EVs in AKI models treated with MSCs (44).
MSCs can also release proteins (43), RNA (45), and
mitochondria (46) into injured kidney tissue via EVs, in
addition to their secretory function (30) (Figure 1). Various
cytokines and their mRNAs are found in MSC-EVs, and there is
gradual recognition that the therapeutic effects of MSCs are
mainly mediated by MSC-EVs (43, 47). The effects exerted by
MSC-EVs are similar to those reported following MSC
administration in previous studies (48). EVs derived from cells
such as MSCs act as messengers mediating cell-to-cell
communication by carrying a train of biologically active
molecules, which is regarded as a critical mechanism in AKI
(24, 45). As intercellular messengers, EVs implement the
therapeutic effects of MSCs, including regulating the damaged
local microenvironment, regulating gene expression in injured
kidney cells, improving the survival of damaged cells, resisting
apoptosis, regulating inflammation, and reducing mitochondrial
damage (49). In MSC-EV-based therapy of AKI, EVs can locate to
the injured kidney tissue spontaneously after administration (50).
Frontiers in Immunology | www.frontiersin.org 3
Importantly, this effect is specific to MSC-EVs, involving the EV
adhesion molecules CD44 and CD29, while EVs obtained from
fibroblasts are ineffective (51). EVs, as endocytic vesicles, are
bound to the membrane and are released by eukaryotic cells in
an evolutionarily conserved manner, enabling cell-to-cell
communication (52). MSC-EVs are generated by the paracrine
and secretory functions of MSCs, carrying proteins, lipids, and
nucleic acids into injured tissues (53). EVs can also deliver mRNAs
and microRNAs (miRNAs) via endocytosis to regulate target cells
at the transcriptional level (Figure 2) (45). As an intercellular
messenger, EVs are responsible for regulating the damaged local
microenvironment, regulating gene expression in AKI cells,
improving the survival of damaged cells, resisting apoptosis and
inflammation, and reducing mitochondrial damage (11, 12, 54).

To identify the candidate therapeutic factors in EVs, Eirin
et al. used proteomics to characterize the protein content of
MSC-EVs derived from porcine MSCs from abdominal fat (42).
The expression characteristics of MSC and EV markers detected
by liquid chromatography-tandem mass spectrometry
proteomics analysis showed that proteins enriched in MSC-
EVs were related to a wide range of biological functions,
including angiogenesis, blood coagulation, apoptosis,
extracellular matrix remodeling, and inflammation regulation
(43). Thus, EVs include selectively enriched protein cargo with
specific biological characteristics, and these proteins are used for
cell-to-cell communication to promote tissue repair. For
example, MSC-derived EVs directly transferred IGF-1
receptors to renal tubular cells (13), accelerating kidney repair
after AKI and reducing AKI by enhancing the activation of the
FIGURE 1 | MSC-EVs mediate transportation of biological modules to injured cells in AKI. Created with BioRender.com.
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Nrf2/ARE pathway to exert antioxidant effects (46, 55). Human
adipose-derived MSCs (AD-MSCs) activated SOX9 in renal
tubules and prevented the transformation of TGF-b1 into the
pro-fibrotic phenotype induced by EV shuttling, resulting in
anti-fibrotic effects (35, 56, 57).

Cytokines delivered byMSC-EVs and paracrine factors such as
HGF, TGF, IGF-1, VEGF, and FGF-2 can regulate inflammation,
resist apoptosis, promote damaged cell repair, and prevent fibrosis
in AKI (36).

MSC-EV-based treatment of AKI involves the transport of
various cytokines, including IGF-1. MSC-EVs secrete IGF-1
receptor mRNA directly to renal TECs, as well as directly
secreting IGF-1 and carrying IGF-1 receptors to promote
kidney repair in AKI (13). Several studies have indicated that
this occurs via IGF-1-induced activation of the Akt survival
pathway (38). AKI is associated with increased expression of the
pro-apoptotic protein Bcl-2-associated X protein (Bax) and
decreased expression of anti-apoptotic Bcl-2 (58). EVs can be
integrated into injured renal TECs to promote the recovery of
renal function and morphology. The beneficial effect of MSCs on
renal tissue was related to the inhibition of renal tubular
oxidative damage in a cisplatin-induced AKI model,
manifested by the expression of nitrotyrosine and induction of
Akt phosphorylation (59). IGF-1 activates Akt, as a kinase
located on the phosphoinositide-3 kinase (PI3K) signaling
pathway with an important regulatory role, through
phosphorylation modification to inhibit Bax to resist apoptosis
and up-regulate the Bcl-2 survival pathway, and to block
mitochondrial caspase-9 to reduce inflammation and resist
apoptosis (60). At the same time, IGF-1 activates the MAPK
pathway to promote cell proliferation (13, 61). Morigi et al.
confirmed that MSC treatment significantly increased phospho-
Akt and activated downstream targets for cell proliferation and
cell survival in a cisplatin-induced AKI model (56). In an in vitro
model, proinflammatory factors such as TNF-a and IL-1b
significantly reduced proximal tubular cell injury following
treatment with MSCs and cisplatin (56). IGF-1 has
demonstrated several biological effects in mouse kidney tissues
treated with bone marrow MSCs, including promoting cell
Frontiers in Immunology | www.frontiersin.org 4
proliferation, changing the hemodynamics, and reducing
apoptosis (13). In the same experimental model, Imberti et al.
tested the effects of cord blood MSCs, which can improve kidney
function and enhance the protective effect in AKI animal models.
As a mitogenic and pro-survival factor, IGF-1 helps recruit self-
derived progenitor cells or stem cells, thus, promoting the
regeneration process in the kidney (62).

In addition to IGF-1, other growth factors transported by
MSC-EVs also protect the microenvironment of the injured site
and damaged cells. FGF-2 affects AKI via its anti-fibrotic effect,
and knockout of FGF-2 blocked the repair process and induced a
fibrotic response (63). TGF-b binds to the TGF receptor and
activates downstream Smad and non-Smad pathways to perform
a variety of biological effects in AKI (64). Acting via TGF-b-
dependent macrophages, it can prevent ischemic kidney injury
and tubular interstitial fibrosis (56, 60, 65). Up-regulation of
VEGF receptor-2 can also be observed in kidney tissue during
the ischemic AKI response, suggesting that VEGF may also be a
potential therapeutic target (66–68). VEGF stabilized
microvessel density to protect the renal microvascular structure
and promote renal recovery through mitogenic and anti-
apoptotic mechanisms (32). HGF can reduce kidney damage
by promoting cell proliferation, anti-inflammation, and anti-
apoptosis. HGF also promoted kidney repair and the
proliferation of kidney cells via tyrosine phosphorylation of the
c-met receptor in kidney injury induced by IRI and glycerol (13).
Moreover, HGF gene therapy and HGF-modified MSCs had a
significant therapeutic effect in AKI in an anti-apoptotic manner
(13, 69, 70).

MSC-EVs can be internalized into renal TECs to treat AKI at
the translational level. Recent studies showed that mRNAs for
factors such as IL-10, IGF-1R, HGF, DNA-directed RNA
polymerases I, II, and III subunit RPABC1, and VEGF could
be loaded into EVs and transported to the target cells to exert
translational effects, including anti-inflammation, anti-fibrosis,
and anti-apoptosis effects, promoting proliferation, improving
renal function, and reducing kidney injury (43, 71). Notably, the
efficacy of MSC-EVs was partly mediated by miRNAs loaded in
EVs, which directly regulated transcription and translation (50).
FIGURE 2 | MSC-EVs carry various contents to exert therapeutic effects in AKI. Created with BioRender.com.
June 2021 | Volume 12 | Article 684496
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EV-mediated miRNAs have also been shown to play a significant
role in AKI (72). For example, miR-148b-3p and miR-548c-5p
promoted cell viability (73, 74), miR-199a-3p reduced AKI via
anti-apoptotic effects (75), miR-30 stabilized mitochondria,
improved renal function, and exerted anti-apoptotic effects
(76), and miRNA let-7a-5p reduced cell morbidity and
improved cell survival (77, 78). Other miRNAs are regulated
and actively participate in the regeneration process involving
miR-21 in MSC-EV therapy of AKI, possibly related to renal
tubular epithelium repair and internal cell reprogramming (79).
EVs can also stabilize mitochondria through miRNAs, especially
miRNA-200a-3p, which shuttles to TECs via MSC-EVs and
targets the Keap1-Nrf2 signaling pathway to normalize
mitochondrial membrane potential by reducing mitochondrial
fragmentation, increasing the number of mitochondrial DNA
copies, and protecting mitochondrial function in TECs during
kidney repair (55, 71).

Mitochondria are considered to play an integral role in AKI
development (80), suggesting the possibility that mitochondria
might be transferred horizontally into kidney cells to reprogram
cell metabolism and promote kidney recovery. Mitochondrial
DNA or mitochondria can be transported directly into the
damaged site by EVs, thus reducing kidney damage (81). Spees
et al. first showed in 2006 that MSCs could serve as mitochondrial
donors in cell survival (82). Actively transferring healthy
mitochondria from MSCs can restore aerobic metabolism and
protect cells from being eliminated (83). Plotnikov et al.
subsequently confirmed the transport of mitochondria from
MSCs to renal tubular cells in normal in vitro culture medium
(84). In addition to renal tubular cells, vascular endothelial cells
are also damaged during AKI. The delivery of mitochondria from
MSC-EVs reduced apoptosis and increased cell viability, and
restored the normal balance between aerobic respiration and
glycolysis, indicating the re-establishment of aerobic respiration
(12, 81). EVs derived from MSCs have previously demonstrated
huge therapeutic potential in AKI via transporting proteins and
RNAs with biological activity, and by conveying mitochondria
and their DNA directly, suggesting that modifying the contents of
MSC-EVs to affect specific signaling pathways may represent a
promising therapeutic approach (28, 85).
EVS PARTICIPATE IN THE IMMUNE
REGULATION OF MSCS IN AKI

MSCs-EVs have shown strong immune regulation in AKI
treatment (Figure 3) and have demonstrated significant
regulatory effects in a variety of immune cells, including
inhibiting the transendothelial migration and chemotaxis of
neutrophils, promoting macrophage M2 type polarization,
inhibiting T cell activation, and inhibiting IFN-g secretion (86–
90). These processes were mainly mediated by TNF-a-stimulated
gene 6 (TSG-6), which regulates inflammation with multiple
functions (91–93). Apart from TSG-6, MSC-EVs also depend on
IL-6, IL-10, prostaglandin E2, HGF, and indoleamine2,3-
dioxygenase to regulate the immune microenvironment (94, 95),
Frontiers in Immunology | www.frontiersin.org 5
secreting miRNAs involving miR-155 regulate inflammation on
the extracellular environment interact with dendritic cells to
regulate endotoxin-induced inflammation (96–99). In addition,
MSC-derived signalsmediated by EVs can inhibit the proliferation
of natural killer cells, reduce the activity of B lymphocytes, and
secrete IL-17 to promote T cell transformation into Treg cells
(86, 100).

As noted above, AKI is usually associated with disorders
and abnormal activation of the immune system, which can
in turn be affected by treatment with MSCs and their EVs,
suggesting that utilizing and modifying EVs to regulate the
immunomicroenvironment might be an efficient and effective
therapeutic approach for AKI (100–106). Although some
researchers have reported that MSCs and MSC-EVs can affect
the immune function and immune microenvironment in AKI
both in vitro and in vivo, the findings have been inconsistent
(107). Unfortunately, the specific mechanism by which MSC-
EVs act as immune mediators remains elusive, and further
research into the therapeutic mechanisms of EVs in AKI
is warranted.
MSC-EVS ARE SUPERIOR TO MSCS AND
CAN BE MODIFIED ARTIFICIALLY AS
MEDICATION CARRIERS, WITH RARE
ADVERSE REACTIONS

Although many preclinical studies have shown the effectiveness of
MSCs and MSC-EVs in AKI, few clinical trials have utilized MSC-
EVs for the clinical treatment of patients (49, 108, 109). Compared
with MSCs, MSC-EVs generate a reduced inflammatory response
with lower immunogenicity after administration, with beneficial
effects in terms of administration dose and frequency, as well as
reducing stem cell-associated risks such as cytokine release
syndrome, ectopic tissue caused by poor differentiation, and
tumorigenesis (31, 48, 110–113). In a comparative study, MSC-
EVs were at least as effective as MSCs, indicating that many of the
therapeutic effects of MSCs could be attributed to EVs (114, 115).
In addition, MSCs may have more efficient homing ability than
EVs (116, 117).

Preclinical studies in vitro and in vivo showed that EVs may
have advantages over MSCs and may thus have great potential
for future stem cell therapies (118, 119). First, MSC-EVs are
highly stable and suitable for long-term storage without the need
to add potentially toxic cryopreservatives (120, 121). Second,
MSC-EVs can transfer functional proteins and miRNAs directly
to recipient cells, inducing stronger signal transmission via cell-
to-cell communication (45). Third, MSC-EVs have a lower risk
of a rejection reaction, and an immune response after allogeneic
application is rare (72). In addition, MSC-EVs avoid the
potential tumorigenicity of MSCs, with no evidence of
carcinogenic potential to date and no signs of unwanted
differentiation (24, 28, 110). In contrast, MSCs have the
possibility of tumorigenesis and poor differentiation (122). One
study reported that MSC-EVs with anti-tumor activity inhibited
tumor growth both in vivo and in vitro (123).
June 2021 | Volume 12 | Article 684496
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EVs have important unique characteristics. MSC-EVs may
have a weaker homing ability than MSCs, which could partly
reduce the accuracy of EV-based therapy; however, EVs are safe,
with few adverse reactions (24, 28). EVs also show plasticity, and
their contents can be modified artificially to improve and
enhance not only their homing ability, but also their
therapeutic effects (28, 29, 85). However, robust evidence is
still lacking, and more research involving animal models and
clinical studies is needed.
HOW TO ADMINISTER MSC-EVS

When administered via peripheral intravenous injection, most
MSCs or MSC-EVs distribute to the lung, spleen, or celiac lymph
nodes, thus, reducing their therapeutic efficacy (36). Moreover, the
homing ability of EVs is lower than that of MSCs. However, a
recent study showed that renal artery administration could
transport more EVs and generate better therapeutic effects to
injured kidney tissue with greater precision compared with other
administration routes (30, 50, 124). Renal artery puncture in clinical
patients may be performed under ultrasound image guidance (124).
However, although EV injection via the renal artery provides a
possible approach, this administration route is more difficult and is
associated with ethical concerns in clinical practice (49, 114).

Bruno et al. utilized MSC-derived microvesicles, a kind of
EVs, in lethal cisplatin-induced AKI and showed that increased
administration times improved the therapeutic effects due to
anti-apoptosis in AKI. The single administration of EVs
ameliorated renal function and morphology and improved
survival, but had no effect on chronic tubular injury and
persistent increases in blood urea nitrogen (BUN) and
creatinine. They also found that using multiple injections of
EVs significantly reduced the mortality of mice, and mice
surviving at day 21 showed normal histology and renal
function (125).
Frontiers in Immunology | www.frontiersin.org 6
Recent meta-analyses investigating the effects of
administration and cell source on the therapeutic effects of EVs
have indicated the importance of these factors in clinical research
and applications. A meta-analysis using serum creatinine (Scr) as
an indicator of efficacy compared the timing of administration in
various studies (between 1 h and 3 days after the occurrence of
AKI), and showed a better treatment effect following
administration of MSC-EVs within 1 h after the occurrence of
AKI, suggesting that they should be administered as early as
possible (114). Current research mainly focuses on EVs secreted
by MSCs derived from adipose tissue, bone marrow, and cord
blood. However, the source tissue also has an impact on MSC-
EVs (47, 126). For example, compared with cord blood-derived
MSCs, signals mediated by EVs derived from bone marrow
MSCs had greater effects on bone growth and differentiation
(49, 114). In addition, adipose-derived MSCs had similar
immune regulation effects to bone marrow-derived MSCs (17).
The EV source should be selected flexibly according to the type of
kidney injury and treatment needs. Meanwhile, because MSC
from different sources have different characteristics, the EVs
secreted by them will also differ. The therapeutic effects of EVs
from other sources of MSCs in AKI are still unclear, and there is
much need for further research. Bone marrow-derived MSCs
may be more likely to express specific proteins via lentiviral
expression vector transduction, such as angiogenin-1, IGF-1, and
Akt, thus, influencing the restructuring and repair of injured
tissue (13). This research could indicate the ability to utilize
lentiviral vectors to modify MSCs to produce EVs with specific
efficacies (127).
HOW TO IMPROVE THE THERAPEUTIC
EFFECT OF MSC-EVS

Several studies have focused on improving MSC-EVs in a variety
of areas (128) (Table 1). These studies have mainly involved
FIGURE 3 | MSC-EVs mediate immune regulation in AKI. Created with BioRender.com.
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TABLE 1 | Recent research into the therapeutic effects of MSC-EVs.

AKI model Intervention Effects

Cisplatin-induced AKI Produce ASC-EVs with
tangential flow filtration

EV yield↑; EV quality↑

Cisplatin-induced AKI Produce MSC-EVs with a
hollow fiber bioreactor-
based three-dimensional
culture system

EV yield↑; EV quality↑; therapeutic efficacy↑;
collection efficiency↑; efficiency of TECs
uptake↑

Cisplatin-induced AKI Combine pFUS pretreatment
of the kidney with MSC-
derived EVs

No significant improvement in homing ability
of EVs; kidney injury markers↓; renal
function↓; inflammation↓; apoptosis↓; cell
proliferation↑

Cisplatin-induced AKI Combine pFUS pretreatment
of the kidney with MSC-
derived EVs

HSP70↓; NLRP3 inflammasome↓;IL-1↓; IL-
18↓; therapeutic effects of MSC-EVs↑; anti-
inflammation↑; cell regeneration↑

Cisplatin-induced AKI Combine pFUS pretreatment
of the kidney with MSC-
derived EVs

MAPK/ERK↑; PI3K/Akt↑; eNOS↑; SIRT3↑;
kidney injury markers↓; renal function↓;
inflammation↓; apoptosis↓; cell
proliferation↑; survival↑

Ischemic reperfusion
injury-induced AKI

Precondition EVs with RGD
peptides

Stability and retention of MSC-EVs↑; anti-
fibrosis in the chronic phase↑; kidney
injury↓; cell proliferation↑; EV integrin-
mediated loading↑

Ischemic reperfusion
injury-induced AKI

Precondition EVs with
collagen matrix

Angiogenesis↑; apoptosis↓; stability and
retention of MSC-EVs↑; therapeutic
efficacy↑

Ischemic reperfusion
injury-induced AKI

Precondition EVs with
melatonin

Kidney damage↓; inflammation; renal
regeneration↑; angiogenesis↑; anti-
oxidation↑; oxidative stress↓

Ischemic reperfusion
injury-induced AKI

Overexpress Oct-4 by
lentiviral vector transduction

Apoptosis↓; Scr↓; BUN↓; renal fibrosis↓;
renal tubular epithelial cell proliferation↑

at shock protein 70; NLRP3, NLR Family, Pyrin Domain Containing Protein 3; IL, interleukin; TEC, tubular epithelial
cr, serum creatinine; BUN, blood urea nitrogen; eNOS, endothelial nitric oxide synthase.
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Authors Title Year EVs source

Lee, JH et al. (128) Reproducible large-scale isolation of exosomes from
adipose tissue-derived mesenchymal stem/stromal
cells and their application in acute kidney injury

2020 Adipose tissue-derived
MSCs

Cao, J et al. (127) Three-dimensional culture of MSCs produces
exosomes with improved yield and enhanced
therapeutic efficacy for cisplatin-induced acute kidney
injury

2020 Fresh human umbilical
cord-derived MSCs

Ullah, M et al. (129) Reversing acute kidney injury using pulsed focused
ultrasound and MSC therapy: a role for HSP-mediated
PI3K/AKT signaling

2020 Bone marrow-derived
MSCs

Ullah, M et al. (130) HSP70-mediated NLRP3 inflammasome suppression
underlies reversal of acute kidney injury following
extracellular vesicle and focused ultrasound
combination therapy

2020 Bone marrow-derived
MSCs

Ullah, M et al. (131) Pulsed focused ultrasound enhances the therapeutic
effect of mesenchymal stromal cell-derived
extracellular vesicles in acute kidney injury

2020 Bone marrow-derived
MSCs

Zhang, C et al. (77) Supramolecular nanofibers containing arginine-glycine-
aspartate (RGD) peptides boost therapeutic efficacy of
extracellular vesicles in kidney repair

2020 Human placenta-
derived MSCs

Liu, Y et al. (132) Enhanced therapeutic effects of MSC-derived
extracellular vesicles with an injectable collagen matrix
for experimental acute kidney injury treatment

2020 Human placenta-
derived MSCs

Alzahrani, FA et al. (133) Melatonin improves therapeutic potential of
mesenchymal stem cells-derived exosomes against
renal ischemia-reperfusion injury in rats

2019 Bone marrow-derived
MSCs

Zhang, ZY et al. (134) Oct-4 enhanced the therapeutic effects of
mesenchymal stem cell-derived extracellular vesicles in
acute kidney injury

2020 Human umbilical cord-
derived MSCs

EV, extracellular vesicle; MSC, mesenchymal stem cell; AKI, acute kidney injury; pFUS, pulsed focused ultrasound; HSP70, he
cell; RGD, arginine-glycine-aspartate; MAPK, mitogen-activated protein kinase; ERK, extracellular regulated protein kinase; S
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improving the technology for the isolation of EVs, investigating
potential administration routes, the use of pulsed focused
ultrasound (pFUS), preconditioning EVs, and inducing the
overexpression of EVs by lentiviral vector transduction.

EVs are traditionally separated by ultracentrifugation, but this
method has major limitations, including the co-precipitation of
EVs with contaminants including protein aggregates, loss of EV
function due to aggregation or distortion during the isolation
process, and functional inhibition of EVs by the media used for
density gradient ultracentrifugation (129). AKI is common in
clinical practice, and improved large-scale production of EVs
would be needed to satisfy the requirements if EVs were applied
for the clinical treatment of these patients (1). Large-scale
isolation of single-batch EVs by ultracentrifugation is also
restricted by the limited instrument capacity (130). Lee et al.
showed that it was possible to isolate adipose tissue-derived
MSC-EVs stably and reproducibly on a large scale without loss of
function using tangential flow filtration (131), with successful
life-preserving effects in a cisplatin-induced lethal rat model of
AKI. Other studies have indicated that the production of EVs by
three-dimensional (3D) culture of MSCs could improve the
efficacy and increase yield. Cao et al. produced EVs in 3D
culture and showed that, compared with conventional 2D
culture, the 3D culture system increased the total yield of EVs
19.4-fold, thus, indicating that the 3D culture system had a
higher EV-collection efficiency. Surprisingly, EVs obtained by 3D
culture were taken up more efficiently by renal TECs, showing
better anti-inflammatory effects and increasing the survival rate
of TECs in vitro (130).

pFUS was shown to alter the kidney microenvironment to
enhance homing of subsequently infused MSCs. Mujib et al.
investigated if the combined use of pFUS with MSC-EVs could
improve the therapeutic effect by improving the homing
ability of EVs in AKI (132). Surprisingly, although pFUS did
not up-regulate local cytokine expression or improve bone
marrow MSC homing, it did enhance the therapeutic efficacy
of MSC-EVs in AKI. Further analysis showed that this effect
was related to the up-regulation of heat shock protein (HSP)
20/HSP40 and subsequent PI3K/Akt signaling. This indicated
that pFUS had independent as well as synergistic therapeutic
effects in the context of AKI, and is thus, a promising affiliated
method for MSC-EV therapy (132). Further studies of the
combined use of MSC-EVs and pFUS showed that pFUS
affected HSP70-mediated NLRP3 inflammasome suppression
to improve the anti-inflammatory and regenerative effects
(133). In addition, Mujib et al. also showed that pFUS
upregulated the proliferative signaling (MAPK/extracellular
signal-regulated kinase, PI3K/Akt) and regenerative
pathways (endothelial nitric oxide synthase, sirtuin 3) to
suppress inflammation in AKI (134).

The low stability and retention of MSC-EVs have partly
limited their therapeutic efficacy, and methods involving novel
biological materials such as arginine-glycine-aspartate (RGD)
peptides and collagen matrix have been investigated with the aim
of improving these features. Zhang et al. developed an RGD
peptide scaffold to increase EV integrin-mediated loading, and
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found that RGD hydrogels facilitated MSC-EVs containing
miRNA let-7a-5p, which improved their repair potential in
AKI (78). Liu et al. isolated EVs from human placental
mesenchymal stem cells and wrapped them in a collagen
matrix, and Gaussia luciferase imaging confirmed that the
collagen matrix effectively encapsulated the EVs and
augmented their efficacy in AKI by improving the stability and
promoting the sustained release of EVs (135). Biological modules
can be used to cover EVs and interact with the microenvironment
in AKI to improve the positive effects of MSC-EV-based therapy
(78, 135, 136). However, few studies have investigated the
mechanisms involved in the interaction between the injured
tissue microenvironment and biological modules covering EVs.
This warrants further investigation to guide clinical trials aimed at
identifying the most efficient artificial biological modules to
improve the therapeutic effects of MSC-EVs.

Scientists have also tried to improve the effects of MSC-EVs in
AKI by preconditioning them with medications to prevent
further damage deterioration and help renal recovery.
Alzahrani et al. tested MSC-EVs preconditioned with
melatonin in AKI induced by IRI with bilateral renal artery
clipping, and showed that melatonin-preconditioned MSC-EVs
performed better than untreated EVs in terms of alleviating
kidney damage and inflammation, promoting regeneration,
angiogenesis, and anti-oxidation, and inhibiting oxidative
stress (136). EVs can also be artificially modified to
overexpress specific modules. Zhang et al. transduced MSCs
with Oct-4 via a lentiviral vector to produce Oct-4-
overexpressing MSCs, which significantly reduced attenuated
apoptosis, Scr and BUN levels, promoted renal TEC
proliferation, and rescued renal fibrosis in IRI-induced
AKI (137).

Recent studies concentrating on improving the limitations of
MSC-EV-based therapy showed that it was possible to safely
modify MSC-EVs and enhance their therapeutic effects. As noted
above, their homing ability and tissue stability limit the
therapeutic effects of EVs, but these issues can be overcome by
the use of collagen matrix and RGD peptides (78, 135). In
addition to enhancing the effects of EVs, 3D culture and
tangential flow filtration may also allow the large-scale clinical
application of EVs (130, 131). However, MSC-EVs still face
numerous challenges and limitations before they can be
clinically applied in patients.
LIMITATIONS AND FUTURE
PERSPECTIVES OF MSC-EVS

Various challenges still need to be overcome before MSC-EVs
can be utilized in clinical treatments. First, there is significant
heterogeneity between MSC-EVs in terms of size, leading
to variations in the secreted components and functional
characteristics of the EVs (15). Further studies are therefore
needed to choose the specific size of EVs according to their
cargo (138). Second, the isolation and storage methods of EVs
June 2021 | Volume 12 | Article 684496
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may affect their therapeutic efficacy (139). Ensuring the quality
of EVs is an important problem, and producers are supposed
to confirm that the EVs are derived from cellular matrix,
rather than being components from cells damaged during
cryopreservation and mechanical failure (130, 131, 135). It is
advisable to optimize and confirm the preservation conditions
to maintain the efficacy of the EVs after defrosting (128).
Importantly, the follow-up time in previous studies was only
between 1 day and 2 weeks, which is inadequate for evaluating
the long-term outcome and prognosis (114), and more clinical
trials with long-term follow-up are therefore needed to provide
more robust evidence. Catering for the demands of large-scale
clinical applications and producing enough high-quality MSCs
then become critical issues (99). In addition, even though EVs
have demonstrated similar effects to MSCs, their homing ability
is much weaker than that of MSCs, representing a limitation of
MSC-EV-based therapy that needs improving. Zhang et al.
recently used monocyte mimics to enhance the homing ability
of MSC-EVs to the injured site in a myocardial IRI model,
suggesting a possible approach for improving the homing ability
of MSC-EVs for the therapy of AKI (140). Regarding
monitoring the distribution of EVs, their physicochemical
properties may be affected by some lipophilic markers, which
could affect the observations (13), and new tracing markers will
be needed to detect the distribution and effects of EVs in
clinical practice. Increasing research is currently focused on
investigating ways of modifying the cargo of MSC-EVs to
improve their therapeutic efficiency (28, 141). Clinical trials
are currently required to verify and approve the use of
customized EVs and to assess the safety and tolerance of
modified MSC-EVs.
Frontiers in Immunology | www.frontiersin.org 9
CONCLUSION

MSC-EVs are responsible for the main therapeutic effects of
MSCs in AKI, and demonstrate specific therapeutic effects and
improve the efficacy of regenerative stem cell therapies. However,
the lack of clinical trials means that MSC-EVs still face many
challenges before they can be used for clinical treatment.
Nonetheless, we believe that MSC-EVs will become an effective
approach to overcome the current limitations of AKI treatment.
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