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High-dimensionality is ubiquitous in various scientific fields such as imaging genetics,

where a deluge of functional and structural data on brain-relevant genetic polymorphisms

are investigated. It is crucial to identify which genetic variations are consequential in

identifying neurological features of brain connectivity compared to merely random noise.

Statistical inference in high-dimensional settings poses multiple challenges involving

analytical and computational complexity. A widely implemented strategy in addressing

inference goals is penalized inference. In particular, the role of the ridge penalty in

high-dimensional prediction and estimation has been actively studied in the past several

years. This study focuses on ridge-penalized tests in high-dimensional hypothesis testing

problems by proposing and examining a class of methods for choosing the optimal

ridge penalty. We present our findings on strategies to improve the statistical power

of ridge-penalized tests and what determines the optimal ridge penalty for hypothesis

testing. The application of our work to an imaging genetics study and biological research

will be presented.

Keywords: high-dimensional testing, genome-wide association studies, neuroimaging, ridge penalization,

imaging genetics

1. INTRODUCTION

Even with the advancements of genome-wide association studies over the past two decades,
unraveling the genetic basis of many complex neurological conditions remains to be a challenge.
Often, each individual’s genetic information has a small contribution to disease risk and can
be highly heterogeneous (Peper et al., 2007; Marenco and Radulescu, 2010; Tost et al., 2012;
Batmanghelich et al., 2013). Imaging genetics offers an approach to understanding the genetic basis
of neurological disorders by investigating the integrated multi-scale genomic data, multimodal
brain imaging information, and environmental risk factors (Thompson et al., 2013; Nathoo et al.,
2019). The rationale for imaging genetics is that by examining single nucleotide polymorphisms
(SNPs), we may discover essential insights into the brain-relevant genetic polymorphisms to
understand better the neural architecture through which psychopathology may emerge. Typically,
these studies involve a small number of subjects relative to the amount of information available
per subject, such as millions of SNPs, thousands of genetic variants or differentially methylated
probes, hundreds of thousands of voxels, and dozens to hundreds of electroencephalogram (EEG)
channels. Hence, both explanatory and response variables in imaging genetics studies can be
high-dimensional in nature.
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However, the joint analysis of both high-dimensional
imaging and genetic data presents major computational and
theoretical challenges for existing analytical methods (Nathoo
et al., 2019) as well as the proliferation of false discoveries
(Meyer-Lindenberg et al., 2008). Widely-implemented methods
to fit high-dimensional statistical models include penalized
regression where some form of regularization is imposed. The
penalized regression literature generally adopts the perspective of
maximum likelihood theory. In the context of linear regression,
the negative log likelihood or loss function has the form L =

‖Y− Xβ‖22 where X is an n × p design matrix of explanatory
variables andY is an n×qmatrix of responses. The classic, unique
solutionminimizing the loss functionL is β̂OLS = (X⊤X)−1X⊤Y
when n > p and X has full column rank.

As p increases for a fixed n, the direct application of
regression model and likelihood-based methods are encumbered
by several issues. For example, an overfitted model may lead
to large variance and low performance in testing data, i.e.,
low generalization. When the number of explanatory variables
exceeds the sample size, the least squares estimate is not unique
because the computation involves inverting the singular X⊤X.
Regularization methods are often adopted to overcome these
problems, in which case the objective function is modified to be
Q(β | X,Y) = L(β | X,Y)+Pλ(β) where Pλ is a penalty function
and λ is a tuning parameter. For γ ≥ 0, the Lγ norm of β is
formally defined as

‖β‖γ =




p∑

j=1

|βj|
γ




1/γ

. (1)

This class of well-known penalization functions and criteria aim
to balance the trade-off between bias and variance or between
complexity and generalization. For example, both AIC and BIC,
two well-known criteria, belong to the L0 norm, as ‖β‖0 is
the number of non-zero elements in β . The L1 norm is often
considered as a convex relaxation of the L0 norm, and it achieves
both sparsity and computational efficiency. The L2 norm, the
penalty of which is often known as the ridge penalty or Tikhonov
regularization, was motivated for ill-conditioned or close to
ill-conditioned problems (Tikhonov, 1943; Hoerl, 1962; Hoerl
and Kennard, 1970). Ridge penalty has also been used alone
or combined with L1 in high-dimensional inference problems
and deep neural networks. For example, for genetic predictive
problems or association studies, ridge penalty has been widely
used (Hayes et al., 2001; Liu et al., 2007; Cule et al., 2011; de los
Campos et al., 2013; Lin et al., 2013, 2016; Zhao and Zhu, 2019).

More recently, ridge regression has been intensively studied
as a way to try to understand why overfitted models can have
satisfactory predictive performance in testing data. For example,
it has been observed that models trained using deep neural
networks not only have an almost perfect fit to the training
data, but also generalize well to testing data (Zhang et al., 2016).
Recall that a ridge regression applies an L2 penalty, i.e., the
corresponding objective function is

Q(β | X,Y) = ‖Y− Xβ‖22 + λ ‖β‖22. (2)

The ridge penalty is particularly attractive to work with because
the maximum penalized likelihood estimator has a simple
closed form. This objective function is differentiable and it is
straightforward to show that its minimum occurs at

β̂λ = (X⊤X+ λIp)
−1X⊤Y. (3)

Thus, the ridge solution includes the ordinary least squares
solutions as a special case when λ = 0.

The ridge regression methodology yields a class of biased
estimators, and massive literature is driven toward identifying
an optimal ridge penalty parameter to be used in practice. The
primary objective is to ensure that the ridge estimator has lowest
mean squared error (Hoerl and Kennard, 1970). This translates to
the pragmatic goal of developing methods which produce ridge
estimates that are more useful than the least squares estimates.
Despite the numerous available methods for choosing an optimal
value, the ultimate choice of λ for a specific application still
remains unsolved because the optimal level of regularization
usually depends on the unknown characteristics of the data
generating distribution (Patil et al., 2021).

As ridge regression is mathematically neat and relatively easy
to study, it has been recently widely used as the first attempt
to understand under what circumstances overfitting is harmless
or benign, especially in high-dimensional settings. A variety of
combinations have been examined, such as asymptotic or fixed
sample sizes, random coefficients or fixed coefficients, the ratio
of p to n, and conditional on or marginalize the covariate matrix.
A representative but by no means complete list of studies include
(Randolph et al., 2012; Dobriban and Wager, 2018; Hastie et al.,
2019; Bartlett et al., 2020; Kobak et al., 2020; Patil et al., 2021) and
some of them are credited for introducing eye-catching phrases
such as “benign overfitting” and “double descent”. These studies
involving ridge regression are devoted to either performance
of prediction or regression coefficient estimation. To the best
of our knowledge, no systematic work has been conducted to
investigate the role that ridge penalty plays in high-dimensional
hypothesis testing.

Moreover, to explore the relationship of neurological and
genetic information in imaging genetic studies, we are interested
in determining whether given sets of features are significantly
associated in aggregate. In this study, we will utilize one of the
extensions (Pluta et al., 2021) of the classical Mantel test (Mantel,
1967) to characterize the association between two potentially
high-dimensional distance matrices. The Mantel test (Mantel,
1967) is an easy-to-implement and flexible procedure, which was
originally motivated by assessing the association between the
temporal and spatial relationship of leukemia cases and similar
diseases. As presented in Mantel (1967), the temporal-spatial
association can be examined by using the correlation of the
temporal and spatial distance matrices of the observed leukemia
cases. Similar or modified approaches have been commonly
applied, such as identifying the spatial pattern of genetic variation
by correlating genetic and geographic distances (Diniz-Filho
et al., 2013). In the extension presented by Pluta et al. (2021),
a Mantel-type of test with ridge regularization was presented
as a compromise between the score tests from fixed-effects and
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random-effects model. The overarching goal of this study is
to examine a class of methods for choosing the optimal ridge
penalty parameter and incorporate these in the Adaptive Mantel
test (Pluta et al., 2021) for hypothesis testing problems with
high-dimensional data set up.

Our contribution to the initial work by Pluta et al. (2021) is
three-fold. First, we propose a thresholding procedure aligned
to the philosophical considerations of ridge regression in high-
dimensional settings. In this study, we allow the set of candidate
values of λ to include negative values and investigate how these
negative penalty parameters can affect the corresponding Type I
error and empirical power of the Adaptive Mantel Test. Second,
we extend the AdaMant algorithm to include the selection
of the optimal ridge penalty parameter via generalized cross-
validation. To illustrate the almost sure convergence results in
Patil et al. (2021) using imaging genetics data, we also implement
the selection of the ridge penalty parameter using leave-one-
out cross-validation. The resulting optimal choice between the
two cross-validation procedures will be compared. Third, we also
investigate the Type I error rate and empirical power of the test
using the parametric asymptotic null distribution.

This article is outlined as follows. The general frameworks
of Mantel Test and score test in linear models are presented
in Sections 2.1 and 2.2. Some existing procedures for selecting
the ridge penalty parameter are discussed in Section 2.3. The
rationale and contributions of our work are illustrated in
Section 2.4. The class of methods for choosing the optimal
ridge penalty are presented in Section 3. Finally, the numerical
studies involving the proposed methods and the application to
an imaging genetics data set are available in Section 4.

2. RELATED WORK

2.1. Mantel Test
Suppose we have (Xi,Yi) ∈ R

p×Rq for all subjects i = 1, 2, . . . , n
where p is the number of explanatory variables and q is the
number of response variables. In imaging genetics studies, the
value of p usually correspond to the total number of genetic
variations, such as single nucleotide polymorphisms (SNPs)
in genomics or differentially methylated probes in epigenetics.
Meanwhile, the response variables correspond to the brain
imaging information, such as pairwise alpha-band coherence
measures obtained from several EEG channels.

Suppose Xi and Xj correspond to the vector of explanatory
variables for subjects i and j, respectively. As described in Pluta
et al. (2021), let KX(·, ·) and K

Y(·, ·) be positive semi-definite
kernel functions on X × X and Y × Y, respectively where the
data matrices X and Y are column-centered. Specifically, we
are interested in investigating the kernel function K

X(Xi,Xj) =

X⊤i WλXXj whereWλX = (X⊤X+ λXIp)
−1 is the ridge-penalized

weight matrix. The corresponding Gram matrix for this kernel is
denoted by

HλX = X(X⊤X+ λXIp)
−1X⊤. (4)

We define K
Y and the associated Gram matrix KλY similarly

using Y. The Mantel test statistic is equivalent to tr(HλXKλY ).

Under the null hypothesis, there is no association between the
similarities measured by K

X and K
Y. In practice, the reference

distribution can be obtained via a permutation procedure
(Nichols and Holmes, 2002; Shaw and Proschan, 2013; Zhou
et al., 2014). For instance, we can simultaneously permute the
rows and columns of Y, while keepingX fixed. Equivalently, for a
fixed matrix HλX , we can permute the observation labels for KλY

and calculate the empirical null distribution.

2.2. Score Test in Linear Models
The general framework of Mantel Test presented in Section
2.1 encompasses several association tests (for examples, see
Robert and Escoufier, 1976; Székely et al., 2007; Xu et al.,
2017) and various kernel functions can be investigated to reflect
model complexity and detect underlying linear or non-linear
associations. Moreover, Pluta et al. (2021) developed a unified
framework of linear models that links the Mantel test and Rao’s
score test (Rao, 1948) in a class of tests indexed by the ridge
penalty. Following the discussion of Pluta et al. (2021), we
consider the following linear models:

1. Fixed Effects Model: Y = Xβ + ε, where ε ∼ N(0, In,6)
or alternatively using the vectorized response variables,
vec(Y) ∼ N(vec(Xβ),6⊗In) where vec(·) is the vectorization
operator and ⊗ refers to the Kronecker product operator
on two matrices.

2. Random Effects Model: Y = Xb + ε where ε ∼ N(0, In,6q)
and b ∼ N(0, Ip,6b) or equivalently, vec(Y) ∼ N(0,6b ⊗

XX⊤ +6 ⊗ In).

To describe the score statistic compactly, we consider the
Singular Value Decomposition (SVD) of the matrix X = UDV⊤,
where U and V are orthogonal, and D is a diagonal matrix with
the (non-negative) singular values. To perform the global test
H0 :β = 0 under the fixed effects model, the score test statistic
is given by

SFE ≍ Y⊤X(X⊤X)−(X⊤Y) = tr(ZZ⊤) =

r∑

j=1

Z2
j

H0
∼

r∑

j=1

χ2
1,j (5)

where Z = U⊤Y and r = rank(X). The notation A− denotes the
Moore-Penrose pseudoinverse of the matrix A. It is well-known
that the Moore-Penrose psedoinverse leads to the minimum
norm solution to the least-squares problem. On the other hand,
to test H0 :6b = 0 under certain conditions, the score test
statistic for the random effects (variance components) model is

SRE ≍ Y⊤X(X⊤Y) = tr(Z⊤DD⊤Z) =

r∑

j=1

d2j Z
2
j

H0
∼

r∑

j=1

d2j χ
2
1,j.

(6)
Finally, the ridge regression score test statistic for
testing H0 : β = 0 is

SRR ≍ Y⊤X(X⊤X+ λXIp)
−1(X⊤Y)

= tr(Z⊤D(D⊤D+ λXIp)
−1D⊤Z). (7)
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Hence,

r∑

j=1

d2j

d2j + λX
Z2
j

H0
∼

r∑

j=1

d2j

d2j + λX
χ2
1,j. (8)

As summarized in Pluta et al. (2021), the score test statistics
described in (5) – (7) can be formulated equivalently as
tr(HλXKλY ) which is the expression for the Mantel test statistic
described in Section 2.1. In particular, the fixed effects score test
statistic is equivalent to tr(H0YY

⊤) where H0 = X(X⊤X)−X⊤.
Meanwhile, when 6 = σ 2Iq and 6b = σ 2

b
Iq, then the

score statistic corresponding to the random effects model is
proportional to tr(H∞K∞) where H∞ = XX⊤ and K∞ =

YY⊤ (Pluta et al., 2021). Lastly, the ridge regression score test
statistic can be written as tr(HλXYY

⊤) using HλX provided in
(4). Furthermore, Pluta et al. (2021) highlights that the ridge
regression score statistic is a compromise between the fixed
effects and variance components tests. For small values of the
ridge penalty λX , the test statistic in (7) approaches the fixed
effects score test statistic, and is identical at λX = 0. Also, Pluta
et al. (2021) remarked that a large choice of λX yields a test close
to the random effects score statistic, converging to identical tests
as λX →∞.

2.3. Examining the Choice of Ridge Penalty
Parameter
Motivated by the framework introduced by Pluta et al. (2021),
which categorizes the association test and score tests into a single
class of tests characterized by the ridge penalty, we examine
the choice of this parameter in the high-dimensional hypothesis
testing set-up. In practice, the optimal choice of ridge penalty
parameter is based on the observed data and proper data-
dependent tuning is among the central tasks in statistical learning
(Patil et al., 2021).

2.3.1. Ridge Predictive Performance
The role of the ridge penalty in high-dimensional prediction
and estimation has been an active area of research in the past
several years. For both asymptotic and non-asymptotic settings,
the predictive performance of ridge regression has been studied
extensively (see Hsu et al., 2012; Cule and De Iorio, 2013; Karoui,
2013; Dobriban and Wager, 2018; Hastie et al., 2019; Wu and
Xu, 2020; Richards et al., 2021 for examples). Furthermore,
Kobak et al. (2020) demonstrated that an explicit positive ridge
penalty can fail to provide any improvement over the minimum-
norm least squares estimator using simulations and real-life high-
dimensional data sets. In particular, they showed that the optimal
value of ridge penalty in this situation could be negative when
n≪ p. Similar to these work, in this article, we focus on the role
of ridge penalty in hypothesis testing for a univariate response,
i.e., q = 1. The extension of to multivariate responses will
be considered in future research. In Sections 2.1 and 2.2, λX
corresponds to the tuning parameter in the Gram matrix of the
ridge kernel associated with X which is not necessarily the same
as λY , the tuning parameter in the ridge kernel corresponding
to Y. However, under the univariate response y setting, we only

have to specify the ridge penalty parameter λX . For brevity, we
will refer to λX as λ in the next sections.

2.3.2. Ridge Cross-Validation
The performance of the fitted model is affected by the
calibration of the regularization parameter. One of the most
widely used methods for regularization tuning is cross-validation
(for examples, see Allen, 1971; Stone, 1974; Delaney and
Chatterjee, 1986; Arlot and Celisse, 2010). In ridge regression,
two commonly used cross-validation procedures are generalized
cross-validation (GCV) (Golub et al., 1979) and leave-one-
out cross-validation (LOOCV), a variant of the k-fold cross-
validation (Hastie et al., 2009). GCV, a rotation-invariant version
of the predicted residual error sum of squares (PRESS), is a
popular choice in practice because it does not require model
refitting. Similarly, approximation methods to LOOCV (e.g.,
Kumar et al., 2013; Meijer and Goeman, 2013) to circumvent
the problem of computational complexity brought by multiple
model refitting.

The LOOCV estimate for a response vector y containing n
observations is defined as

loocv(λ) =
1

n

n∑

i=1

(
yi − X⊤i β̂−i,λ

)2
(9)

where β̂−i,λ is the ridge estimate when the ith observation is
not included in the training set. As cited in Patil et al. (2021),
an alternative formula for the LOOCV (Hastie et al., 2009) is
given by

loocv(λ) =
1

n

n∑

i=1

(
yi − X⊤i β̂λ

1− [Hλ]ii

)2
(10)

where [Hλ]ii corresponds to the ith diagonal entry of the matrix
Hλ = X(X⊤X + λIp)

−X⊤. Closely similar to (10), the GCV
estimate formulation provided by Patil et al. (2021) is

gcv(λ) =
1

n

n∑

i=1

(
yi − X⊤i β̂λ

1− tr(Hλ)/n

)2
(11)

where the average of the trace elements is used instead of the ith
diagonal entry. When λ = 0 and rank(X) = n, the diagonal
elements of H0 is equal to 1 and tr(H0) reduces to n. In this case,
the ridge regression is an interpolator of Xβ̂λ = y (Patil et al.,
2021). Since both numerator and denominator of the expressions
in (10) and (11) are 0, Hastie et al. (2019) defined the LOOCV
and GCV estimates based on the limits λ→ 0, respectively.

Moreover, the asymptotic optimality of LOOCV and GCV
tuning for ridge regression in high-dimensional setting is
presented by Hastie et al. (2019). Patil et al. (2021) generalized the
scope discussed in Hastie et al. (2019) by showing that the GCV
converges almost surely to the expected out-of-sample prediction
error, uniformly over a set of candidate ridge regularization
parameters. The discussion provided by Patil et al. (2021) is
aligned with Kobak et al. (2020) wherein the optimal ridge
penalty parameter can be positive, negative, or zero.
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2.4. Rationale and Illustration of
Contributions of Our Work
The AdaptiveMantel test (AdaMant) coined by Pluta et al. (2021)
is an extension of the classical Mantel Test by incorporating
the ridge penalty parameter to association testing. The adaptive
procedure involves the calculation of similarity matrices Hm =

K
X
m(X) and Km = K

Y
m(Y) for every pair of input metrics or

kernels (KX,KY),m = 1, 2, . . . ,M. Under the null hypothesis
of no association between the similarities measured by K

X and
K
Y, Pluta et al. (2021) proposed a permutation procedure where

they generate B permutations of the observation labels for Hm

for a fixed matrix Km. The p-value P
(b)
m is computed as a function

of the test statistic tr(H
(b)
m Km) for each m = 1, 2, . . . ,M and

permutations b = 1, 2, . . . ,B. Finally, Pluta et al. (2021) defined

the AdaMant test statistic as P(0) = minm∈{1,2,...,M} P
(0)
m where

b = 0 refers to the original data set. Using the permutation
procedure to obtain the empirical null distribution of P(0), the
corresponding AdaMant p-value is the proportion of P(b) less
than or equal to P(0), that is,

PAdaMant =
1

B+ 1

B∑

b=0

I(P(b) ≤ P(0)) (12)

where P(b) = minm∈{1,2,...,M} P
(b)
m .

However, the main limitation in the ridge-penalized AdaMant
procedure by Pluta et al. (2021) is the optimal selection
of the ridge penalty parameter. When kernels of the form
X(X⊤X + λIp)

−1X⊤ are considered in AdaMant, λ is chosen
to be proportional to the signal-to-noise ratio re-expressed as
a function of genetic heritability h2 and number of explanatory
variables p (Pluta et al., 2021). This implies that the value of the
chosen ridge penalty is restricted to be non-negative. In their
examples, the ridge penalty is chosen from a set with only a few
values such as λ ∈ {100, 1, 000, 2, 500, 5, 000, 7, 500, 25, 000,∞}.
With a limited number of ridge penalty parameters to choose
from, the λ which yields the highest empirical power may not
be captured by the initial study of Pluta et al. (2021).

As highlighted in Section 1, the primary objective of this
article is to examine the optimal choice of ridge penalty in the
high-dimensional hypothesis testing scenario. To illustrate the
utility of addressing this goal and our subsequent contributions,
we study liver.toxicity data set in Bushel et al. (2007). This data
contains microarray expression levels of p = 3, 116 genes and
10 clinical chemistry measurements in liver tissue of n = 64
rats. First, we replicate the results presented in Kobak et al.
(2020) using 10-fold cross-validation for varying ridge penalty
parameter λ using one dependent variable at a time. The cross-
validated MSE plotted for each dependent variable is displayed
in Figure 1. In Figure 1A where n > p, Kobak et al. (2020)
showed that this result is in agreement with the seminal article by
Hoerl and Kennard (1970) wherein the optimal penalty is always
larger than zero under the low-dimensional setting. However, in
Figure 1B, five out of ten dependent variables yielded aminimum
cross-validated MSE corresponding to the smallest value of λ

considered when n≪ p (Kobak et al., 2020).
Motivated by the aforementioned results, we investigated

the empirical power and average of the -log10 p-values of the

Adaptive Mantel test for several values of λ. We employ the
liver toxicity data as our motivating example because it has
been widely used recently to better understand overfitting. It was
found that the clinical variables may not facilitate in the detection
of paracetamol toxicity in the liver, but gene expression could be
an alternative solution (Heinloth et al., 2004; Bushel et al., 2007).
In this illustration, we compute the empirical power for a fixed λ,
using one dependent variable at a time. For each replication, we
add a vector of random noise to the vector of response, that is,
ys = y + εs for s = 1, 2, . . . , S. Under the null hypothesis when
β = 0, the linear model y = Xβ + ε reduces to y = ε. Hence, we
can view the recursive expression as ys = (Xβ + ε) + εs 6= ε

in favor of the case that the alternative hypothesis is true. For
s = 1, 2, . . . , S, we compute the AdaMant p-value at each λ using
ys and the entire matrix of gene expression X as inputs to the
ridge kernel described in (4). After repeating this procedure for
a total of S replications, the empirical power is computed as the
proportion of replications where the Adamant p-value is less than
the nominal level of significance α.

Powerλ =
1

S

S∑

s=1

I(PAdaMant,λ,s ≤ α) (13)

The results are presented in Figure 2.
To circumvent the limitations of the range of ridge penalty

parameter considered in Pluta et al. (2021), we allowed the
interval of λ to include negative, zero and positive values.
According to Figure 2A, even though there is a more distinct
gradient in the values of the average of the − log10 p-values
compared to the empirical power in Figure 2B, eight out of
ten dependent variables displayed more or less similar patterns
in terms of empirical power. Also, based on Figure 2B, some
λ < 0 lead to an empirical power approaching 1 when n ≪ p.
This result is in alignment with the main result reported by
Kobak et al. (2020) where the optimal ridge penalty for real-
world high-dimensional data can be negative due to implicit
ridge regularization. This phenomenon prompted us to further
investigate real-valued ridge penalty parameters using imaging
genetics data where the signals are weaker and sparsity is much
more evident.

3. METHODOLOGY

In this section, we discuss the proposed methodology to
incorporate the optimal selection of the ridge penalty parameter
via cross-validation in the Adaptive Mantel test. The interval
from which the optimal ridge penalty parameter will be selected
from is discussed in Section 3.1 while the proposed methods
are discussed in 3.2. The two algorithms to be compared are
discussed thoroughly in Sections 3.2.1 and 3.2.3. Meanwhile, the
features of the score test statistic are discussed in Section 3.2.2.

3.1. Range of Ridge Penalty Parameter
Before delving into the optimal choice of ridge penalty parameter
to be used in hypothesis testing, it is crucial to specify the
domain of sensible values first. Formally, we describe how to
choose the interval I = (λmin,∞) in this section. Following the
third assumption in the main results of Patil et al. (2021), the
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FIGURE 1 | Cross-validated MSE of ridge regression using (A) n = 64 and p = 50 randomly selected explanatory variables; (B) n = 64 and p = 3, 116, all

explanatory variables. The blue dot corresponds to the minimum cross-validated MSE for each dependent variable.

FIGURE 2 | Heat maps of (A) Average of − log10 p-values and (B) Empirical Power of the Adaptive Mantel test using the liver toxicity data with n = 64 observations,

p = 3, 116 genetic features. The green vertical line corresponds to λ = 0.

minimum eigenvalue is bounded below by a constant ℓmin >

0 where ℓmin is independent of p. Patil et al. (2021) proposed
that the smallest possible value of the regularization parameter
wherein the GCV converges almost surely to LOOCV is given by
λmin = −(

√
p/n − 1)2ℓmin. However, Patil et al. (2021) did not

clearly specify the value of ℓmin apart from the constraint that it
is positive.

In our proposed method, we extend the work of Patil et al.
(2021) by relaxing the assumption on the minimum eigenvalue

and allowing a fraction of eigenvalues to accumulate near zero.
Specifically, we define a threshold on the small but non-zero
singular values of X. Let d1 ≥ d2 . . . ≥ dr denote the
non-negative singular values. To identify λmin, we first compute
the adjusted singular values as follows

d̃j =

{
dj dj ≥ τ

0 dj < τ
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where τ is some threshold based on the quantiles. A generic
choice for τ is the median of the singular values (Bühlmann and
Ćevid, 2020). Next, we define ℓmin = min{d̃j : d̃j > 0}. The value
of ℓmin coincides with τ if the value of the quantile is equal to
one of the singular values. Otherwise, ℓmin is the singular value
greater than and closest to the quantile.We then compute λmin =

−(
√
p/n−1)2ℓmin where the range of λ allows for negative values

including zero, when p 6= n. We will investigate several values of
τ and how it affects both Type I error rate and empirical power
in the numerical studies section.

3.2. Proposed Methods
We extend the Adaptive Mantel Test (AdaMant) by Pluta et al.
(2021) to include the optimal selection of the ridge penalty
parameter via cross-validation in this section. For simplicity, we
will refer to this proposed procedure as AdaMantCV. By using a
permutation procedure on the set of test statistics, this procedure
can simultaneously test across a set of ridge penalty parameters
without increasing the Type I error rate (Pluta et al., 2021).
Prior to the analysis, centering and scaling the explanatory and
response variables is necessary because they lead to potential
computational efficiency and stability and conceptual simplicity.
More importantly, performing this ensures that penalty term will
have an similar effect on all coefficient estimates.

3.2.1. Adaptive Mantel Test With Cross-Validation
Under the null hypothesis of no association between the variation
in a set of candidate SNPs and the variation in brain imaging
data, say EEG coherence, we will implement a permutation
procedure where B permutations are generated from rows of
y for a fixed matrix X. Since the matrix X does not vary
across the permutations generated, we only need to perform
SVD once to obtain the vector of singular values for the
calculation of the weights and specification of the interval of ridge
penalty parameters.

We start by specifying the number of possible values of
the ridge penalty parameter λ ∈ I, denoted by M and the
threshold τ . Using these inputs coupled with the singular values,
we implement the proposed method in Section 3.1 to identify the
interval I = (λmin,∞). Unlike Pluta et al. (2021), the proposed
algorithm only require the kernel KX

λ as input because we only
consider the univariate response y in this study. For K

X
λ , we

include a single family of kernels with varying ridge penalty
parameters. For a given cross-validation measure, say GCV, we
compute the optimal value of the ridge penalty parameter using
y(b) and X as

λ̂(b) = argmin
λ∈I

gcv(λ), b = 0, 1, 2, . . . ,B (14)

where b = 0 is associated to the original data set.
For each b = 0, 1, 2, . . . ,B, we also compute the ridge
regression score test statistic T(b) (̂λ(b)) given by tr(Hλ̂(b)K

(b))
whereHλ̂(b) = X(X⊤X+ λ̂(b)Ip)

−1X⊤.

To account for varying magnitudes of the quantity T(b) (̂λ(b))
for different values of λ̂(b), our proposed AdaMantCV test

statistic P(0) is transformed to take on values between 0 and 1,
inclusive. This test statistic is computed as follows

P(0) =
1

B+ 1

B∑

b=0

I
(
T(0)(̂λ(0)) ≤ T(b) (̂λ(0))

)
. (15)

This indicates that for a fixed value of λ̂(0), we want to compare
the magnitude of the observed test statistic from the original data
vs. the computed test statistics using the permuted data. Finally,
the analogous AdaMantCV p-value is the proportion of P(b) no
greater than P(0), that is,

PCV =
1

B+ 1

B∑

b=0

I
(
P(b) ≤ P(0)

)
, where

P(b) =
1

B+ 1

B∑

c=0

I
(
T(b)(̂λ(b)) ≤ T(c) (̂λ(b))

)
. (16)

The general pseudocode of the AdaMantCV algorithm is
presented below. The limitation of the straightforward
application of this procedure is that it is computationally
expensive when n ≪ p (Pluta et al., 2021). To deal with this,
following Pluta et al. (2021), we utilized the identity presented in
Henderson and Searle (1981) and Kobak et al. (2020).

(X⊤X+ λIp)
−1X⊤ = X⊤(XX⊤ + λIn)

−1 (17)

wherein the dimension of thematrix to be inverted is n×n instead
of p × p. Additionally, Pluta et al. (2021) has shown that the
Mantel test statistic has a complexity of O(n2) and coupled with
B permutations, the total computational complexity is O(n2p +
n2B), which is less than the required computational complexity
using SVD.

1: procedure ADAPTIVE MANTEL TEST WITH

CV:(X, y,KX
λ , CV(λ), τ ,M,B)

2: Specify the interval I as a function of (X, τ ,M)
3: Calculate λ̂(0) : = argmin

λ∈I

CV(λ)

4: Calculate T(0)(̂λ(0)) ← tr[Hλ̂(0)K] where Hλ̂(0) =

X(X⊤X+ λ̂(0)Ip)
−1X⊤ and denote K = yy⊤

5: Generate B permutations of y, labeled y(b), and denote
K(b) = y(b)(y(b))⊤∀b = 1, . . . ,B

6: Calculate λ̂(b) : = argmin
λ∈I

CV(λ)

7: T(b) (̂λ(b))← tr[Hλ̂(b)K
(b)] ∀b = 1, . . . ,B where Hλ̂(b) =

X(X⊤X+ λ̂(b)Ip)
−1X⊤

8: T(c) (̂λ(b))← tr[Hλ̂(b)K
(c)] ∀c = 0, 1, . . . ,B

9: P(b) ←
1

B+ 1

B∑

c=0

I
(
T(b) (̂λ(b)) ≤ T(c)(̂λ(b))

)
∀ b, c =

0, 1, . . . ,B

10: PCV ←
1

B+ 1

B∑

b=0

I
(
P(b) ≤ P(0)

)

11: end procedure
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3.2.2. Features of the Score Test Statistic in

AdaMantCV
The ridge regression score test statistic T(b) (̂λ(b)) = tr(Hλ̂(b)K

(b))
can be expressed equivalently as

T(b) (̂λ(b)) =

r∑

j=1

d2j

d2j + λ̂(b)
[Z

(b)
j ]2 =

r∑

j=1

wj(̂λ
(b))[Z

(b)
j ]2 (18)

where Z
(b)
j = U⊤j y

(b), as described in (8). From the specification

of the test statistic in (18), the weights are non-negative if the set
of possible values of λ is restricted to the positive range only.
More importantly, 0 < wj(̂λ

(b)) < 1 for non-zero singular
values dj which indicates that the test statistic components shrink
toward zero if we choose a large positive value of the ridge penalty

parameter. This means that for a fixed [Z
(b)
j ]2 > 0, the weight

wj (̂λ
(b)) corresponding to the jth component of the score test

statistic T(b)(̂λ(b)) has the following features:

(i) wj (̂λ
(b)) → 0 if λ̂(b) → ∞. However, as argued in Pluta

et al. (2021), the standardized version essentially indicates
that wj(∞) ∝ d2j ;

(ii) wj (̂λ
(b)) = 1, i.e., equal weights, if λ̂(b) = 0; and

(iii) wj (̂λ
(b)) > 1 and, smaller but a positive d2j weight leads

to a larger weight in a relative sense if λ̂(b) < 0 provided
d2j + λ̂(b) > 0.

This suggests that in the context of Adaptive Mantel Test in
high-dimensional setting, a negative choice of penalty parameter
has potential in achieving superior empirical power when Z2

j

tends to associate with directions of low-variance where variance
is measured by the eigenvalues of variance-covariance matrix
of the covariates.

Another crucial consideration for the score test statistic in (18)
is that the weights should be non-negative for all j = 1, 2, . . . r =
min(n, p) because the statistic is asymptotically distributed as a
mixture of chi-squared random variables. If λ̂(b) ≥ 0, then there
is no constraint about the form of the test statistic. However, if
λ̂(b) < 0, then we should ensure that the all the weights remain
positive to satisfy the asymptotic distributional assumptions. A
simple and straightforward strategy to handle negative weights
is to use the adjusted weights defined as w̃j = max(wj, 0). In

addition, if λ̂(b) = 0 and dj = 0, we will utilize the formula for
the fixed effects score test statistic mentioned in (5) to avoid the
case where both the numerator and denominator of (18) is zero.

We can also show mathematically that for any j = 1, 2, . . . , r,
the optimal value of the ridge penalty parameter must satisfy the
following condition

λ̂(b) > max
1≤j≤r
−d2j

to ensure that the weights are non-negative. This shows that a
potential choice for λ⋆

min = −d
2
(1)
+ ǫ, where d2

(1)
is the smallest

eigenvalue and ǫ > 0. The value of ǫ is chosen to be the
machine tolerance error in a statistical software. Formally, ǫ is
the smallest positive floating-point number such that 1 + ǫ 6= 1.

However, in the high-dimensional setting, the smallest eigenvalue
is very close to zero and could even be lower than the machine
tolerance ǫ. This may lead to the case that λ⋆

min > 0, i.e., the
interval of ridge penalty parameters include positive values only.
To address the objective of investigating the role of real-valued
ridge penalty parameters in high-dimensional hypothesis testing,
our focus in this study is on intervals I where the lower bound
is negative.

3.2.3. Adaptive Mantel Test With Gamma

Approximation and Cross-Validation
Alternatively, we can use the B permutations to estimate the
parameters of the asymptotic null distribution. As mentioned
previously, test statistic described in (8) is asymptotically
distributed as a mixture of chi-squared random variables. To
characterize this null distribution, we will use the Gamma
distribution instead because it captures a general family of
distributions where the chi-squared distribution is a special
case. For a fixed λ ∈ I, suppose T(1)(λ),T(2)(λ), . . . ,T(B)(λ)
is a random sample from Gamma distribution under the null
hypothesis. We compute the parameter estimates α̂(λ) and β̂(λ)
using Method of Moments for each λ ∈ I.

Following the classical definition of p-value P(b)(̂λ(b)), we
compute for the probability of T(b) (̂λ(b)) is at least as large as the
observed value t(b)(̂λ(b)) when the null hypothesis is true, that is,

P(b)(̂λ(b)) = PH0 [T
(b)(̂λ(b)) ≥ t(b)(̂λ(b))]. (19)

The null distribution used in (19) is Gamma, with plug-in
estimators for the shape and rate parameters denoted by α̂(̂λ(b))
and β̂ (̂λ(b)), respectively. The test statistic for this procedure is
given by P(0) which is the p-value in (19) associated with the
optimal ridge penalty parameter λ̂(0) for the original data. Similar
to AdaMantCV, the p-value of this test can be computed using
the proportion of P(b) = P(b)(̂λ(b)) less than or equal to P(0)

for all b = 0, 1, . . . ,B. The general pseudocode of the Adaptive
Mantel Test with Gamma Approximation and Cross-Validation
(AdaMantGACV) algorithm is presented below.

1: procedure ADAPTIVE MANTEL TEST WITH GAMMA

APPROX AND CV:(X, y,KX
λ , CV(λ), τ ,M,B)

2: Specify the interval I as a function of (X, τ ,M)
3: Generate B permutations of y, labeled y(b), ∀b =

0, 1, . . . ,B. Denote K(b) = y(b)(yb)⊤.
4: Calculate λ̂(b) : = argmin

λ∈I

CV(λ)∀b = 0, 1, . . . ,B

5: T(b) (̂λ(b))← tr[Hλ̂(b)K
(b)] ∀b = 0, 1, . . . ,B

6: P(b)(̂λ(b)) ← PH0 [T
(b) (̂λ(b)) ≥ t(b)(̂λ(b))] ∀b =

0, 1, . . . ,B
7: P(b) ← P(b) (̂λ(b))∀b = 0, 1, . . . ,B

8: PGACV ←
1

B+ 1

B∑

b=0

I
(
P(b) ≤ P(0)

)

9: end procedure
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TABLE 1 | Numerical comparison of the Type I error of Adaptive Mantel test (i) with cross-validation vs. (ii) with Gamma approximation and cross-validation using the

simulated data with n = 350, error standard deviation σ = 0.50 and β = 0.

Adaptive Mantel Test

With CV With GA and CV

Covariance structure p τ GCV LOOCV GCV LOOCV

Compound symmetric 500 None 0.042 0.042 0.036 0.036

Q1 0.030 0.028 0.032 0.028

Q2 0.048 0.050 0.052 0.052

1,000 None 0.048 0.048 0.038 0.038

Q1 0.044 0.044 0.042 0.042

Q2 0.036 0.036 0.036 0.036

Heteroskedastic 500 None 0.038 0.038 0.038 0.038

Q1 0.026 0.026 0.028 0.028

Q2 0.046 0.046 0.050 0.050

1,000 None 0.050 0.050 0.040 0.040

Q1 0.046 0.046 0.046 0.046

Q2 0.040 0.040 0.038 0.038

4. RESULTS

4.1. Simulation Studies
To gain insights regarding the performance of the proposed
procedures in terms of the correct and incorrect rejections, we
perform some simulation studies. The comparison is based on
four simulation settings:

(i) Number of explanatory variables p
(ii) Covariance structure of the simulated design

matrix X
(iii) True linear model specification where y is generated

from, and
(iv) Quantile of the singular values to be used as

threshold τ .

To mimic the characteristics of the real data set, we consider
n = 350 subjects and number of explanatory variables p as
either 500 or 1000. The design matrix X is generated from
multivariate normal distributionN(0p,6X) where the covariance
structure is either heteroskedastic or compound symmetric. For
the heteroskedastic covariance structure is 6X = Gp where
the jth diagonal entry is gj = log(j + 1), j = 1, 2, . . . , p.
Likewise, the compound symmetric structure6X is characterized
by ρX = 0.025.

As discussed in Section 2.2, we are also interested in
comparing the empirical power of the proposed methods when
the vector of responses are generated using either the fixed effects
or random effects model assumption. For the fixed effects model
under the alternative hypothesis, the coefficients are β = ξ1p
while b ∼ N(0, σ 2

b
) for the random effects model where ξ = 3

and σb = 0.50. Finally, we also want to explore whether the
threshold τ have an impact on both the empirical power and the
Type I error. In particular, we compare the scenarios wherein
τ = 0, that is, no thresholding is implemented vs. the setting

wherein we use the value of the first quartile (Q1) as well as
the median or second quartile (Q2) of the singular values as
the threshold.

There are four methods to be compared. For the Adaptive
Mantel Test with Cross-Validation, we will implement it
using GCV or LOOCV to select the optimal ridge penalty
parameter. Similarly, we will implement the Adaptive Mantel
Test with Gamma Approximation and Cross-Validation using
these two cross-validation techniques, denoted as GAGCV
and GALOOCV, respectively. For each simulation setting, 500
replications were run to estimate both the Type I error and
the empirical power. A total of B = 1000 permutations and
M = 250 values of λ were considered for each replication.
Relative to the simulation studies in Pluta et al. (2021), we
consider a more exhaustive range and selection of the ridge
penalty parameter.

When the null hypothesis is true, the Type I error rate is
computed empirically as

Type I error =
1

S

S∑

s=1

I(PCV,s ≤ α) (20)

where PCV,s represents the p-value of the Adaptive Mantel test
with either GCV, LOOCV, GAGCV, or GALOOCV for the sth
replication. On the other hand, when the null hypothesis is
not true, the empirical power is computed as the proportion of
correct rejections. Throughout the simulations, we consider the
level of significance α = 0.05.

Results from Table 1 show the numerical comparison of the
Type I error of the Adaptive Mantel test vs. the AdaMant
with Gamma Approximation test implementing the optimal
ridge penalty selection via generalized or leave-one-out cross-
validation. Given that both algorithms are permutation-based,
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TABLE 2 | Numerical comparison of the Empirical Power of Adaptive Mantel test (i) with cross-validation vs. (ii) with Gamma approximation and cross-validation using the

simulated data with n = 350, error standard deviation σ = 1 and β = ξ1p, ξ = 3.

Adaptive Mantel Test

With CV With GA and CV

Covariance structure p τ GCV LOOCV GCV LOOCV

Compound symmetric 500 None 0.062 0.062 0.104 0.104

Q1 0.342 0.290 0.378 0.326

Q2 0.348 0.288 0.382 0.324

1,000 None 0.998 0.998 0.998 0.998

Q1 1.000 1.000 1.000 1.000

Q2 1.000 1.000 1.000 1.000

Heteroskedastic 500 None 0.064 0.064 0.178 0.178

Q1 0.074 0.072 0.186 0.184

Q2 0.118 0.068 0.218 0.180

1,000 None 0.996 0.996 0.998 0.998

Q1 1.000 1.000 1.000 1.000

Q2 1.000 1.000 1.000 1.000

TABLE 3 | Numerical comparison of the Empirical Power of Adaptive Mantel test (i) with cross-validation vs. (ii) with Gamma approximation and cross-validation using the

simulated data with n = 350, error standard deviation σ = 1 and b ∼ N(0, σ 2
b Ip), σb = 0.50.

Adaptive Mantel Test

With CV With GA and CV

Covariance structure p τ GCV LOOCV GCV LOOCV

Compound symmetric 500 None 0.070 0.070 0.112 0.112

Q1 0.196 0.152 0.230 0.192

Q2 0.150 0.136 0.188 0.176

1,000 None 0.998 0.998 0.998 0.998

Q1 1.000 1.000 1.000 1.000

Q2 1.000 1.000 1.000 1.000

Heteroskedastic 500 None 0.092 0.092 0.268 0.268

Q1 0.084 0.092 0.266 0.268

Q2 0.088 0.092 0.268 0.268

1,000 None 0.996 0.996 0.996 0.996

Q1 1.000 1.000 1.000 1.000

Q2 1.000 1.000 1.000 1.000

they naturally control the Type I error rate at any specified
nominal level of significance α. Even though the p-values PGCV
and PLOOCV obtained using AdaMantCV vary, the resulting Type
I error rates using either GCV or LOOCV aremore or less similar,
and the proportion of incorrect rejections is controlled. A similar
pattern is observed for the p-values computed from the AdaMant
with Gamma Approximation algorithm for both cross-validation
methods. Overall, the results presented in Table 1 verify that the
proportion of incorrect rejections was controlled appropriately
using the proposed methods.

Tables 2, 3 provide a comparison of empirical power
when the response data are generated from the fixed effects
model and random effects model, respectively. Results revealed

that there is an improvement in the empirical power when
Gamma approximation is added to the Adaptive Mantel
test with cross-validation. Given that both class of methods,
AdaMantCV and AdaMantGACV, control the proportion of
false rejections, the higher empirical power exhibited by
AdaMantGACV indicate that it is the better method. It is
also apparent from both tables that either AdaMantCV or
AdaMantGACV leads to a superior empirical power, i.e.,
approaching 1, when p = 1,000. In contrast, both AdaMantCV
and AdaMantGACV result to a lower empirical power when
p = 500, regardless of the covariance structure used for
generating the design matrix X. This result is supported by
Hastie et al. (2019) and Patil et al. (2021) where statistical
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inference is the most challenging when p/n ≈ 1, compared
to p≪ n or n≪ p.

Using the AdaMantCV algorithm and p = 1,000, Table 1
shows a decreasing Type I error rate when a threshold is imposed
on the specification of the interval I as compared to using the
unadjusted singular values. Also, using the median (Q2) as the
threshold compared to the first quartile (Q1) leads to a lower

proportion of incorrect rejections, regardless on whether GCV
or LOOCV is utilized. It is important to note that in these cases,
the empirical power are all approaching to 1 but the decreasing
proportion of incorrect rejections for the AdaMantCV supports
the proposed method in identifying the range of the ridge penalty
parameters. In general, we observe an improved empirical power
when thresholding is imposed.

FIGURE 3 | Histograms comparing the optimal ridge penalty parameter in a replication with 1,000 permutations using GCV vs. LOOCV when the threshold τ is the

(A) first quartile and (B) median. The simulated design matrix X for (A,B) has a compound symmetric covariance structure with n = 350 and p = 1, 000, β = 0 and

error standard deviation σ = 1. The simulated design matrix X for (C,D) has a compound symmetric covariance structure with n = 350 and p = 1, 000. The response

is generated using fixed effects β = ξ1p, ξ = 3 and error standard deviation σ = 1.
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For a given replication, the optimal ridge penalty is obtained
for the original data and the B permutations of the data. A closer
inspection of the distribution of λ̂(b), b = 0, 1, . . . ,B-values are
provided in Figure 3 for compound symmetric covariance, which
was intensively studied in Kobak et al. (2020). In Figure 3Awhere
the first quartile is used as a threshold, the average value of
the ridge penalty parameter is −8.927 using GCV and −9.114
using LOOCV. Conversely, in Figure 3B where the median is the
threshold τ , the average value of the ridge penalty parameter is
−9.113 and−9.274 using GCV and LOOCV, respectively. When
no thresholding is imposed, the average value of the ridge penalty
parameter is the maximum allowable value of λ =1,000, using
both GCV and LOOCV. These results were obtained from the
setting where the simulated design matrix X has a compound
symmetric covariance structure with n = 350 and p = 1, 000, β =
0 and error standard deviation σ = 1. In these numerical studies,
we confirm that the optimal ridge penalty parameter is negative
in some settings whenever a threshold is imposed. Furthermore,
the results in Table 1 ensure us that using a negative value of the

ridge penalty parameter still leads to a controlled Type I error rate
for a given level α.

Consequently, Figure 3C displays the comparison of the
optimal ridge penalty parameters across all permutations when τ

is equal to the first quartile. The average value of the ridge penalty
parameter is −9.867 using GCV and −10.023 using LOOCV in
this setting. Meanwhile, when the median is utilized as threshold
in Figure 3D, the average value of the ridge penalty parameter
is −10.623 and −10.689 using GCV and LOOCV, respectively.
When no thresholding is imposed, the average value of the ridge
penalty parameter is 989.1 and 991.9, using GCV and LOOCV,
respectively. Results were obtained using a simulated design
matrix X with compound symmetric covariance structure, n =
350 and p = 1, 000. The response is generated using fixed effects
β = ξ1p, ξ = 3 and σ = 1. We observe that some negative
ridge penalty parameters have empirical power approaching 1. In
these simulations, we were able to verify that this phenomenon
can be observed in high-dimensional hypothesis testing where
the empirical power approaches 1 as shown in Table 2.

FIGURE 4 | (A) The experimental task required subjects to recall the position of the red bars (targets) on the left or right side of the image as indicated by the arrow in

the center of the image. The six images show examples of the test image for different numbers of targets and distractors (blue bars). (B) For every trial of the

experiment the subjects are shown (i) a fixation image (400 ± 200 ms); (ii) the standard array to be memorized (100 ms); (iii) the maintenance image (900 ms); (iv) the

comparison array, at which point subjects are asked to respond within 2,000 ms if the targets in the comparison arrays match or mismatch the standard array (Pluta

et al., 2021).
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In summary, our simulation studies provide evidence in
favor of the proposed thresholding procedure discussed in
Section 3.1. More importantly, Figure 3 illustrate the almost
sure convergence results in Patil et al. (2021) wherein the
distribution of the optimal ridge penalty estimates obtained
using GCV and LOOCV coincide and exhibit the same pattern.
This almost convergence result for GCV and LOOCV also
applies to the Type I error and empirical power of the
proposed association tests. Lastly, the Gamma approximation

and cross-validation incorporated in the Adaptive Mantel test
yields superior power while maintaining the proportion of false
positives. This empirically justifies the use of Gamma distribution
to approximate the null distribution of the ridge-penalized
test statistic.

4.2. Application to Imaging Genetics Study
In this study, we consider data from 350 healthy college students
from Beijing Normal University (BNU) who participated in an

FIGURE 5 | Heat maps of (A) Average of -log10 p-values and (B) Empirical Power of the Adaptive Mantel test using the imaging genetics data with n = 350

observations, p = 497 genetic features and coherence information from top channel-channel-band triples. The green vertical line corresponds to λ = 0.

FIGURE 6 | Heat maps of (A) Average of -log10 p-values and (B) Empirical Power of the Adaptive Mantel test using the imaging genetics data with n = 350

observations, p = 497 genetic features and coherence information from some channel-channel-band triples. The green vertical line corresponds to λ = 0.
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experiment involving visual working memory. For every trial, a
64-channel EEG was recorded at 1 kHz. These data constitute a
subset of imaging, genetics, and behavioral data collected with
the purpose of identifying neurological characteristics of brain
connectivity that are significantly associated with both genetic
variations and cognitive performance (Pluta et al., 2021).

The task for the participants involves remembering the
position of the targets (red bars) on either the left or right side
of the image as indicated by the arrow in the center of the image.
There are six experimental conditions used for 2, 3, 4, 6, and 8
targets, and for 2 targets added with 2 blue distractors. Figure 4
describes the experimental task undertaken by the subjects.

The hypothesis being tested is whether the variation in a set of
candidate SNPs is associated to the variation in EEG coherence.
The main objective of association testing is to determine whether
the heritability of EEG coherence in the delta (2–4 Hz), theta
(4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and gamma (30–
50 Hz) bands is significantly greater than zero. In the initial
study by Pluta et al. (2021), the matrix of explanatory variables
corresponds to the genotype data including 484,496 autosomal
SNPs which satisfies the minor allele frequency (MAF) and
Hardy-Weinberg equilibrium (HWE) p-value quality control
thresholds. In addition, the matrix of response variables includes
20,480 features which correspond to the pairwise coherence for
64 EEG channels and 5 frequency bands.

However, with only n = 350 subjects, we expect that
association between the q = 20,480 channel-channel-frequency
imaging features and p ≈ 500,000 SNPs to be challenging to
detect. Asmentioned in the previous sections, genetic variants are
notorious for contributing fairly weak effects to disease risk due
to heterogeneity, among others. Hence, we start with a candidate
set of SNPs identified in a genome-wide association study on
educational attainment by Okbay et al. (2016). Furthermore,
we narrowed down the pairwise channel and frequency band
features using the top results presented in Pluta et al. (2021).
The resulting number of SNPs considered is p = 497 while the
total number of brain connectivity features is 250. As mentioned
previously, we will consider one response variable at a time, that
is, the univariate scenario where q = 1.

4.2.1. Optimal Ridge Penalty
The liver toxicity data set used in Section 2.4 is well-known for
displaying strong signals and is typically used to demonstrate
the predictive performance of newly developed vs. existing
procedures. However, existing literature on imaging genetics
studies suggest that the signals are weaker and sparse. In this
section, we are interested in investigating the characteristics
of the empirical power for several values of the ridge penalty
parameter. For a fixed value of λ, we implement the empirical

FIGURE 7 | Empirical Power and GCV plots of the Adaptive Mantel test for the imaging genetics data with n = 350 observations, p = 497 genetic features and

coherence information from selected channel-channel-band triples with decreasing power trend. (A) Power: F3-FT8-beta. (B) Power: Iz-Oz-delta. (C) Power:

CPz-AF4-delta. (D) GCV: F3-FT8-beta. (E) GCV: Iz-Oz-delta. (F) GCV: CPz-AF4-delta.
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FIGURE 8 | Empirical Power and GCV plots of the Adaptive Mantel test for the imaging genetics data with n = 350 observations, p = 497 genetic features and

coherence information from selected channel-channel-band triples with increasing power trend. (A) Power: FC3-P7-beta. (B) Power: F3-O2-alpha. (C) Power:

Pz-PO4-alpha. (D) GCV: FC3-P7-beta. (E) GCV: F3-O2-alpha. (F) GCV: Pz-PO4-alpha.

power calculation for the Adaptive Mantel test discussed in
Section 2.4. The overall results are summarized in Figures 5, 6.

It is apparent that the brain imaging features considered in
Figure 5 resulted to a higher empirical power compared to the
features displayed in Figure 6. However, instead of just reporting
channel-channel-band triples with high empirical power, we
are interested in studying the underlying characteristics which
prompted the results. In fact, the pattern of results observed in
Figures 5, 6 can be categorized into three main groups of power
trends. The cool to warm hue of the heat map indicate that there
is an increasing trend in the empirical power as the value of ridge
penalty parameter chosen increases. However, the warm to cool
hue in the heat map describes the opposite trend. The third case
corresponds to the almost constant hue for any ridge penalty
included in the interval.

The results displayed in Figures 7, 8 illustrate clearly the
increasing or decreasing power trends for some pairwise channel-
band triples as compared to the subtle differences observed in
Figures 5, 6. Among these overall cluster of results, we will
explore further how the optimal ridge penalty parameter impacts
the empirical power. Visually, we can deduce using Figures 7A–C
that the optimal value of the ridge penalty parameter should
be negative or close to zero to arrive at the highest value of
empirical power. In contrast, Figures 8A,B suggest that the

optimal ridge penalty should be chosen as high as possible, i.e.,
λ → ∞ to achieve empirical power approaching 1. Lastly,
Figure 8C displays an almost horizontal trend where λ can be
chosen anywhere in the interval and yield comparable empirical
power with any other λ. The corresponding GCV plots for both
Figures 7, 8 are provided to evaluate the pattern exhibited by
the GCV for different values of λ. It is clear that when the ridge
penalty parameter is positive, the value of the GCV is a smooth
function. However, since this is the high-dimensional setting
and multiple factors are at play simultaneously, it is not clear
which dominating factor dictates the power trend and GCV plots
displayed by the real data. We will probe into the theoretical
justifications of this phenomena applied to high-dimensional or
ultra-high-dimensional settings in future research.

4.2.2. Adaptive Mantel Test With Cross-Validation
Among the 250 brain connectivity features studied, we identified
five features which indicate that the variation in a set of candidate
SNPs is associated to the variation in EEG coherence. Using the
AdaMantCV and AdaMantGACV methods, we determine that
the heritability of EEG coherence in the delta (2–4 Hz), alpha (8–
12Hz), and gamma (30–50Hz) bands is significantly greater than
zero. The p-values are presented in Table 4.
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TABLE 4 | Comparison of the p-values using AdaMantCV and AdaMantGACV methods where heritability of EEG coherence is significantly greater than zero.

Adaptive Mantel Test

With CV With GA and CV

Band Channels GCV LOOCV GCV LOOCV

Delta FP1 - T8 0.016 0.015 0.012 0.012

Delta CPz - F8 0.009 0.008 0.007 0.007

Delta FC5 - O2 0.004 0.003 0.005 0.004

Alpha F3 - FC1 0.037 0.038 0.006 0.007

Gamma P4 - PO8 0.034 0.034 0.014 0.015

In addition, we were able to identify 21 other channel-
channel-band triples which wherein the variation in a set
of candidate SNPs is associated to the variation in EEG
coherence using AdaMant with Gamma Approximation and
cross-validation but not using AdaMantCV. The real data
analysis results are aligned with the simulation studies wherein
the Adaptive Mantel test with Gamma approximation and cross-
validation have superior power while maintaining the proportion
of false positives. Consequently, we have identified that there
are more significant variations in the alpha and delta band
frequencies using AdaMant with Gamma approximation and
cross-validation. These results are consistent with the existing
literature by Smit et al. (2005) where heritability is generally
highest around the alpha peak frequency. According to Shaw
(2003), the variation in the alpha rhythm has been posited to
reflect individual differences in working memory, attentional
demands and/or arousal, and also cognitive preparedness.

5. DISCUSSION

For over several decades, ridge regression has proved to be a
valuable tool for use by researchers and it has recently been
intensively explored in the high-dimensional context to better
understand more complicated models. Even though there are
several available methods for choosing an optimal value of the
ridge penalty parameter, the ultimate choice of λ for a specific
application still remains to be unsolved. One contributing reason
to this is the difficulty in characterizing the unknown data
generating distribution, which usually influences the optimal
level of regularization.

In this study, we examine the role that ridge penalization
plays in hypothesis testing by conducting an empirical power
study of an imaging genetics data set. Our results confirm that
in high-dimensional settings, overfitting might provide higher
power, in addition to good generalization in predictive problems.
One noticeable difference is that while no penalty, i.e., λ = 0
often works well for predictions, it does not have any power in
hypothesis testing, as typical test statistics reach their extreme
values or they do not change over permutations when p > n.
While an empirical study provides helpful guides for practical

purposes, it is only the first step toward a more rigorous and
holistic understanding of the broader scenarios. We are working
on theoretical justifications and hope they will provide further
insights to hypothesis testing problems into high-dimensional or
ultra-high-dimensional settings.

We also propose a thresholding procedure to allow the
set of candidate values of λ to include negative values and
investigate how these negative penalty parameters can affect the
empirical power of the Mantel Test. Furthermore, we extend
the Adaptive Mantel Test (AdaMant) algorithm to incorporate
Gamma approximation and the optimal selection of the ridge
penalty parameter via generalized and leave-one-out cross-
validation. We compare the resulting optimal choice between the
two cross-validation procedures and note that they coincide. We
also applied the proposed method to imaging genetics study of
visual working memory measured by EEG coherence in healthy
college students. Overall, we have encountered an interesting
statistical phenomenon and gained some insights regarding ridge
regression, especially as it applies to imaging genetics data.
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