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ABSTRACT: As a perfect complement to conventional NMR that
aims for chemical structure elucidation, Laplace NMR constitutes a
powerful technique to study spin relaxation and diffusion, revealing
information on molecular motions and spin interactions. Different
from conventional NMR adopting Fourier transform to deal with the
acquired data, Laplace NMR relies on specially designed signal
processing and reconstruction algorithms resembling the inverse
Laplace transform, and it generally faces severe challenges in cases
where high spectral resolution and high spectral dimensionality are
required. Herein, based on the tensor technique for high-dimensional
problems and the sparsity assumption, we propose a general method
for high-resolution reconstruction of multidimensional Laplace NMR data. We show that the proposed method can reconstruct
multidimensional Laplace NMR spectra in a high-resolution manner for exponentially decaying relaxation and diffusion data
acquired by commercial NMR instruments. Therefore, it would broaden the scope of multidimensional Laplace NMR applications.

NMR spectroscopy offers a robust and noninvasive tool
for applications in various fields, such as chemistry,

biology, and materials science.1 As an effective technique
revealing atomic level information on chemical shifts and J
couplings, conventional NMR experiments (e.g., 1D NMR2

and 2D COSY3) are widely used in molecular structure
determination, conformation elucidation, and composition
analysis.4 However, relaxation and diffusion parameters related
to molecular dynamics and spin interactions5−8 are inaccessible
by conventional NMR and are generally provided by Laplace
NMR experiments. Theoretically, due to the exponentially
decaying signals caused by the relaxation and diffusion
processes, the Inversion Laplace Transform (ILT) can be
adopted to retrieve the distribution of relaxation times or
diffusion coefficients.9 Compared to conventional NMR
experiments, where acquired Free Induction Decay (FID)
signals are directly converted to spectral peaks in the frequency
domain by the Fourier Transform (FT), Laplace NMR
involves more complicated processing algorithms to extract
the desired dynamic information on diffusion and relaxation
due to the ill-posed nature of the ILT problem. Generally, only
approximate results can be obtained from Laplace NMR
experimental data based on given constraint conditions.
It is clear that high-resolution Laplace NMR requires

efficient data reconstruction algorithms for resolving each
spectral peak. Although many ILT reconstruction methods
have been proposed, it remains challenging to hit the spot of
high-resolution Laplace NMR measurements. Current recon-
struction methods employ constraints and regularizations10 to
deal with the ill-posed ILT. For example, the Maximum

Entropy Method (MaxEnt)11 constrains the reconstructed
spectra with the maximum entropy for DOSY12 processing.
The Iterative Thresholding Algorithm for Multi-Exponential
Decay (ITAMeD)13 uses L1 norm regularization and non-
negativity constraint to reconstruct 1D Laplace NMR spectra.
The Low-Rank and Sparsity Inverse Laplace Transform
(LRSpILT)14 exploits combined L1 norm and nuclear norm
regularization as well as non-negativity constraint for 2D high-
resolution DOSY12 reconstruction. The Constrained Regula-
rization Method for Inverting Data (CONTIN)15 adopts the
second derivative Tikhonov regularization and non-negativity
constraint. Marginal Distributions Constrained Optimization
(MADCO)16 uses 1D distributions measured with full
sampling as constraints in the reconstruction of 2D
distributions. However, because of the efficiency and
effectiveness of the reconstruction algorithms which are
substantially in demand in the multidimensional ILT
reconstruction, these methods still suffer from peak broadening
and fail to resolve congested peaks. To address the challenge of
congested peaks in ILT reconstructions, we point out that one
should focus on the optimization algorithm besides constraints
and regularization. In practice, the optimization algorithm
decides how to search in the solution space and when to
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terminate and outputs the results. Thus, even for the same
model, different optimizers yield different efficiencies, which
depend on a practical problem. To match the optimization
algorithm for the ill-posed ILT problem is of much
importance.
In this study, we propose a high-resolution multidimensional

Laplace NMR reconstruction method, named Enhanced
Discerning Multidimensional Inverse Laplace Transform
(EDMILT), based on the sparsity assumption17 and the
tensor technique. The sparsity assumption states that only a
few nonzero points exist in the desired reconstructed results,
while the tensor technique promotes the proposed method for
nD (n ≥ 3) reconstruction. The EDMILT exploits L1 norm
regularization and non-negativity constraint and adopts the
Truncated Newton Interior Point Method (TNIPM)18

algorithm for iterative optimization. The TNIPM, suitable
for the high-resolution multidimensional Laplace NMR
reconstruction where a large scale and sparse reconstruction
is required, tends to effectively find a series of discrete nonzero
points, i.e. a group of sharp spectral peaks, as reconstructed
results, thus enhancing adjacent peak separation and achieving
high-resolution multidimensional Laplace NMR spectra. This
proposed method is a tensor-based multidimensional Laplace
NMR reconstruction method considering constraints, regula-
rizations, and algorithm property to deal with the challenge of
ill-posed ILT. The EDMILT is robust and effective for 1D and
even nD Laplace NMR reconstructions, which may serve as a
general technical tool for high-dimensional Laplace NMR
development.
It is assumed that matrix K denotes a Laplace kernel whose

element Kij is defined as eq 1 for T1 relaxation and as eq 2 for
T2 relaxation or diffusion, s is the measured relaxation or
diffusion data which is normalized preferably before
reconstruction, x is the reconstructed vector of 1D Laplace
NMR spectrum and initialized as a vector whose entries all
equal 1 in the TNIPM optimized iteration. The ILT objective
function can be formulated as eq 3.

= − α−K 1 eij
tj i

(1)

= α−K eij
tj i

(2)

λ− +
≥

Kx s xarg min
x 0

2
2

1 (3)

where αj denotes the jth element of the preset decay constant
dictionary α, ti represents the ith entry of the evolution time
vector t, x ≥ 0 constrains non-negativity of all elements in x,
∥.∥1 denotes L1 norm, defined as the sum of each element
magnitudes. This objective function contains a fidelity term

−Kx s 2
2, which evaluates the reconstructed result x by how

it contributes to the measurement s, and also a regularization
term ∥x∥1 for the sparsity constraint on x. After normalizing s,
the regularization parameter λ, which trades off between
fidelity and regularization terms, is normally set between 0.001
and 0.1 empirically. The regularization parameter effect on
EDMILT reconstructed results is analyzed in the Supporting
Information. Due to the sparsity constraint on x, EDMILT is
inclined to generate sharp peaks. In this sense, EDMILT keeps
a good peak shape for monodisperse samples but not for
polydisperse samples whose peaks are intrinsically broad.
Actually, EDMILT employs sharp peaks to fit the broad peaks;
i.e., EDMILT obtains the average diffusion coefficients (decay
constants) of polydisperse components. See the Supporting

Information for more analytical details of EDMILT on the
broad peak reconstruction.
For nD ILT, the reconstruction model is formulated as

λ− +
≥

× × × ×X K K K S Xarg min ... n n
X 0

1 1 2 2 3
2

1 (4)

where X denotes the reconstructed tensor of the nD Laplace
NMR spectrum, Ki is the Laplace kernel corresponding to ILT
along the ith dimension, S represents the acquired nD
relaxation or diffusion tensor signal, the symbol ×i represents
the i-mode product of tensor X with matrix Ki, ∥.∥ denotes the
norm of a tensor defined as the square root of the sum of the
absolute squares of its elements. Equation 4 can be
reformulated into

λ− +
≥

Az y zarg min
z 0 2

2
1 (5)

where A = Kn⊗...⊗K2⊗K1, ⊗ is the Kronecker product, and z
and y denote column vectorization of X and S, respectively. We
point out that, as analyzed in the Supporting Information, the
higher dimensional EDMILT performs better than the lower
dimensional one in spectral resolution but at the cost of
computational complexity of eq 5. Fortunately, due to the
singularity of A, the computational complexity of eq 5 can be
significantly reduced by the design of a compressed model
detailed in the Supporting Information and then solved
efficiently by the TNIPM optimization iterations. TNIPM
employs a logarithm barrier function to build a “wall” between
negative and positive real number fields for the non-negative
constraint of z during iterations. In each iteration, the TNIPM
exploits Newton’s method to decrease the objective function
(eq 5), which provides a rapid convergence to the optimal
point,19 thus preventing the optimized variable from oscillating
in the neighborhood of the optimal point in an ill-posed ILT
problem. We detail the advantage of convergence performance
of EDMILT over ITAMed in the Supporting Information.
Benefiting from the rapid convergence of the TNIPM
optimization algorithm, the EDMILT can reconstruct multi-
dimensional Laplace NMR in a high-resolution manner, which
is the most important significance of this work. For a detailed
mathematical derivation of the TNIPM iteration for solving
the sparse multidimensional ILT model, one can refer to the
Supporting Information. All computations in this work are
implemented on the MATLAB 2016b platform installed in a
desktop with an i7-7700 3.60 GHz CPU, 16G memory 64 bit
Windows10 operation system.
The resolution of the EDMILT result relies on the Signal

Noise Ratio (SNR) and the number of dimensions. For data
with a better SNR or higher dimensions, the peak discerning
ability of EDMILT will be enhanced. Since the size of A
increases with the number of dimensions, higher dimensional
reconstruction needs more computing time and memory. We
present more detailed analysis of EDMILT, including related
mathematical derivation, peak discerning analysis, reconstruc-
tion time, and access to MATLAB codes of EDMILT, whose
iterative optimized part is from Kim et al.’s code18 with some
simplifications for the specific ILT inverse problem, in the
Supporting Information.
To evaluate the performance of the EDMILT, we perform

reconstruction tests on three kinds of Laplace NMR
experimental data. First, 2D Diffusion-Ordered Spectroscopy
(DOSY) data12,20 of a mixture sample containing sucrose,
lysine, threonine, butanol, ethanol, and methanol (named as
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M6 for convenience in following) is adopted for the basic 1D
Laplace reconstruction. 2D DOSY, containing chemical shift
and diffusion coefficient information along two orthogonal
dimensions, constitutes a standard tool for chemical
component separation and mixture analysis. 2D DOSY belongs
to 1D Laplace experiments since it only contains one
dimension of relaxation or diffusion. The parameters of this
experimental data are detailed in ref 21.
Second, to show the excellent peak discerning performance

of EDMILT for 2D Laplace reconstruction, we test it on 2D
Laplace NMR data acquired from diffusion and T2 relaxation
(D-T2) correlation experiments on a mixture of 1.36 M hexane
(C6H14) and 0.79 M pentadecane (C15H32). The D-T2
correlation experiment was obtained using gradient-based
ultrafast Laplace methods (UF-LNMR, see ref 22) for fast and
accurate component analysis.
Finally, we perform a 3D Laplace reconstruction test on a

homemade D-T2-T1 data of a mixture of 0.96 M cyclohexane
(C6H12) and 1.02 M tetradecane (C15H32) (detailed
experimental parameters are given in Supporting Information)
to show the ability of the EDMILT for reconstruction on high-
resolution multidimensional Laplace NMR spectra. To further
show the performance of the EDMILT on high-resolution
multidimensional Laplace NMR reconstruction, we show more
3D Laplace simulated reconstructed results in the Supporting
Information.
First, we compare EDMILT with ITAMeD,13 a 1D diffusion

reconstruction method, and LRSpILT,14 a 2D DOSY
reconstruction method, for 2D DOSY spectrum reconstruction
of the M6 mixture. It is noteworthy that many other processing
methods23−28 have been proposed since the invention of
DOSY and that Nilsson has integrated many DOSY processing
data into a free software named DOSYToolbox.29 Here we
select the excellent and relatively recent ITAMeD and
LRSpILT for comparison. From the reconstructed DOSY
spectra (Figure 1), it is clear that the results obtained by
ITAMeD and LRSpILT contain artifacts as marked by arrows,
while the DOSY spectrum by the EDMILT shows all signal
peaks and presents only one shifted peak. For a detailed
analysis of peak width along the diffusion dimension obtained
by these three methods, we project all peaks of normalized
reconstructed spectra into the diffusion dimension, as shown in
Figure S4. We select spectral points with significant intensity
values that are above a threshold of 0.01 as signal peaks to
calculate Mean Peak Widths (MPWs), which are equal to
0.520, 1.125, and 0.215 (10−10 m2 s−1) for ITAMeD (Figure
1a), LRSpILT (Figure 1b), and EDMILT (Figure 1c),
respectively. Since smaller MPW corresponds to sharper peak
and higher spectral resolution, we can infer from MPWs that
the EDMILT possesses higher resolution than other
reconstruction methods do.
To show the performance of the EDMILT on separating

severely congested peaks, we mark five groups of overlapping
peaks in Figure 1 with yellow dash lines in numerical order.
Ideally, overlapping peaks of groups 1−5 lie in sucrose and
lysine components, sucrose and ethanol components,
threonine and butanol components, lysine and butanol
components, and threonine and butanol components,
respectively. Because of the low resolution of the diffusion
dimension, overlapping peaks of groups 1, 3, 4, and 5 in the
DOSY spectrum by the ITAMeD are merged into broad peaks
along the diffusion dimension marked with green arrows in

Figure 1a and present two undesired artifacts marked with
black arrows.
As for the LRSpILT, overlapping peaks of groups 2−5

appear artifacts along the diffusion dimension, caused by
adjacent component peak broadenings (Figure 1b). For
example, in the region of group 2, which should contain only
sucrose and ethanol components, an artifact appears as the
lysine component. In the region of group 4, a peak marked
with a black arrow is also an artifact, which should hold the
diffusion coefficient of lysine but instead is located in the
threonine position.
As for the EDMILT, groups 2−4 of overlapping peaks are

clearly discerned along the diffusion dimension (Figure 1c).
Group 1 merges into a compromise peak, and group 5 has a
peak shift. Although there exist diffusion coefficient differences
among the same mixture component in the DOSY spectrum by
the EDMILT, e.g., one peak around 3.7 ppm from the sucrose
slightly deviated from the ideal component reference lines
along the diffusion dimension, it would not influence the
component separations and assignments severely. It is
noteworthy that peaks of greater diffusion coefficients are
much broader in the LRSpILT reconstructed spectra. The
reason is that, in the PFG diffusion NMR experiment,
components with greater diffusion coefficients generate signals
with stronger attenuation, which are more sensitive to the
nonuniform pulse gradients than those with smaller diffusion
coefficients.30 However, in the ITAMeD and EDMILT
reconstructed spectra, greater diffusion coefficient components
still present narrow peaks, benefiting from the sparsity
regularization. In this sense, ITAMeD and EDMILT can
diminish the effect of nonuniform pulse gradients.
Furthermore, we compare EDMILT with two 2D ILT

methods. The first one is CONTIN,15 in which the L2 norm of

Figure 1. Reconstructed 2D DOSY NMR spectra for M6, a mixture
containing sucrose, lysine, threonine, butanol, ethanol, and methanol,
by (a) ITAMeD, (b) LRSpILT, and (c) EDMILT. All the three
method are terminated when the relative difference of neighbor
iterative outputs is less than 10−5. ITAMeD and EDMILT use one
compromise regularization parameter 0.03 for reconstruction. The
overlapping peaks are marked by yellow dashed lines and order
numbers. Artifacts or shifted peaks are marked by black arrows,
merged peaks are marked by green arrows, and diffusion coefficient
values of components are marked by gray dashed lines.
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the second derivative is used as a regularizer and non-
negativeness is constrained for dealing with the 2D ILT inverse
problem. The second one,31 which is called “common 2D ILT”
in the following, was proposed based on refs 32 and 33 and has
been used in several famous works7,22,31,34 for reconstructing
2D Laplace NMR spectra. Figure 2 shows reconstructed

spectra by three methods from D-T2 correlation data
performed on a mixture of 1.36 M hexane (C6H14) and 0.79
M pentadecane (C15H32). It can be noticed that hexane and
pentadecane share similar chemical shift sites and yield
completely overlapped peaks in the standard 1D 1H NMR
spectrum (Figure 2a), making component separation by
conventional DOSY challenging. The D-T2 experiments
effectively address this challenge by adding T2 evolution
along the other dimension. Figure 2 shows compared D-T2
correlation spectra by CONTIN, the common 2D ILT
method, and the EDMILT.
In the CONTIN reconstructed result (Figure 2b), peaks are

congested due to the smoothness effect, which can be seen in
both the T2 relaxation and the diffusion projected spectra. In
Figure 2e, four peaks indicating methyl (−CH3) and
methylene (−CH2) components on the T2 relaxation
dimension partially overlap in the base. In Figure 2h, only

one broad peak appears, implying failure to discern molecular
components. The common 2D ILT method can separate
hexane and pentadecane components along the diffusion
dimension but fails to further discern methyl (−CH3) and
methylene (−CH2) components on the T2 relaxation
dimension. Figure 2f and i shows that two peaks exist in
both the T2 relaxation spectrum and the diffusion spectrum
projected from the D-T2 spectrum reconstructed by the
common 2D ILT method (Figure 2c). By contrast, the
EDMILT presents four peaks in the reconstructed high-
resolution D-T2 spectrum (Figure 2d). According to the
projected spectra in Figure 2g and j, we can see four peaks in
the T2 relaxation projected spectrum and two peaks in the
diffusion projected spectrum. Although these peaks are not
completely aligned along the diffusion dimension, it still
distinguishes the two components. The EDMILT differentiates
two peaks along the diffusion dimension, standing for two
components of hexane and pentadecane, and discerns four
peaks along the T2 dimension, representing methyl (−CH3)
and methylene (−CH2) in these two components.
Compared to 1D and 2D Laplace NMR, higher dimensional

Laplace NMR can provide superior signal dispersion and give
more extensive dynamic information on relaxation and
diffusion. The applicability of existing ILT methods on 3D
Laplace NMR is generally limited by processing time
consumption and reconstructed spectral resolution. Here, the
EDMILT is applied to D-T2-T1 experimental data of a mixture
of cyclohexane (C6H12) and tetradecane (C15H32) to recover
the desired 3D Laplace NMR spectra. For convenient analysis,
we label four proton groups as 1−4 in Figure 3. As shown in

Figure 3a, peaks of groups 2 and 3 overlap severely in standard
1D 1H NMR spectra. In the D-T2-T1 spectrum by the
EDMILT (Figure 3b), four peaks are presented conspicuously
for the following component identification and dynamic
analysis on relaxation and diffusion. For further analysis of
the reconstruction result, 2D projected spectra of D-T1, T2-T1,
and D-T2 are shown in Figure 3c−e, respectively. From Figure

Figure 2. 1H NMR spectra (a) and reconstructed D-T2 correlation
spectra for a mixture of 1.36 M hexane (C6H14) and 0.79 M
pentadecane (C15H32) dissolved in CCl4 by CONTIN (b), the
common 2D ILT method (c), and the EDMILT (d). Spectra (b)−(d)
are projected along the T2 relaxation dimension shown in (e)−(g)
and along the diffusion dimension shown in (h)−(j).

Figure 3. 1H NMR spectrum (a) and reconstructed 3D D-T2-T1
correlation spectrum for the mixture of cyclohexane and tetradecane
reconstructed by the EDMILT (b) and its 2D D-T1 (c), T2-T1 (d),
and D-T2 (e) projected spectra. All spectra have been normalized.
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3c and e, it can be seen that peak groups 2−4 are close along
the diffusion (D) dimension, which indicates they belong to
the identical tetradecane component, while peak group 1
belongs to cyclohexane. In Figure 3c−e, peaks 3 and 4 overlap
along the T1 dimension, and peaks 2 and 3 overlap along the
T2 dimension because of the similar chemical environment.
However, all these relaxation and diffusion information can be
clearly separated and identified in the resulting 3D Laplace
spectrum benefiting from its ability of signal dispersion. In
addition, correlation 2D spectra between relaxation and
diffusion parameters, i.e., D-T1, T2-T1, and D-T2, can also be
used for practical analysis, such as component phase exchange
and molecule interactions, which are obtained simultaneously
by the 3D Laplace NMR. Therefore, benefiting from the
satisfactory performance on 3D Laplace NMR reconstruction,
the EDMILT may extend the scope of Laplace NMR to higher
dimensional applications.
The spectral resolution is the crucial factor determining the

usability of acquired NMR spectra. Compared to conventional
NMR experiments in which spectral resolution is generally
determined by given experimental parameters, such as
acquisition points and spectral width, Laplace NMR experi-
ments rely on data processing and reconstruction method to
yield high-resolution information, in addition to the exper-
imental parameters. The EDMILT reconstruction implemen-
tation on aforementioned complex mixtures suggests that the
EDMILT presents a useful tool for multidimensional Laplace
NMR experiments to achieve high-resolution spectral
reconstruction and offers chemical resolution not achievable
in conventional NMR spectra, and not even in traditional
Laplace NMR, thus benefiting molecular dynamic analysis in
practical applications. Laplace NMR focuses on dynamic
information on relaxation and diffusion and avoids molecular
structure information on chemical shifts and J couplings that
are highly dependent on static magnetic fields. Therefore, the
EDMILT aiming for high-resolution reconstruction is also
suitable for low-field Laplace NMR applications, e.g.,
petroleum exploration, portable food detection, or mobile
NMR measurements.35 However, EDMILT might not result in
the intrinsic peak profile for polydisperse samples. In other
words, EDMILT might not be applicable for obtaining the
ideal diffusion coefficient distribution ranges of polydisperse
components. Actually, EDMILT employs sharp peaks to fit the
broad peaks and obtains the average diffusion coefficients
(decay constants) of polydisperse components.
In conclusion, we propose a general NMR reconstruction

method for resolving multidimensional ILT problems and
achieve high-resolution Laplace NMR spectra based on tensor
techniques and sparsity assumption. This method can be
applied to dynamic related NMR experiments and serve as a
tool for the future development of multidimensional Laplace
NMR spectroscopy. The experiments prove that this proposed
method can effectively recover dynamic information related to
diffusion and relaxation behaviors in a high-resolution manner
compared to the state-of-the-art ILT methods. Thus, it may
promote the development of multidimensional Laplace NMR
as an essential branch of NMR spectroscopy and shows a
promising prospect for diverse applications of Laplace NMR.
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