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Abstract
Objective
To discover genetic determinants of Parkinson disease (PD) motor subtypes, including tremor
dominant (TD) and postural instability/gait difficulty (PIGD) forms.

Methods
In 3,212 PD cases of European ancestry, we performed a genome-wide association study
(GWAS) examining 2 complementary outcome traits derived from the Unified Parkinson’s
Disease Rating Scale, including dichotomous motor subtype (TD vs PIGD) or a continuous
tremor/PIGD score ratio. Logistic or linear regression models were adjusted for sex, age at
onset, disease duration, and 5 ancestry principal components, followed by meta-analysis.

Results
Among 71 established PD risk variants, we detectedmultiple suggestive associations with PDmotor
subtype, includingGPNMB (rs199351, psubtype = 0.01, pratio = 0.03), SH3GL2 (rs10756907, psubtype
= 0.02, pratio = 0.01),HIP1R (rs10847864, psubtype = 0.02), RIT2 (rs12456492, psubtype = 0.02), and
FBRSL1 (rs11610045, psubtype = 0.02). A PD genetic risk score integrating all 71 PD risk variants
was also associated with subtype ratio (p = 0.026, ß = −0.04, 95% confidence interval = −0.07–0).
Based on top results of our GWAS, we identify a novel suggestive association at the STK32B locus
(rs2301857, pratio = 6.6 × 10−7), which harbors an independent risk allele for essential tremor.

Conclusions
Multiple PD risk alleles may also modify clinical manifestations to influence PDmotor subtype.
The discovery of a novel variant at STK32B suggests a possible overlap between genetic risk for
essential tremor and tremor-dominant PD.
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Parkinson disease (PD) is a clinically heterogeneous
disorder.1–6 PD subtypes have been described based on com-
mon patterns of phenotypic features.1,7 One of the earliest and
widely used subtyping classifications recognizes tremor domi-
nant (TD) and postural instability/gait difficulty (PIGD)
motor subtypes.8,9 These subtype categories have implications
for disease progression, with prospective studies showing that
PIGD is characterized by increased cognitive impairment and
decreased response to levodopa.10,11 Although some studies
have sought to identify pathologic correlates for PD motor
subtypes,12,13 the mechanisms underlying these clinical and
prognostic differences remain incompletely understood.7

Others have raised questions about the stability of PD motor
subtypes over the disease course and their potential to be
influenced by medications14–16

A strong genetic contribution to PD etiology is well estab-
lished, including several rare, monogenic forms of the disease
and a large number of common variant PD risk alleles iden-
tified in genome-wide association studies (GWASs).17 There
is mounting evidence for genetic variants as modifiers of PD
phenotype as well. Variants in LRRK2 or GBAmodify disease
motor progression (slower or faster, respectively) and also
affect risk of cognitive impairment.18,19 Genetic association
studies have also nominated genetic modifiers of PD pro-
gression, cognitive impairment, age at onset, and risk of in-
somnia, including established PD risk alleles.19–28 Of interest,
LRRK2(G2019S) carriers appear to have a higher incidence of
the PIGD subtype, despite early reports of asymmetrical
tremor as a prominent clinical feature.18,29 A recent analysis of
10 PD risk variants from GWAS in a sample of 251 subjects
(plus 559 subjects for replication) demonstrated an associa-
tion of an SNCA locus polymorphism with the TD subtype.23

We performed a GWAS meta-analysis for PD motor subtype
in 3,212 subjects, examining potential associations for 71
established PD risk alleles and further testing for novel
modifiers of TD vs PIGD motor phenotypes.

Methods
Standard Protocol Approvals, Registrations,
and Patient Consents
Subjects derived from multiple North-American and Euro-
pean PD research cohorts (table e-1, links.lww.com/NXG/
A373): Baylor College of Medicine (BCM), University of
Maryland, Baltimore PD Genetics Study, Parkinson’s Pro-
gression Markers Initiative, Parkinson’s Disease Biomarkers

Program, Profiling Parkinson’s disease study (Netherlands),
Tracking Parkinson’s study (United Kingdom), and the Oslo
Parkinson’s Disease study (Norway). All participants pro-
vided written informed consent for genomic studies, in-
cluding permission for sharing of deidentified data between
institutions, before enrollment in the respective studies. We
obtained all clinical and genetic information with approval of
the respective local institutional review boards.

Participants
All subjects were diagnosed with PD. The following data were
required for inclusion in this study: sex, age at symptom onset,
age at diagnosis, age at first evaluation, and earliest available
(baseline) itemized rating using the Unified Parkinson’s
Disease Rating Scale (UPDRS) parts 2 and 3 or the equivalent
parts of the Movement Disorder Society revised UPDRS
version (MDS-UPDRS).30,31 Disease duration in years was
defined as age at first evaluation minus age at symptom onset.
If age of symptom onset was not available, age at diagnosis was
used. The BCM cohort included subjects evaluated with ei-
ther version of the UPDRS, and these subjects were therefore
evaluated as separate cohorts (BCM1 and BCM2, see table
e-1, links.lww.com/NXG/A373). All other cohorts exclu-
sively used either the UPDRS or the MDS-UPDRS.

Motor Subtypes
PD motor subtypes, TD and PIGD, were determined using
previously published algorithms.1,2 Subjects are classified as
either TD, PIGD, or indeterminate using scale-specific cutoffs
based on the ratio of tremor score to PIGD score from the
UPDRS or MDS-UPDRS parts II and III. Applying these
algorithms to our pooled cohort, 383 subjects with a tremor/
PIGD score ratio in the indeterminate range could not be
assigned to either the TD or PIGD dichotomous trait. As a
complementary approach, we therefore used the tremor/
PIGD score ratio as a continuous outcome, permitting in-
clusion of all subjects (including those classified as in-
determinate). To accommodate subjects with PIGD score =
0 in these analyses, we transformed the tremor/PIGD score
ratio as follows:

log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tremor score + 0:01
PIGD score + 0:01

r

Genotyping
Genotyping data (all Illumina platform based) were obtained
from International Parkinson’s Disease Genomics Consor-
tium (IPDGC) members, collaborators, and public resources.
As previously described, all data sets underwent quality

Glossary
BCM = Baylor College of Medicine; ET = essential tremor;GRS = genetic risk score;GWAS = genome-wide association study;
IPDGC = International Parkinson’s Disease Genomics Consortium; MAF = minor allele frequency; MDS-UPDRS =
Movement Disorder Society revised UPDRS version; PD = Parkinson disease; PIGD = postural instability/gait difficulty;TD =
tremor dominant; UPDRS = Unified Parkinson’s Disease Rating Scale.
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control separately, both on individual-level data and variant-
level data, as implemented using PLINK v1.90b5.3.27,32

Briefly, we excluded individual samples with low or excess
heterozygosity or discordant sex. We also excluded ancestry
outliers following principal component analysis. We required
that SNPs have a minimum call rate of 95%, minor allele
frequency (MAF) > 5%, and Hardy-Weinberg equilibrium p
values > 1E-04. Imputation was performed using the Michi-
gan imputation server and the Haplotype Reference Con-
sortium (r1.1 2016), with Eagle v2.3 phasing available at:
imputationserver.sph.umich.edu.

Statistical Analysis
Our GWAS followed prior published IPDGC analytic
pipelines,27,32 and an analysis plan was formulated before ex-
ecution of the study. For each included cohort, the imputed
genotyped dosages were analyzed using regression, imple-
mented in RVTESTS.33 Logistic regression was used for the
dichotomous motor subtype trait (TD vs PIGD), and linear
regression was used for the continuous tremor/PIGD score
ratio trait. Both models were controlled for age at onset, sex,
disease duration, and the first 5 ancestry principal components.
Fixed effects meta-analysis combining the summary statistics
from the 8 studies was performed using METAL with default
parameters.34 For the GWAS, we computed Lambda1000 = 0.88
for the dichotomous subtype outcome and Lambda = 0.99 for
the continuous ratio trait. Heterogeneity statistics are included
in e-tables, links.lww.com/NXG/A373. As in prior IPDGC
analyses, we conservatively filtered the top GWAS results, ex-
cluding 6 SNPs with heterogeneity I2 > 60% and p < 0.05. For
the candidate analysis of PD risk alleles, 71 variants had an
imputation quality >0.8 in our data set and were therefore
included in our analyses.35 The significance threshold was set at
p < 0.0007 based on 71 independent tests using the Bonferroni
method (p = 0.05/71); we secondarily considered p < 0.05 as
evidence of a suggestive association. The 71 PD risk variants
were also evaluated in combination using a weighted genetic
risk score (GRS), implemented in PLINK.32,35 For ease of
interpretation, GRS scores were converted to Z scores as pre-
viously described.36 Association with the 2 subtype outcome
traits was tested using the formula:

Trait;GRS_Zscore + AgeAtOnset + Sex + PC1 − PC5

Forest plots and association meta p-values were calculated
using the R package metafor.37 For the genome-wide analysis,
significance was set at p < 5 x 10−8, whereas p < 1 x 10−5 was
considered suggestive evidence of association. Locus plots
were generated using LocusZoom.38 Linkage disequilibrium
pruning was performed using the module SNPclip, which is
part of LDlink application using the default parameters (r2 =
0.1 and MAF = 0.01) and a genomic window of 500kb.39 For
the lookups of variant associations with essential tremor (ET)
susceptibility, significance was set at p < 0.0013 based on 39
tests. Statistical power was estimated using the Genetic As-
sociation Study Power Calculator (csg.sph.umich.edu/abe-
casis/gas_power_calculator/). We performed 2 sets of

calculations considering power to detect association of (1) an
established PD risk allele (rs199351, frequency = 0.6, risk ratio
= 1.11) or (2) a novel variant (rs10937625, frequency = 0.12,
risk ratio = 1.25). Disease prevalence was set to 0.0041.

Data Availability
Summary statistics for the analyses presented in this study will
be made available on the IPDGC website (pdgenetics.org/
resources).

Results
Overall, our study included 3,212 subjects with complete
clinical data and genotypes passing all quality control filters
(see Methods). Clinical and demographic information along
with the frequency of motor subtypes is shown in table 1. The
TD subtype was more common than PIGD, but subtype
proportions varied between cohorts (table e-1, links.lww.
com/NXG/A373). Consistent with prior reports,14,15,40 the
proportion of patients with TD was inversely related to av-
erage disease duration (correlation coefficient −0.57). Be-
cause of individuals with indeterminate subtype classification,
2,829 subjects were available for the GWAS using the di-
chotomous subtype trait (TD vs PIGD), whereas all 3,212
patients were included in the GWAS for the tremor/PIGD
subtype ratio.

We first examined associations for 71 established PD risk
variants with PD motor subtypes. Overall, we identified sug-
gestive associations (p < 0.05) between risk variants at the
GPNMB, SH3GL2, HIP1R, FBRSL1, and RIT2 loci and the
subtype trait, but none of these associations remained sig-
nificant following multiple test correction (table 2 and e-2,
links.lww.com/NXG/A379). In 2 of 5 loci (GPNMB and
FBRSL1), the PD risk-increasing allele was associated with
PIGD subtype. Variants at GPNMB and SH3GL2 also showed

Table 1 Cohort Characteristics

N (%) or mean (SD)

N 3,212

Male 2,078 (64.7)

Age at evaluation (y) 66.0 (9.5)

Age at onset (y) 61.0 (10.6)

Disease duration (y) 4.1 (4.5)

TD subtype 1,570 (48.9)

PIGD subtype 1,259 (39.2)

Indeterminant subtype 383 (11.9)

Abbreviations: PIGD = postural instability/gait difficulty; TD = tremor
dominant.
Demographic information and frequency of motor subtypes of the study
population combined from all 8 cohorts.
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consistent associations with subtype ratio, but no additional PD
risk alleles were associated with this outcome (table e-2, links.
lww.com/NXG/A379). We next integrated genotypes across
the 71 PD risk alleles to compute a GRS for each subject and
examined for association with PD motor subtypes. Indeed, we
detected a significant association between the PDGRS and the
subtype ratio (p = 0.03, confidence interval = −0.07 to 0.00),
although this result appeared to be driven by only 2 of 8 cohorts
included in our meta-analysis (PDBP and BCM2, figure 1).
The GRS was not associated with the dichotomous subtype
trait (figure e-1, links.lww.com/NXG/A373).

We next examined the results of our GWAS to identify novel
candidate modifiers of PD motor subtype. Although no variants
reached the genome-wide significance threshold, a number of
variants showed suggestive associations (p< 1 x 10−5) with either
PDmotor subtype or subtype ratio (tables e-3 and e-4, links.lww.
com/NXG/A373). The top variant associated with the subtype
ratio outcome is rs2301857 (pratio = 6.6 x 10

−7), locatedwithin an
intron of the STK32B gene (figure 2). The minor allele,
rs2301857T (frequency = 0.12) was associated with reduced
tremor/PIGD score ratio (effect = −0.19). Thus, the minor and
major alleles for the rs2301857 SNP are associated with a po-
larization toward the PIGD vs TD phenotypes, respectively. In
our complementary analysis, the association between rs2301857
and PD motor subtype was attenuated (psubtype = 0.044).

Notably, an association signal at STK32B has been previously
reported in a GWAS for ET.41 Although the lead variant from
that study, rs10937625, is only 290 kb proximal from the top
variant in our analysis, these SNPs do not demonstrate ap-
preciable linkage disequilibrium (R2 = 0.002, D’ = 0.184).
Based on the Genotype-Tissue Expression project database,42

rs2301857T is associated with increased STK32B expression,
but this expression quantitative trait locus was only significant
in the testes, salivary gland, and prostate. We performed ad-
ditional analyses to explore for a possible genetic overlap
between ET and PD motor subtype. However, neither the
STK32B variant nor any of the other 5 published ET risk
variants41 were associated with either of our PD motor sub-
type traits (table e-5, links.lww.com/NXG/A373). Lastly, to

explore for further potential evidence of shared genetic ar-
chitecture, we reciprocally examined whether any of our top
candidate variants (p < 1 x 10−5; n = 39 variants) associated
with PDmotor subtype confers susceptibility for ET, based on
lookup of the top results in the largest GWAS completed to
date (2807 ET cases/6,441 controls).41,43 However, neither
STK32Brs2301857 (p = 0.18) nor any other top suggestive re-
sults from our PD motor subtype GWAS were significantly
associated with ET susceptibility.

Discussion
Identification and characterization of PD subtypes has re-
ceived increased attention in recent years, with the goal of
predicting progression, stratifying patients based on risk of

Table 2 Association of Established PD Risk Variants With PD Motor Subtype

chr: position SNP Gene Allelea Frequency

Subtype (TD vs PIGD) Subtype ratio

Effect SE p Value Effect SE p Value

7: 23300049 rs199351 GPNMB A/C 0.61 0.16 0.06 0.011 −0.05 0.02 0.033

9: 17727065 rs10756907 SH3GL2 A/G 0.76 0.16 0.07 0.019 −0.06 0.03 0.017

12: 123326598 rs10847864 HIP1R T/G 0.38 −0.15 0.06 0.018 0.017 0.02 0.47

12:133063768 rs11610045 FBRSL1 A/G 0.51 0.14 0.06 0.023 −0.03 0.02 0.17

18: 40673380 rs12456492 RIT2 A/G 0.67 0.15 0.06 0.019 −0.008 0.02 0.73

Abbreviations: PD = Parkinson disease; PIGD = postural instability/gait difficulty; SE = standard error; TD = tremor dominant.
a Effect/alternate alleles shown, PD risk allele denoted in boldface.

Figure 1 PD Genetic Risk Score Associates With Tremor/
Postural Instability/Gait Difficulty Score Ratio

Error bars represent 95% confidence intervals. The size of the black squares
represents the effect size from each cohort. The combined estimate for all
cohorts is represented by the red diamond with the width of the diamond
representing the 95% confidence interval bounds. The summary effect =
−0.0389 (p = 0.0156). PD = Parkinson disease.
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nonmotor complications (e.g., dementia), and elucidating
mechanisms of disease heterogeneity.7–9,44 Recent studies
strongly suggest that genetic factors can influence the pres-
ence and severity of many varied PD manifestations and
therefore likely influence disease subtypes.7 We have per-
formed a GWAS for PD motor subtype. Our results highlight
some evidence for 5 established PD risk alleles as potential
modifiers of motor subtype, and we further found that a PD
GRS including 71 risk variants was associated with subtype
ratio. One strength of our analysis was consideration of 2
complementary PDmotor subtype outcomes. The TD/PIGD
score ratio trait offers a continuous outcome and has the
advantage of a larger sample size because subjects with in-
determinate subtype can be considered. On the other hand,
by including subjects with a mixed phenotype, it is also pos-
sible that the subtype ratio may dilute power to detect the
effects of certain variants. In such cases, the dichotomous
subtype outcome permits greater contrast between groups of
subjects manifesting the TD or PIGD phenotype. In a prior,
candidate-based analysis of 10 PD risk alleles in 810 PD cases,
a variant at the SNCA locus (rs356182) was discovered to be
associated (p = 0.004, β = 0.7) with a similar TD/PIGD score
ratio outcome.23 Although we did not replicate that associa-
tion in our larger sample (n = 3,212, p = 0.18, β = 0.03), this
may relate to modest differences in the derivation of the
subtype score ratio, and additional replication analyses should
be undertaken in the future.

Although no variants reached genome-wide significance in
our GWAS, we identify many loci harboring suggestive as-
sociations that may be excellent candidates for follow-up and
potential replication. The top result of the subtype ratio

GWAS, rs2301857, implicates the STK32B gene as a possible
modifier of PD motor phenotypes. This gene has previously
been genetically linked to ET.41 The potential relationship
between ET and PD has long been a topic of discussion in the
field of movement disorders.45 Although most patients with
ET do not develop parkinsonism, at least 1 study has shown
that a prior diagnosis of ET may increase the risk of PD up to
4-fold.46,47 A possible genetic link is further suggested by
reports of familial coaggregation of ET and PD.48 In another
study, patients with PD having family members with ET were
more likely to exhibit the TD subtype of PD.49 Importantly,
the variant that we discovered in association with PD motor
subtype does not show appreciable linkage disequilibrium
with the previously reported ET susceptibility signal; there-
fore, these appear to be independent alleles at the STK32B
gene locus. Thus, although intriguing, our results fall short of
providing conclusive evidence of a shared genetic architecture
of these 2 common movement disorders.

Despite including more than 3,000 subjects, statistical power
appeared limiting. In fact, we estimate (see Methods) that
nearly 14,000 subjects would be required to achieve 80%
power to detect a significant association for either a candidate
PD risk variant (e.g., GPNMBrs199351) or a novel variant
modifier of motor subtype (e.g., STK32Brs2301857). Based on
ongoing efforts, we anticipate that sufficiently large cohorts
with detailed clinical phenotyping will likely emerge in the
next few years. At the time that this analysis was undertaken,
clinical and genetic data were available predominantly from
European ancestry subjects. Whereas an ethnically homoge-
nous cohort design may reduce potential population stratifi-
cation and thereby increase power, this also potentially limits

Figure 2 STK32B Locus Association With PD Subtype Ratio

Locus zoom plot highlighting the as-
sociation signal at the STK32B locus.
The top variant associated with PD
subtype ratio, rs2301857, is high-
lighted along with other variants in
linkage disequilibrium. Another vari-
ant in the same gene, rs10937625
(dashed line), has been reported as
significantly associated with essential
tremor (ET), but is not associatedwith
PD subtype ratio. The 2 variants ap-
pear independent and do not show
substantial linkage disequilibrium
(R2 = 0.002, D’ = 0.184). PD = Parkin-
son disease
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generalizability. In the future, it will also be important to study
genetic modifiers of PD motor heterogeneity in diverse
populations.

Although the TD and PIGD categories are the earliest and
mostly widely used subtype classification,8,9 there are also
several notable limitations. The cutoffs used for differentiating
the TD or PIGD subtypes are somewhat arbitrary and without
underlying biological or clinical rationale.1 In addition,
treatment with dopaminergic medication is known to alter the
motor UPDRS examination—especially gait scores—which
may in turn influence subtype classification.15,50 Information
on medication status and other factors (e.g., dementia, life-
style, and environmental exposures) was not universally
available for consideration as potential confounders or genetic
modifiers in this analysis. Lastly, several recent studies have
suggested that PD motor subtypes may shift from TD to
PIGD subtype along with disease progression,14–16 raising
questions about the stability of these phenotypes over time.
This relation between disease duration and subtype propor-
tions was recapitulated among the cohorts included in this
study (table e-1, links.lww.com/NXG/A373). Such observa-
tions suggest that motor subtypes may represent a transient
state rather than a static trait.51 To control for potential shifts
in subtype phenotypes, our analyses were adjusted for both
onset age and estimated disease duration. In addition, we
speculate that even if PD motor subtypes are dynamic, either
completely or in part, they may nevertheless serve as a useful
proxy for disease progression, which is likely itself under ge-
netic influence.19,22,24,26 In sum, regardless of evolving inter-
pretations for PD subtypes, we argue that analyses of such
phenotypes may identify genetic variants that meaningfully
modify the PD clinical course, whether motor manifestations,
rate of progression, medication response, or some combina-
tion. Future genetic analyses of PD subtypes will also benefit
from alternative outcome traits that are independent of
medication status and disease duration.
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