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Abstract

Background: Clustering is one of the most well known activities in scientific investigation and the object of
research in many disciplines, ranging from statistics to computer science. Following Handl et al, it can be
summarized as a three step process: (1) choice of a distance function; (2) choice of a clustering algorithm;

(3) choice of a validation method. Although such a purist approach to clustering is hardly seen in many areas of
science, genomic data require that level of attention, if inferences made from cluster analysis have to be of some
relevance to biomedical research.

Results: A procedure is proposed for the assessment of the discriminative ability of a distance function. That is, the
evaluation of the ability of a distance function to capture structure in a dataset. It is based on the introduction of a
new external validation index, referred to as Balanced Misclassification Index (BMI, for short) and of a nontrivial
modification of the well known Receiver Operating Curve (ROC, for short), which we refer to as Corrected ROC
(CROC, for short). The main results are: (a) a quantitative and qualitative method to describe the intrinsic separation
ability of a distance; (b) a quantitative method to assess the performance of a clustering algorithm in conjunction
with the intrinsic separation ability of a distance function. The proposed procedure is more informative than the
ones available in the literature due to the adopted tools. Indeed, the first one allows to map distances and
clustering solutions as graphical objects on a plane, and gives information about the bias of the clustering
algorithm with respect to a distance. The second tool is a new external validity index which shows similar
performances with respect to the state of the art, but with more flexibility, allowing for a broader spectrum of
applications. In fact, it allows not only to quantify the merit of each clustering solution but also to quantify the
agglomerative or divisive errors due to the algorithm.

Conclusions: The new methodology has been used to experimentally study three popular distance functions,
namely, Euclidean distance d», Pearson correlation d, and mutual information d,,. Based on the results of the
experiments, we have that the Euclidean and Pearson correlation distances have a good intrinsic discrimination
ability. Conversely, the mutual information distance does not seem to offer the same flexibility and versatility as the
other two distances. Apparently, that is due to well known problems in its estimation. since it requires that a
dataset must have a substantial number of features to be reliable. Nevertheless, taking into account such a fact,
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together with results presented in Priness et al, one receives an indication that d,; may be superior to the other
distances considered in this study only in conjunction with clustering algorithms specifically designed for its use. In
addition, it results that K-means, Average Link, and Complete link clustering algorithms are in most cases able to
improve the discriminative ability of the distances considered in this study with respect to clustering. The
methodology has a range of applicability that goes well beyond microarray data since it is independent of the
nature of the input data. The only requirement is that the input data must have the same format of a “feature
matrix”. In particular it can be used to cluster ChIP-seq data.

Background

Recently, medical and biological research has been deeply
influenced by the advent of high throughput technologies
such as microarrays and RNA-seq platforms. They enable
the acquisition of data that are fundamental for research
in several areas of the biological sciences such as under-
standing biological systems and diagnosis (e.g. [1]). A fun-
damental aspect of microarray data analysis consists of
clustering gene expression data [2,3]. However, its applica-
tion to post-genomic data has revealed to be rather ad
hoc. That is the reason why there is hardly any consensus
on the best distance function and clustering algorithm to
be used for the different types of post-genomic data. As a
consequence, the common practice is to use several differ-
ent clustering techniques to analyse a dataset, and to
resort to visual inspection and prior biological knowledge
to select what is considered the most “appropriate” result.
Clearly, this data analysis is highly subjective, implying
obvious risks. Those observations have motivated Handl et
al. [4] to write a seminal paper with the intent to show to
both bioinformatics researchers and end-users some of the
fundamental aspects of the clustering methodology. The
main message of that paper is that clustering can be con-
sidered as a three step process: (1) choice of a distance
function; (2) choice of a clustering algorithm and (3)
choice of a methodology to estimate the statistical signifi-
cance of clustering solutions. Points (2) and (3) lead into
two well established and rich research areas in data analy-
sis ranging from statistics to Computer Science. Although
computational methods for the analysis of microarray data
have witnessed an exponential growth, a few contributions
have been given in trying to assess their merits [5]. As a
result, the need for a comprehensive evaluation of the
whole analysis process for microarray data is being recog-
nized and a few benchmarking studies have appeared
[6-8]. Unfortunately, point (1) has been hardly investigated
regarding this new type of data and very few results on
this topic are available (see [2,9,10] and references
therein).

In this paper, we address point (1) by introducing a new
qualitative and quantitative method to describe and assess
the discriminative ability of a distance function alone and
in conjunction with a clustering algorithm. Moreover, the
methodology is also able to give indications about the bias

of clustering algorithms with respect to distances. It is
worth recalling that very little is known about this latter
point, one of the difficulties being a fair comparison
between the performance of a distance function and a
clustering algorithm measured in terms of their classifica-
tion ability. This point is discussed in detail in the Methods
section. The overall methodology that is introduced here
makes use of the ROC plane and the ROC curve [11] in
order to define the new external clustering validation
index BMI and the new CROC curve. The net effect is the
delivery of a methodology that rigorously uses external
knowledge in order to assess the performance of a dis-
tance function while granting a fair comparison with clus-
tering solutions generated by a clustering algorithm. It is
worth mentioning that previous approaches to this pro-
blem presented the shortcomings of being based only on
internal indices [10], i.e., homogeneity and separation:
Indeed, it is well known that external validation is more
accurate than the internal one [12]. The remainder of this
paper is organized as follows. The experimental set-up we
have used and the results are presented in the next sec-
tion. Then, some conclusions and directions of future
research are offered next. Finally, the Methods section
describes in detail the new methodology to assess the
intrinsic separation ability of three distance functions, and
its use in conjunction with clustering algorithms.

Results and discussion

Experimental setup

Datasets

Technically speaking, a gold solution GS for a dataset is a
partition of the data in a number of classes known a priori.
Membership of a class is established by assigning the appro-
priate class label to each element. This means that the parti-
tion of the dataset in classes is based on some external
knowledge that leaves no ambiguity on the actual number
of classes and on their composition in terms of class mem-
berships. Moreover, is also important to state that there
exist two main kinds of gold solution datasets, i.e., (i) the
ones for which an priori division in to classes of the dataset
is known; (ii) and the ones for which high quality partitions
have been inferred by analyzing the data. Dudoit and
Fridlyand [13] elegantly make clear that difference in a
related study and we closely follow their approach here.
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Each dataset is a matrix, in which each row corresponds
to an element to be clustered and each column to an
experimental condition. The nine datasets, together with
the acronyms used in this paper, are reported next. For
conciseness, we mention only some relevant facts about
them. The interested reader can find additional informa-
tion in Dudoit and Fridlyand [13] for the Lymphoma and
NCI60 datasets, Di Gesu et al. [14] for the CNS Rat, Leu-
kemia and Yeast datasets and in Monti et al. [15], for the
remaining ones.

CNS Rat: It is a 112 x 17 data matrix, obtained from the
expression levels of 112 genes during a rat’s central ner-
vous system development. The dataset was studied by
Wen et al. [16] and they suggested a partition of the genes
into six classes, four of which are composed of biologically,
functionally-related genes. This partition is taken as the
gold solution, which is the same one used for the valida-
tion of FOM [17].

Gaussian3: It is a 60 x 600 data matrix. It is generated by
having 200 distinctive features out of the 600 assigned to
each cluster. There is a partition into three classes and
that is taken as the gold solution. The data simulates a pat-
tern whereby a distinct set of 200 genes is up-regulated in
one of the three clusters, and down-regulated in the
remaining two.

Gaussian5: It is a 500 x 2 data matrix. It represents the
union of observations from 5 bivariate Gaussians, 4 of
which are centered at the corners of the square of side
length A, with the 5th Gaussian centered at (A/2, 1/2).
A total of 250 samples, 50 per class, were generated,
where two values of A are used, namely, A =2 and A = 3,
to investigate different levels of overlapping between clus-
ters. There is a partition into five classes and that is taken
as the gold solution.

Leukemia: It is a 38 x 100 data matrix, where each row
corresponds to a patient with acute leukemia and each
column to a gene. The original microarray experiment
consists of a 72 x 6817 matrix, due to Golub et al. [18]. In
order to obtain the current dataset, Handl et al. [4]
extracted from it a 38 x 6817 matrix, corresponding to the
learning set in the study of Golub et al. and, via preproces-
sing steps, they reduced it to the current dimension by
excluding genes that exhibited no significant variation
across samples. The interested reader can find details of
the extraction process in Handl et al.. For this dataset,
there is a partition into three classes and that is taken as
the gold solution. It is also worthy of mention that Leuke-
mia has become a benchmark standard in the cancer clas-
sification community [19].

Lymphoma: It is a 80 x 100 data matrix, where each row
corresponds to a tissue sample and each column to a gene.
The dataset comes from the study of Alizadeh et al. [20]
on the three most common adult lymphoma tumors.
There is a partition into three classes and it is taken as the
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gold solution. The dataset has been obtained from the ori-
ginal microarray experiments, consisting of an 80 x 4682
data matrix, following the same preprocessing steps
detailed in Dudoit and Fridlyand [13].

NCI60: It is a 57 x 200 data matrix, where each row cor-
responds to a cell line and each column to a gene. This
dataset originates from a microarray study in gene expres-
sion variation among the sixty cell lines of the National
Cancer Institute anti-cancer drug screen [21], which con-
sists of a 61 x 5244 data matrix. There is a partition of the
dataset into eight classes, for a total of 57 cell lines, and it
is taken as the gold solution. The dataset has been
obtained from the original microarray experiments as
described by Dudoit and Fridlyand [13].

Novartis: It is a 103 x 1000 data matrix, where each
row corresponds to a tissue sample and each column to a
gene. The dataset comes from the study of Su et al. [22]
on four distinct cancer types. There is a partition into
four classes and we take that as the gold solution.

Simulated6: It is a 60 x 600 data matrix. It consists of a
600-gene by 60-sample dataset. It can be partitioned into
6 classes with 8, 12, 10, 15, 5, and 10 samples respectively,
each marked by 50 distinct genes uniquely up-regulated
for that class. In addition, a list of 300 noise genes (i.e.,
genes having the same distribution within all clusters) are
included. In particular, such genes are generated with
decreasing differential expression and increasing variation,
following the same distribution. Finally, the first block of
50 genes of the list is assigned to cluster 1, the second
block to cluster 2 and so on. This partition into 6 classes
is taken as the gold solution.

Yeast: It is a 698 x 72 data matrix, studied by Spellman
et al. [23] whose analysis suggests a partition of the genes
into five functionally-related classes, which is taken as
the gold solution and which has been used by Shamir
and Sharan for a case study on the performance of clus-
tering algorithms [24].

Distances

Let X be a set. A function § : X x X — R is a distance
(or dissimilarity) on X if, V x, y € X, it satisfies the fol-
lowing three conditions:

1. d(x, y) = O (non-negativity);
2. 0(x, y) = oy, x) (symmetry);
3. 0(x, x) = 0;

In the case of microarray data, X = R™, i.e. each data
point ¥ is a vector in m-dimensional space. Note that a
dataset X is a finite subset of X, |X| = 7. One can categor-
ize distance functions according to three broad classes:
geometric, correlation-based and information-based. Func-
tions in the first class capture the concept of physical dis-
tance between two objects. They are strongly influenced
by the magnitude of change in the measured components
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of vectors ¥ and y, making them sensitive to noise and out-
liers. Functions in the second class capture dependencies
between the coordinates of two vectors. In particular, they
usually have the benefit of capturing positive, negative and
linear relationships between two vectors. Functions in the
third class are defined via well known quantities in infor-
mation theory such as entropy and mutual information
[25]. They have the advantage of capturing statistical
dependencies between two discrete data points, even if
they are not linear. Unfortunately, when one tries to apply
them to points in R™, a suitable discretization process
must be carried out, known as binning, which usually
poses some non-trivial challenges. For our experiments,
we have considered the Euclidean distance, the Pearson
correlation and Mutual Information since they are excel-
lent representatives of the three categories described
above. Indeed, they have been shown to be the most suita-
ble for microarray data [9]. For the convenience of the
reader, they are defined in the Methods section.

In what follows, we refer to distance and dissimilarity
functions with the generic term distance functions.

Algorithms and hardware

In our experiments, we have chosen K-means among
Partitional Methods, and Average Link, Complete Link
and Single Link among the Hierarchical Methods cluster-
ing algorithms. The details of those algorithms are not
reported here and the interested reader can find a detailed
description of them in [26]. Of course, each of the above
mentioned algorithms has already been used for data ana-
lysis of microarray data, e.g. [14,27-29]. All experiments
were performed on several state-of-the-art PCs.

Evaluating the performance of distance functions via the
BMI index and the CROC curve

In order to shed light on the proper choice of a distance
function for clustering of microarray data, one needs to
address the following points:

(A) Assessment of the intrinsic separation ability of a
distance. That is, how well a distance discriminates
independently of its use within a clustering algorithm.
(B) Assessment of the predictive clustering algorithm
ability of a distance. That is, which distance function
grants the best performance when used within a clus-
tering algorithm.

(C) The interplay between (A) and (B).

Points (A) and (B) have been studied before (see [9] and
references therein) with some useful insights. Unfortu-
nately, very little is known about (C), one of the difficulties
being a fair comparison between the performance of a dis-
tance function and a clustering algorithm measured in
terms of classification ability (the technical details
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regarding this point are in the Methods section). We
address this latter problem by introducing the BMI and
the CROC curve. Technically, the idea is to map clustering
solutions on the ROC plane and then to design a proce-
dure that allows a fair comparison of distance functions
and clustering algorithms via that mapping. Although the
full details are given in the Methods section, it results con-
venient here to outline our approach. To this end, we
need to introduce some terminology and recall some defi-
nitions. Given a clustering solution C = {cy, ...,.¢,}, it can be
represented by a binary matrix J, referred to as connectiv-
ity matrix, where each entry of ] is defined as follows:

1 if X; and xj belong tothe same cluster,
0 otherwise.

J(i,j) = 1)

Note that an important property of the connectivity
matrix is transitivity, i.e. Vi, j, k such that J(;, j) = J(j, k) = 1,
then J(i, k) = 1. This is straightforward since a clustering
solution is a partition of the dataset, so that two different
clusters have always empty intersection. A useful tool to
assess the performance of a classifier, not necessarily bin-
ary, is the confusion matrix, which is a matrix where each
row represents the instances in a predicted class, while
each column represents the instances in an actual class. In
the case of a binary classification, the 2 x 2 confusion
matrix stores the number of elements of class 0 classified
as 0, denoted 70, and the number of elements of class 0
classified as 1, denoted F1. One defines Tland FO analo-
gously. In this context, the Sensitivity TPR and Specificity
TNR are defined as follows:

TO
TPR = ———
TO +F1

T1
TNR = ——
T1 + FO

A ROC plane is a plane where y = TPR and x = FPR = 1
- TNR, and it is useful to measure a classification in terms
of TPR and FPR rates, once having established to represent
with O the positive class. Note that, since a classifier
assigns data items to classes, the TPR represents the per-
centage of item pairs correctly assigned to different classes,
while the FPR is the percentage of item pairs incorrectly
assigned to different classes. In the ROC plane, it is possi-
ble to define the ROC curve, which is a two-dimensional
visualization of TPR versus FPR for increasing threshold
values. Indeed, the area under this curve (AUC for short)
is defined in the range [0,1], where a value of 0.5 corre-
sponds to the performance of a classifier with a random
assignment rule, while the closer is AUC to one, the better
is the performance of the classifier. The CROC curve of a
distance is a transformation of the ROC curve in which
each point corresponds to a proper clustering solution.
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We address point (C) by:

(C.1) showing how to map a clustering solution into
the ROC plane (see subsection Clustering solutions,
ROC plane and the BMI index)

(C.2) introducing a distance between a clustering
solution and GS (see subsection A procedure to com-
pare distance functions and clustering algorithms via
ROC analysis);

(C.3) showing how (C.1) and (C.2) can be used to
fairly compare the intrinsic ability of distance func-
tions and of a clustering algorithms to identify “struc-
ture” in a dataset (see subsection A procedure to
compare distance functions and clustering algorithms
via ROC analysis).

The BMI takes values in the range [0,1]. Moreover, the
closer the value of the index is to zero, the better the
agreement between a partition and the GS. Therefore, in
contrast to the most popular external validation indices
[27], which need to be maximized, BMI needs to be
minimized.

Results

The BMI can be regarded as the core of the methodology,
and here it has been used in multiple ways: to assess a dis-
tance, to assess an algorithm, or purely as an external vali-
dation index. In the following, we give the result details
for each one of these uses.

Values on Table 1 show the BMI computed for the three
considered distances on each of the 9 datasets. In this case,
the BMI refers to the best clustering solution produced,
i.e. the closest point to (0,1) on the CROC curve (see the
paragraph The BMI index and the CROC curve in the
methods section for details). Therefore, the lower the value
of the BMI for a distance, the better its intrinsic discrimi-
nation ability is. An analysis of the results in Table 1
shows that the Euclidean distance d, and Pearson correla-
tion distance d, have a good intrinsic discrimination ability

Table 1 BMl-values

d, d, duy

CNS Rat 0.6804 0.6875 0.6692
Gaussian3 0.7170 0 0.7102
Gaussian5 0.2358 0.5424 -

Leukemia 0.3498 0.2559 0.3000
Lymphoma 0.3509 0.3385 0.7028
NCI60 0.4699 0.4699 0.5643
Novartis 0.4260 0.4240 0.4183
Simulatedé 0.5022 0.8150 0.7456
Yeast 0.6647 0.6750 0.6677

The BMI value for each of the considered distances and for each dataset. For
Gaussian5, the dyy is not computed due to the small number of features. In
bold, the values of BMI which reveal a good discrimination ability of a distance.
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when computed on most of the datasets (see the bold
values in the Table 1), except on CNS-RAT and Yeast, in
agreement with [9] and [30]. The same behavior is not
confirmed by the mutual information distance d,;, which
does not seem to offer the same flexibility and versatility
as the other two distances. Taking into account such a
fact, together with the results presented in [10], one
receives an indication that MI may be superior to the con-
sidered distances only in conjunction with clustering algo-
rithms specifically designed for its use. That is, although
theoretically superior to other distances in terms of its
ability to capture statistical dependency, it does not seem
to offer the same flexibility and versatility as the other two
distances considered here.

Figures 1-3 show the partitions in the ROC plane for
each considered algorithm, and the CROC for each dis-
tance. As it is discussed next, the availability of both BMI
and CROC allows a detailed analysis of the interaction
between a distance function and a clustering algorithm
and represents one of the main contributions of this
research. Indeed, we have that K-means, Average Link,
and Complete link clustering algorithms are in most
cases able to improve the intrinsic separation ability of a
distance function with respect to clustering. This can be
observed by looking at the gray area in the corresponding
figures since it represents the set of points which have a
better performance with respect to the best distance
point for BMI. Thus, we can assert that an algorithm
improves the intrinsic separation ability of a distance
when its BMI falls inside the grey region. In particular,
Complete link is the best performer, falling 19/27 times
into the gray region, followed by K-means (16/27) and
Average link (12/27). It is worth pointing out that the
intrinsic separation ability of d,; is not improved by
Average Link and that Single Link is the worst performer
(3/27). Moreover, the mapping of a clustering solution s
to a point P allows to observe the agglomerative or divi-
sive behaviour of the clustering algorithm that has pro-
duced s (see subsection Clustering solutions, ROC plane
and the BMI index for more details about the methodol-
ogy). Results show a more divisive behavior of Complete
Link for all the considered distances, and of K-means in
the case of Pearson and MI distances.

The BMI can be regarded also as an external validation
index and it can be used to asses the performance of
clustering algorithms. Therefore, in order to validate this
new index we compare it with the state of the art indices
in the literature. Indeed, we have considered the set Py, x
of all the clustering solutions corresponding to the points
in the CROC for each considered distance d, and each
dataset X. Then, for each element in Py,x we have com-
puted the BMI, the Adjusted Rand (R,), the Fowlkes and
Mallows (FM) and the F values. For the convenience of
the reader, the latter three indices are defined in the
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subfigure is referred to a dataset. The markers show TPR versus FPR of each clustering solution. The area in gray represents the set of points
which have a better performance with respect to the best distance point for BMI, while the dotted line represents set of points with the same
performance. Complete link, K-means and Average link fall into the gray region for most of the dataset.
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Methods section. Figures 4-6 plot the values of BMI, R4,
FM, F for each clustering solutions in Py, x. Each figure
refers to a distance, and each sub-figure to a dataset. The
x-axis represents the number of clusters of each cluster-
ing solution in P4x. The Figures seem to suggest a
strong anti-correlation between the curves of BMI and

the other indices. In order to quantify this correlation, we
have computed the Pearson correlation between the
curves of BMI and those latter indices. The results are in
Tables 2 - 4 and show that the BMI is on most of the
datasets highly anti-correlated with the three other
indices. In particular, BMI shows 13/27 times a strong
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Figure 4 BMI and R,,F,FM Euclidean. Plots of the BMI, Ry, F, FM for all the clustering solution corresponding to the points in the CROC of the

anti-correlation (bold values in Tables 2) and 10/27 times
a moderate anti-correlation with R4, 13/27 times a strong
anti-correlation (bold values in Tables 3) and 12/27 a
moderate anti-correlation with F, and 11/27 times a
strong anti-correlation (bold values in Tables 4) and 13/
27 times a moderate anti-correlation with FM. This
demonstrates that the BMI values are congruent with
other indices, so its use as an external validity index is
fully justified.

Conclusions
In this paper we have presented a procedure to asses the
discriminative ability of a distance for data clustering.

Such procedure is based on the BMI, a new external vali-
dation index that has the versatility to be used to asses a
distance, to asses an algorithm, or purely as an external
validation index. We have applied the overall methodology
on 9 datasets, in the case of the Euclidean, Pearson and
Mutual Information distances. Some of the computed
results agree with other state of the art external validation
indices, but with respect to them our procedure is more
informative since it can shed light on the bias of the clus-
tering algorithm with respect to a distance. An important
thing to stress about the proposed methodology is that,
although it was validated in the context of gene expression
data obtained by microarray technologies, it is worth
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pointing out that the proposed methodology is “generic”, i.
e, it can be applied to other kind of data (e.g. RNA-seq).
As a future direction of investigation, we intend to extend
the proposed methodology to study a very challenging
problem in the field of data analysis, i.e., the quantification
of the intrinsic complexity of a dataset, defined as: the diffi-
culty for a clustering algorithm to find the correct parti-
tion of a dataset.

Methods

Definition of distance functions

We now formally define the distances used in this paper.
The Euclidean distance belongs to the geometric class

of distances, and it is defined as follows:

dy(%,7) =

where ¥ = (X1,e®)s ¥ = YooV in)-
The Pearson distance d, is a correlation-based dis-
tance:

Yoy (i = X)(yi —¥)
Y (=% (- 7)

dxy)=1—-r=1— 5 (3)

where % and y are the sample means of ¥ and .
The Mutual Information distance d,; is an informa-
tion-based distance so defined
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pij
?ﬁ nf i‘lO —
Zl—l Z]—l p] gplp]

(4)

dui(%,7)=1—
max <— i pilogpi, — 30, leOSPj>

where p; = P(X = x;) and p; = P(Y = y; ) are the mar-
ginal probability mass functions (p.m.f. for short) and p;;
= P(X = x;,Y = y; ) the joint p.m.f. When dealing with
such a distance, the problem is the estimation of the
marginal and joint p.m.f,, which involves a discretization
of the data values, usually done by using binning and
histogram based procedures [31].

Definition of external indices

Recall from [27] that an external index measures how well
a clustering solution computed by an algorithm agrees
with the gold solution for a given dataset. Formally, let
C = {cy,...c,} be the partition of the items in dataset X into
r clusters, corresponding to the gold solution for that data-
set. Let P = {p;,...,p;} be an analogous partition, possibly
produced by a clustering algorithm.

An external index measures the level of agreement of
the two partitions. External indices are usually defined
via a r x ¢ contingency table T, where T}; represents the
number of items in both ¢c;and pj, 1 <i<rand1<j<t
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Table 2 BMI vs R,
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Table 4 BMI vs FM

d, d, dw d, d, dw

CNS Rat -0.1397 -0.2682 -0.3476 CNS Rat -0.3408 -0.0507 -0.5335
Gaussian3 -0.2207 -0.997 0.3336 Gaussian3 -04027 -0.91840 -04383
Gaussian5 -0.9918 -1 - Gaussian5 -0.6297 -1 -

Leukemia -0.9512 -0.9830 -0.9754 Leukemia -0.8701 -0.8628 -0.8453
Lymphoma -0.9498 -0.9465 -0.3409 Lymphoma -0.6969 -0.6624 -0.5338
NCl60 -0.6241 -0.6060 -0.6485 NCI60 -0.6801 -0.6429 -0.7264
Novartis -0.8998 -0.8787 -0.8750 Novartis -0.8194 -0.7661 -0.8230
Simulatedé -0.9249 -0.9800 -04720 Simulatedé -0.9280 -0.9255 -04584
Yeast -0.5121 -0.5106 -0.6246 Yeast -04183 -0.2481 -04887

The Pearson correlation between the BMI and R, values computed on all the
clustering solutions mapped in the CROC of each of the considered distances,
for each dataset. For Gaussian5, the dy, is not computed due to the small
number of features. The strong correlation values are shown in bold, while
the weak correlations in grey.

For our experiment we have used the R4, FM and F
indices. We report their formulas next, pointing out that
additional details about them can be found in [27].

oy ()
D

Zi,j T12] -N
FM = 6
& T -N) (5, T —N) ©
T, T\ \ T; T
o) =) ] ()3
F= Zﬁ‘ $XpreP 5 y - (7)
R ) ()0
2 i\ 2 T; T,
where T; = |¢;| and T; = |p; |.
Table 3 BMI vs F
d, d, du

CNS Rat -0.4590 -0.1684 -0.5910
Gaussian3 -0.5031 -0.8714 -0.5371
Gaussian5 -0.5518 -1 -
Leukemia -0.8155 -0.8246 -0.8068
Lymphoma -0.6329 -0.5915 -0.5896
NCl60 -0.86139 -0.8533 -0.8529
Novartis -0.793199 -0.7194 -0.8283
Simulated6 -0.9419 -0.9373 -0.4966
Yeast -0.4808 -0.3151 0.5448

The Pearson correlation between the BMI and F values computed on all the
clustering solutions mapped in the CROC of each of the considered distances,
for each dataset. For Gaussian5, the dy, is not computed due to the small
number of features. The strong correlation values are shown in bold, while
the weak correlations in grey.

The Pearson correlation between the BMI and FM values computed on all the
clustering solutions mapped in the CROC of each of the considered distances,
for each dataset. For Gaussian5, the dyy, is not computed due to the small
number of features. The strong correlation values are shown in bold, while
the weak correlation in grey.

Note that there is a little difference in the range of
values of the three indices: while the FM and the F
indices can assume a value in the range [0,1], the R4 may
be negative [32]. All three indices need to be maximized,
that is, for each of them, the closer the index is to one,
the better the agreement between the two partitions.

The BMI index and the CROC curve

The ROC plane can be used to estimate the similarity
between a reference partition and a generic one as follows.
The reference partition is mapped to the point (0, 1) in
the ROC plane, corresponding to perfect classification.
Analogously, the generic partition is mapped to a point in
the ROC plane, depending on the number of “misclassi-
fied” elements with respect to the reference partition.
Then, a distance measure between such a point and (0, 1)
gives an indication about the similarity of the partitions.
The BMI is the Euclidean distance between those two
points. Moreover, the mapping of partitions into the ROC
plane at the base of the BMI can be used to assess the
intrinsic discriminative ability of a distance function for
clustering by generating the CROC curve and by consider-
ing the closest point to (0, 1) on this curve as a clustering
solution associated to the distance function. Then, the
BMI between this point and (0,1) gives the required esti-
mate. In the following subsections, we give details about
the BMI and the CROC.

Clustering solutions, ROC plane and the BMI index

Given a gold solution GS, it is possible to map a cluster-
ing solution s into the ROC plane as follows:

1. Compute the connectivity matrix J; for s.

2. Starting from J;, compute the confusion matrix
with respect to GS.

3. Use that confusion matrix to compute T7PR and FPR
for s. Those two variables naturally identify a point
into the ROC plane, associated to s.
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A few remarks are in order. The above approach natu-
rally leads to measure a clustering solution in terms of
TPR and FPR rates. As anticipated, the point into the
ROC plane associated with GS is Pgs = (0,1).

Given a clustering solution s, let P; = (x, ) be the point
in the ROC plane corresponding to it.

The performance of s is proportional to the proximity of
P, to Pgs, as we now explain. Let E,, be the Misclassifica-
tion error rate defined as the sum between FPR (x) and
False negative rate (FNR = 1 - y). That is, E,, is the L1
metric (d;) computed between P, and Pgg, i.e., d1(Pgs P;)
= |x + 1 - y|. Then, the closer P and Pgg are with respect
to dy, the better the clustering solution with respect to E,,,.

It is worth pointing out that P gives a measure of the
agglomerative and divisive tendency of a generic clustering
algorithm. Indeed, the greater the x value, the more divi-
sive the clustering algorithm is. Analogously, the smaller
the y value, the more agglomerative the clustering algo-
rithm is. Indeed, we can actually devise an index that mea-
sures such a tendency.

Let E;, be the Balancing error rate defined as the mea-
sures of how much FPR and FNR are unbalanced. The
BMI for a generic clustering solution is:

BMI = a x (En)? + B x (Ep)? (8)

where the weights o and  allow to tune the impor-
tance between balance and misclassification.

Among all the possible weight combinations, a natural
choice for BMI is to set o and B in order to take into an
equal account the misclassification error rate E,, and the
balancing error rate E,. This corresponds to the setting
o = B = 0.5, and it is of interest and relevance here to
notice that in this case BMI corresponds to da(Pgs,Ps).
That is, the L, (Euclidean) metric between the points Pgg
and P,. This means that the closer P; and Pgg are with
respect to d,, the better the clustering solution, in equal
measure (o = § = 0.5) between misclassification error rate
E,, and balancing error rate Ej,.

Operationally, once fixed o = = 0.5, if one wants to
compute the BMI of a clustering algorithm producing a
clustering solution with x = FPR and y = TPR, respectively,
one needs only to compute the Euclidean distance
between the points P; and Pgg in the ROC plane. It is
obvious that such a technique can also be used to compare
the performance of several clustering solutions by consid-
ering the Euclidean distances between the associated
points into the ROC plane and Pgg.

A procedure to compare distance functions and clustering
algorithms via ROC analysis

We recall from [9] that starting from a distance matrix D
and a gold solution GS, it is possible to derive a ROC
curve into the ROC plane, as we now briefly outline.
Given a threshold value @ € [0,1] and the distance matrix
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D, let Iz be a matrix in which each entry is defined as
follows:

Lif D(i,j) < ¢,
0 otherwise.

1) - | o)

Therefore, considering all the points corresponding to
different threshold values, we obtain the ROC curve for
the distance function d. If each point in the ROC curve
corresponded to a proper partition of the items, i.e., a clus-
tering solution, we could use it to address point (C) (see
Evaluating the performance of distance function via the
BMI index and the CROC curve). Unfortunately, that is
not the case, as we now argue. In fact, Iz cannot be con-
sidered as a connectivity matrix of a dataset partition since
it could not satisfy the transitive property (see formula 1).
This issue always occurs when three generic items x; x;, xi
lie on a straight line at distances D(j, j) = D(j, k) = &,
involving I (i, j) = 1, Iz(j, k) = 1 but Iz(i, k) = 0. There-
fore, in order to properly compare a distance function
with a clustering algorithm, via ROC analysis, we need to
convert the matrix I into a matrix J representing a con-
nectivity matrix of a clustering solution. This can be done
in several ways: here we have adopted an approach based
on the connected components induced by the matrix /.
Intuitively, the process is the following: if I does not cor-
respond to a partition, i.e., at least two sets a and b have
non-empty intersection, then they are merged into a new
set ¢ = a U b. This allows to transform the ROC curve
associated to a distance function into a new curve in
which each point corresponds to a proper clustering solu-
tion. We refer to this curve as the CROC of a distance.
Recall from [11] that the AUC represents also the prob-
ability that a random pair of elements belonging to differ-
ent classes will be correctly ranked. By analogy, in our
case, the AUC under the CROC represents the probability
of the following event: two couples (x, x') and (y, z) such
that x, " belong to the same cluster while y, z to different
clusters satisfy the relation d(y, z) >d(x, x'), where d repre-
sents a generic distance. Using the CROC curve, one can
find the best clustering solution associated to a distance
function with respect to BMI, as the closest point P to
Pgs into the CROC curve (see the green dot marker in
Figures 1 - 3 as an example). Note that the value of the
area under the CROC increases while the BMI of the best
clustering solution decreases, thus we expect a low value
of the BMI for a distance which has a good intrinsic discri-
mination ability. One can now fairly compare a distance
function and a clustering solution produced by an algo-
rithm, in terms of their classification ability:

1. Compute the ROC curve for a distance function d.
2. Calculate the CROC curve starting from the ROC
curve computed in the previous point.
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3. Find the best point into the CROC curve, i.e., the
point with the lowest value of BMI, and mark it.

4. Map one or more clustering solutions in the ROC
plane (as described in subsection Clustering solu-
tions, ROC plane and the BMI index) and mark the
corresponding points.

5. Rank the performance of each marked points in
the ROC plane, as described in subsection Clustering
solutions, ROC plane and the BMI index.
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