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Deriving Flood-Mediated 
Connectivity between River 
Channels and Floodplains:  
Data-Driven Approaches
Tongtiegang Zhao1,2, Quanxi Shao1 & Yongyong Zhang3

The flood-mediated connectivity between river channels and floodplains plays a fundamental role in 
flood hazard mapping and exerts profound ecological effects. The classic nearest neighbor search (NNS) 
fails to derive this connectivity because of spatial heterogeneity and continuity. We develop two novel 
data-driven connectivity-deriving approaches, namely, progressive nearest neighbor search (PNNS) 
and progressive iterative nearest neighbor search (PiNNS). These approaches are illustrated through 
a case study in Northern Australia. First, PNNS and PiNNS are employed to identify flood pathways 
on floodplains through forward tracking. That is, progressive search is performed to associate newly 
inundated cells in each time step to previously inundated cells. In particular, iterations in PiNNS ensure 
that the connectivity is continuous – the connection between any two cells along the pathway is built 
through intermediate inundated cells. Second, inundated floodplain cells are collectively connected to 
river channel cells through backward tracing. Certain river channel sections are identified to connect 
to a large number of inundated floodplain cells. That is, the floodwater from these sections causes 
widespread floodplain inundation. Our proposed approaches take advantage of spatial–temporal data. 
They can be applied to achieve connectivity from hydro-dynamic and remote sensing data and assist in 
river basin planning and management.

Connectivity is an important concept in many disciplines, such as neuroscience1, ecology2, and environmental 
and earth sciences3. In hydrology, analysis of connectivity facilitates understandings of the dynamics of soil mois-
ture and runoff at hillslope and watershed scales4,5. It also helps to investigate the ecological effects of hydrological 
processes6,7. However, a consensus on the definition and measurement of hydrological connectivity remains lack-
ing8. For example, in hillslope hydrology, connectivity is defined as the physical coupling of discrete hydrological 
response units of the landscape by subsurface flow9. Meanwhile, in an ecological context, hydrological connec-
tivity is conceptualized as the water-mediated transfer of matter, energy, and/or organisms within or between 
elements of the hydrologic cycle10.

Hydrological connectivity has static and dynamic aspects5,8. Structural connectivity is static and refers to 
the spatial distribution of landscape patterns that affect water transfer and flow paths; functional connectiv-
ity is dynamic and indicates how landscape patterns interact with rainfall input to produce runoff11. In gen-
eral, the elements of structural connectivity can efficiently be described using hydrological indices, such as 
Euclidean distance and topographically defined hydrologic distance4,12. The elements of functional connectivity 
are more difficult to quantify than those of structural connectivity mainly because of their dynamic nature5. 
Therefore, functional connectivity is also called process-based connectivity because it is inherently presented in 
time-varying hydrological processes8.

The connectivity between river channels and floodplains plays a fundamental role in river basin planning 
and management13–17. In addition, the flood-mediated connectivity exhibits profound ecological importance 
because floods modify landscape and create heterogeneous habitats on floodplains2,7,10,18,19. This connectivity can 
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be empirically derived using the criterion of Euclidean distance20. Specifically, a floodplain cell is connected to 
the nearest river channel cell, and its inundation status is inferred by comparing the relative elevation with the 
corresponding river stage21,22. However, apart from distance, other factors such as slope, vegetation, and surface 
roughness inevitably influence flood flow23. These influencing factors interact with each other and complicate 
the analysis of connectivity3,6,24. Hydrodynamic models formulate continuity equations of 2-D flood flow and 
parameterize the effects of different influencing factors20,23,25. While the flood-mediated connectivity is contained 
in model simulations, hydrodynamic models do not explicitly quantify the connectivity.

Recent advances in dynamic models have generated a vast amount of hydrological datasets16,19,26–28. For flood 
inundation, the dynamic process of floods travelling from river channels and propagating on floodplains can 
evidently be observed from temporal sequences of spatial simulation data6,26,29. However, methods to acquire con-
nectivity from simulation data are generally lacking. Trigg et al.26 developed a novel statistical method to obtain 
connectivity from a time-series of spatial inundation data and illustrate the dynamics of connectivity during 
the flooding process. The statistical method measures how connected floodplains are, and our study elaborates 
on how floods connect river channels and floodplains. We extend the classic nearest neighbor search (NNS) to 
account for spatial heterogeneity and continuity. Further, we develop two novel data-driven connectivity-deriving 
methods, namely, progressive nearest neighbor search (PNNS) and progressive iterative nearest neighbor search 
(PiNNS). These approaches contribute to objectively deriving connectivity from the spatial and temporal charac-
teristics of data. As will be illustrated later in this paper, PNNS and PiNNS are substantially better than NNS and 
effectively reveal flood pathways on floodplains and critical sections of river channels.

The remainder of the paper is structured as follows. First, a case study of floodplain inundation in the Flinders 
and Norman rivers, which are in Northern Australia, is introduced. Then, the NNS-, PNNS- and PiNNS-derived 
connectivities between river channels and floodplains are elaborated in the results section, followed by discussion 
and conclusions. In the last section, the mathematical formulations of the data-driven approaches are detailed.

Case study
The data-driven connectivity-deriving approaches NNS, PNNS, and PiNNS are applied to the case study of the 
Flinders and Norman rivers in Northern Australia. The spatial–temporal dataset is generated by a 2D hydrody-
namic model. The characteristics of spatial heterogeneity and continuity are illustrated on the basis of the simu-
lated flooding process.

Flinders and Norman Rivers. The Flinders and Norman rivers generally flow from south to north and into 
the Gulf of Carpentaria30. Flinders is the longest river in Queensland, with a length of 3,030 km and a drainage 
area of 111,163 km2. Norman River is on the east of the Flinders River; it has a length of 420 km and a drainage 
area of 50,665 km2. A defining characteristic of the two tropical river basins is the extensive coastal floodplain. 
The current land cover is mainly open savannahs and grasslands for cattle grazing. Although the region has con-
siderable potential for agricultural development, considerable flood hazards exist6,30,31. The two river basins have 
a semi-arid tropical climate. The mean annual precipitation is approximately 500 mm, but more than 85% of pre-
cipitation falls during the wet season from November to April. Heavy rainfall caused by tropical cyclones results 
in widespread floods. Figure 1 illustrates the inundation extent and maximum inundation depth, as obtained 
from hydrodynamic simulation, from the 1991 flood. Evidently, a large part of the floodplain was inundated 
under the catastrophic flood. This study investigates the flood-mediated connectivity between river channels and 
floodplains. The connectivity is affected by river basin topography, which is pre-defined in hydrodynamic models 
as elevation and slope23,25. More importantly, it is subject to complex interactions between topography and flood-
water from upstream catchments and sub-catchments within the study region6,8,24.

Hydrodynamic simulation of the 1991 flood. In the Flinders and Gilbert Agricultural Resource 
Assessment project, a 2D hydrodynamic model MIKE 21 (DHI, 2009) was set up to analyze historical and future 
floods and to produce hazard maps6,29. The model domain is defined under the EPSG:28354 coordinate reference 
system. Coordinates of the south, north, west, and east boundaries are 416,965.3 m, 643,315.3 m, 7,712,109 m, and 
8,076,159 m, respectively. The study region covers an area of 82,403 km2 and is represented by a raster DEM that 
contains 1,509 ×  2,407 =  3,632,163 cells at a spatial resolution of 150 m ×  150 m. A total of 196 sub-catchments 
are derived from the DEM. For each sub-catchment, the local flow is simulated using the Sacramento model; in 
the meantime, 11 flow boundaries contribute floodwater to the study region from upstream catchments6,29. Using 
the input flow data, the MIKE 21 model thus simulates unsteady flow in two horizontal directions in accordance 
with the basic principles of conservation of mass and momentum23.

The simulation of the 1991 flood is for the period from January 1st 12:00 to January 23rd 18:00. Raster files 
of the inundation extent and depth are saved from the hydrodynamic simulation every six hours and comprise 
90 files. As the study region covers a large area, floods take several days to travel from upstream to downstream. 
Floodplain inundation along the upper reaches begins to recede, whereas floodplain in the lower reaches have yet 
to become inundated. Therefore, we account for the entire study region in the analysis, but we focus on a selected 
region (the red rectangle in Fig. 1) when presenting the results. Two major river channels are respectively located 
in the west and northeast parts of this region. This characteristic poses a substantial challenge. While the prop-
agation of floodwater is clearly depicted in Fig. 2, associating the inundated floodplain with the two channels is 
not easy. Even in the simple case where only one river channel is present, several sections can possibly contribute 
floodwater to the floodplain.

Properties of flood-mediated connectivity. The simulated flooding processes from January 8th 18:00 
(time step 30) to January 13th 00:00 (time step 47) are detailed in Fig. 2. During the five-day period, the maximum 
inundation depth in the river channel rises from less than 2 m to nearly 5 m. In the meantime, the floodplain 
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between the two river channels become inundated because of diffusive overbank floods. Floodwater connects 
river channels and floodplains. The dynamic flooding process indicates that the flood-mediated connectivity 
exhibits two important characteristics:

(1) Spatial heterogeneity: an irregular expansion of floodplain inundation occurs. The inundated area along the 
west river channel gradually expands as time progresses. By contrast, floodwater from the northeast channel 
propagates along certain pathways and spreads on to the floodplains. In general, for a floodplain cell, a shorter 
distance to the river channel does not necessarily correspond to an earlier inundation.

(2) Spatial continuity: the progression of floodplain inundation in each time step closely relates to inundated 
areas in the previous time step. This phenomenon reflects the fact that the “flood does not jump.” In other 
words, floodwater propagates gradually on the floodplain; it flows from areas that are already inundated to 
areas that are yet to become inundated.

Therefore, floods connect river channels and floodplains; the resulting connectivity is heterogeneous and 
continuous. These two characteristics are generally attributable to complex interactions between river basin char-
acteristics and floodwater from upstream catchments and sub-catchments within the study region8,23,28. In this 
study, the proposed data-driven approaches (please refer to the Methods section for the details) aim to acquire 
the flood-mediated connectivity.

Results
We apply PNNS and PiNNS, as well as NNS, to derive the connectivity between river channels and floodplains 
from the simulation data of the Flinders and Norman rivers. Inundated floodplain cells are connected to river 
channel cells. The connectivity analysis reveals flood pathways on floodplains and critical river channel sections.

Flood pathways on floodplains. In the study region, there are two main river channels from which flood-
water leads to floodplain inundation. We select three cells, ifc1, ifc2 and ifc3, from an area with a confluence 
of floodwater for illustration (Figs 3, 4 and 5). While these three cells are close to each other, floodwater that 
causes inundation at these cells can be observed to flow from different sections of the river channels (Fig. 2). 
Thus, the effectiveness of the data-driven approaches is tested through connecting these cells to river channels. 
Connectivity analysis is conducted from time step 31 to time step 47. Cells that are inundated before and at time 
step 30 constitute the set RCC of river channel cells. The results under NNS, PNNS, and PiNNS are presented in 
Figs 3, 4 and 5, respectively. In these figures, the time step when the cells become inundated is illustrated using a 

Figure 1. Flood extent map by MIKE 21 from the 1991 flood in the Flinders and Norman rivers. The red 
rectangle indicates the selected region where the flood-mediated connectivity between river channels and 
floodplains is detailed; the blue box in the inset map indicates the location of the study region. This figure is 
generated by the R-studio software version 0.99.465 (https://www.rstudio.com/), and the inset location map by 
the Google Maps module in R (https://cran.r-project.org/package= RgoogleMaps).

https://www.rstudio.com/
https://cran.r-project.org/package=RgoogleMaps
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Figure 2. Progression of floodplain inundation and flood-mediated connectivity between river channels 
and floodplains. This figure is generated by the R-studio software version 0.99.465 (https://www.rstudio.com/).

https://www.rstudio.com/
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Figure 3. NNS-derived connectivity between selected floodplain cells and river channel cells. The color bar 
represents the time step at which the cells become inundated. This figure is generated by the R-studio software 
version 0.99.465 (https://www.rstudio.com/).

Figure 4. Similar to Fig. 3 but for PNNS. This figure is generated by the R-studio software version 0.99.465 
(https://www.rstudio.com/).

Figure 5. Similar to Fig. 3 but for PiNNS. This figure is generated by the R-studio software version 0.99.465 
(https://www.rstudio.com/).

https://www.rstudio.com/
https://www.rstudio.com/
https://www.rstudio.com/
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heat map. Yellower colors indicate earlier inundation, while redder colors later inundation. Thus, the difference in 
color represents the chronological order for the progression of floodplain inundation. The heat map shows certain 
branch-like structures that originate in particular from the northeast river channel and extend on the floodplain 
to the west channel. This pattern is associated with the progression of floodplain inundation (Fig. 2).

The NNS approach connects floodplain cells ifc1, ifc2, and ifc3 to river channel cells rcc1,NNS, rcc2,NNS, and 
rcc3,NNS, respectively. In Fig. 3, the connectivity is marked by solid straight lines. As expected, the connectivity by 
NNS is simply distance based. Unsurprisingly, the three selected cells are all connected to the nearby river channel 
in the west of the study region. However, the connectivity is noticeably not along the gradient of the heat map. 
In particular, the connectivity between ifc1 and rcc1,NNS occurs over part of the floodplain that is not inundated. 
These results suggest that floodwater, which inundates the selected floodplain cell, may not be from the nearest 
river channel cell. In other words, although NNS finds the nearest river channel cell for each selected floodplain 
cell, there can be no physical relationship between the two cells.

The connectivity derived by PNNS is illustrated in Fig. 4. Cells ifc1, ifc2, and ifc3 are respectively connected 
to rcc1,PNNS, rcc2,PNNS, and rcc3,PNNS. The backward tracing for PNNS also identifies intermediate floodplain cells, 
which bridge the connectivity between the selected floodplain cell and the final river channel cell. As is illustrated, 
the connectivity in Fig. 4 is represented by solid polygonal lines that link a series of dots of intermediate cells. One 
major difference of Fig. 4 from Fig. 3 is that rcc1,NNS and rcc2,NNS belong to the river channel in the northeast of the 
study region. This result suggests that floodwater that inundates the two cells is not from the closer west channel 
but from the more distant northeast channel. This finding is confirmed by examining the polygonal lines against 
the heat map. It can be observed that the lines of connectivity tend to match the gradient of the heat map. This 
observation suggests that the connectivity by PNNS indicates the propagation of floodwater on the floodplain. As 
PNNS progressively applies NNS in each time step, it takes advantage of dynamically updated simulation data and 
facilitates more efficient connectivity analysis.

The connectivity by PiNNS is presented in Fig. 5. In some respects, the results are similar to those in Fig. 4. 
First, ifc1 and ifc2 are respectively connected to rcc1,PiNNS and rcc2,PiNNS, which are located in the northeast channel, 
whereas ifc3 is associated with rcc3,PiNNS in the west channel. Second, the connectivity is built through a series 
of inundated floodplain cells. The solid polygonal lines, which indicate connectivity, are along the gradient of 
the heat map as well. On the other hand, there are some subtle differences between PNNS- and PiNNS-derived 
connectivities. We check the coordinates of river channel cells and find that rcc2,PiNNS is the same as rcc2,PNNS, 
but rcc1,PiNNS and rcc3,PiNNS are respectively different from rcc1,PNNS and rcc3,PNNS. The differences are mainly due 
to PNNS not accounting for the spatial continuity in the connectivity analysis. A more in-depth comparison 
between PNNS and PiNNS is presented in the next section.

Figures 3, 4 and 5 highlight that the data-driven approaches PNNS and PiNNS are more effective than NNS in 
dealing with spatial heterogeneity and deriving the flood-mediated connectivity. We attribute their advantage to 
forward tracking and backward tracing. Forward tracking records how floodwater flows in each time step; then, 
backward tracing links pathways in individual time steps and illustrates how floodwater flows from a river chan-
nel cell to the selected floodplain cell. Compared with NNS, which directly connects an inundated floodplain cell 
to the nearest river channel cell, PNNS and PiNNS perform process-based analyses and illustrate flood pathways 
on floodplains. The pathways shown in Figs 4 and 5 essentially reflect flood-mediated connectivity.

Critical river channel sections. We perform connectivity analyses for all the inundated floodplain cells 
in IFC. Therefore, inundated floodplain cells that are being connected to a particular river channel cell are iden-
tified. NNS, PNNS, and PiNNS are respectively applied to analyze connecting cells for rcci,NNS, rcci,PNNS, and 
rcci,PiNNS (i =  1, 2, and 3). The results are presented in Figs 6, 7 and 8. Interestingly, each target river channel cell 
is connected to a number of inundated floodplain cells that form a set. In particular, larger sets are identified 
under PNNS and PiNNS. Given that the connectivities by PNNS and PiNNS relate to flood pathways, the results 
in Figs 7 and 8 suggest the existence of critical river channel sections. In other words, floodwater flowing from 
certain sections leads to widespread floodplain inundation.

The sets of floodplain cells connected to rcc1,NNS, rcc2,NNS, and rcc3,NNS are obtained by NNS. Each river 
channel cell represents the nearest neighbor to its connecting floodplain cells. Figure 6 shows that this 
shortest-distance-based connectivity is actually not the flood-mediated connectivity. In particular, no continu-
ous connection exists between rcc1,NNS and most of the floodplain cells identified by NNS to be connected to it, 
indicating that floodwater cannot flow from rcc1,NNS to these cells.

The PNNS approach identifies inundated floodplain cells for rcc1,PNNS, rcc2,PNNS, and rcc3,PNNS. Although Fig. 4 illus-
trates that PNNS tends to capture flood pathways, Fig. 7 suggests that certain limitations still hold for this approach. As 
for rcc3,PNNS, this cell does not continuously connect to all the floodplain cells that are identified to be connected to it. 
A similar observation applies to rcc2,PNNS. The worst case is for rcc1,PNNS. This cell is separated from the set of floodplain 
cells that are identified by PNNS to be connected to it. This separation can also somehow be observed from the pathway 
in Fig. 4. The polygonal line, which represents the connectivity between ifc1 and rcc1,PNNS, “jumps” over certain later 
inundated cells to rcc1,PNNS. An example of such a “jump” is further illustrated in the Methods section. Therefore, the 
step-by-step application of NNS in PNNS does not guarantee a spatially continuous connectivity.

The PiNNS approach devises iterative searches to ensure that the connectivity is continuous. For rcc1,PiNNS, 
rcc2,PiNNS, and rcc3,PiNNS, the connecting floodplain cells are presented in Fig. 8. Under PiNNS, the connection between 
rcci,PiNNS (i =  1, 2, 3) and the corresponding floodplain cells now exhibits spatial continuity, indicating that floodwater 
from each river channel cell can continuously flow to its connecting floodplain cells. The three sets of floodplain cells 
(Fig. 8) tend to match the branch-like structures in the heat map (Fig. 5). Overall, the results in Figs 6, 7 and 8 indicate 
that PiNNS performs the most effective connectivity analysis among the three approaches.
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Effects of elevation and river stage. The connectivity investigated in the two previous sections are medi-
ated by the dynamic flooding processes that depend not only on basin characteristics, e.g., elevation and slope, 
but also on river stage8,23,28. While the effectiveness of PiNNS is demonstrated in the data-driven connectivity 
analysis, it is important to further validate the derived flood pathways and to associate the results with the physi-
cal influencing factors of flooding. For the region under investigation, we show the elevation in Fig. 9 and present 
the contour, from which slope can be inferred, in Fig. 10. The flood pathways from rcci,PiNNS to ifci (i =  1, 2, 3) by 
PiNNS are marked with black lines. As a comparison, flow paths from rcci,PiNNS (i =  1, 2, 3), which are obtained 
from elevation and slope in the direction of steepest descent32,33, are illustrated using red lines. It can be observed 
that the traditional flow paths in hydrology are different from the flood pathways by PiNNS. Regardless of the 
effect of river stage, flow paths are along river channels. In particular, the flow paths from rcc1,PiNNS and rcc2,PiNNS 
overlap. By contrast, subject to the effect of river stage, floods are no longer constrained in river channels and the 
pathways of overbank floods are much more diffusive (Fig. 2).

The elevation and hydraulic head along the PiNNS-derived flood pathways are examined in Fig. 11. In the 
three subplots, the x-axis represents the distance along the pathways from rcci,PiNNS to ifci (i =  1, 2, 3). The y-axis 

Figure 6. NNS-identified inundated floodplain cells that are connected to the three selected river channel 
cells. The sets of river channel cells and inundated floodplain cells are marked in yellow and grey, respectively; 
the three critical river channel cells are represented by blue dots, whereas the corresponding floodplain cells are 
marked in purple, orange, and green. This figure is generated by the R-studio software version 0.99.465 (https://
www.rstudio.com/).

Figure 7. Similar to Fig. 6 but for PNNS. For the second and third river channel cells, some of their 
connecting floodplain cells cannot be continuously connected to them. For the first river channel cell, it is 
separated from the set of floodplain cells that are connected to it by PNNS. This figure is generated by the 
R-studio software version 0.99.465 (https://www.rstudio.com/).

https://www.rstudio.com/
https://www.rstudio.com/
https://www.rstudio.com/
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is for the elevation (the black soild line) and the maximum hydraulic head (the blue dashed line). The maxi-
mum hydraulic head, which is the sum of the elevation and the maximum inundation depth, generally decreases 
along the flood pathways. This pattern suggests that flood pathways derived by PiNNS are physically feasible. 
In contrast, the elevation does not show the same decreasing pattern. For example, the elevation from rcc1,PiNNS 
(rcc2,PiNNS) to ifc1 (ifc2) increases slightly at the start and then decreases. Meanwhile, the elevation from rcc3,PiNNS 
to ifc3 increases all the way. These increases in elevation suggest that water cannot automatically flow from 
rcci,PiNNS to ifci (i =  1, 2, 3). It also indicates that river stage plays an important part in the connectivity. Specifically, 
the river stage has to reach a certain threshold to facilitate the connectivity.

Another interesting finding from Figs 9, 10 and 11 is the role of relative elevation. In spatial analysis, relative 
elevation has been employed to infer inundation status and depth by comparing it to river stage21,22,24. This applies 
to ifc3. It can be observed that the maximum inundation depth at ifc3 is approximately the maximum river stage 
at rcc3,PiNNS minus the relative elevation between rcc3,PiNNS and ifc3. However, it does not apply to ifc1 and ifc2. The 
difference is mainly attributable to river basin topography. As shown in Figs 9 and 10, ifc3 is located in a river 
valley while ifc1 and ifc2 are on a hillslope.

Discussion
The computational efficiencies of NNS, PNNS, and PiNNS are analyzed. A total of 3,632,163 cells are 
included in the case study, with RCC comprising 348,008 river channel cells (inundated before or in time 
step 30) and IFC including 614,441 inundated floodplain cells (inundated after time step 30). The classic 

Figure 8. Similar to Fig. 6 but for PiNNS. This figure is generated by the R-studio software version 0.99.465 
(https://www.rstudio.com/).

Figure 9. Illustration of the PiNNS-derived flood pathways (black lines) and the traditional flow paths 
in the direction of steepest descent (red lines) in an elevation map. This figure is generated by the R-studio 
software version 0.99.465 (https://www.rstudio.com/).

https://www.rstudio.com/
https://www.rstudio.com/
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NNS approach is computation-efficient34–36. It only needs 20.19 seconds to derive the connectivity between 
RCC and IFC on a Lenovo T410 laptop with an Intel Core i5 CPU (M560 2.67 GHz) and 4.00 GB RAM. 
Compared with NNS, PNNS and PiNNS entail further computation. The running times of PNNS and 
PiNNS are 131.33 and 181.39 seconds, respectively. Therefore, the progressive computation does not greatly 
increase the computation time. In particular, while PiNNS involves tedious iterations, it can also be deemed 
computation efficient. This is mainly because the set of cells whose connectivity has yet to be decided 

Figure 10. Similar to Fig. 9, but in a contour map. This figure is generated by the R-studio software version 
0.99.465 (https://www.rstudio.com/).

Figure 11. The elevation (black solid lines) and the maximum hydraulic head (the blue dashed line) along 
the PiNNS-derive flood pathways. This figure is generated by the R-studio software version 0.99.465 (https://
www.rstudio.com/).

https://www.rstudio.com/
https://www.rstudio.com/
https://www.rstudio.com/
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becomes smaller after each iteration. Given their high efficiency, the data-driven connectivity-deriving 
approaches have potential applications to case studies that are highly complicated.

Among the three approaches, PiNNS exhibits the most promising performance in connectivity analysis. One 
important output of this approach is flood pathways on floodplains. Important locations, e.g., residential areas, 
factories, and farms, are usually present on floodplains. PiNNS can readily be used to diagnose sources of flood 
hazards for these locations. By selecting the corresponding cells in the analysis, PiNNS not only reveals where 
the floodwater originates but also illustrates how it flows to selected cells. Another useful output of PiNNS is the 
identification of critical river channel sections. Floodwater from these sections causes widespread floodplain 
inundation. In river basin planning and management, flood defenses can be built around those critical sections. 
PiNNS can be used to analyze hydrodynamic simulation data before and after defense projects. Thus, the effects 
of such projects on floodplain inundation can be evaluated. In traditional flood hazard mapping, simulation data 
are examined empirically by experienced engineers. PiNNS can automatically extract useful information for flood 
hazard mapping and aid engineers in flood data analysis.

As the proposed approaches are driven by data, the derived connectivity reflects the spatial and temporal char-
acteristics of data. For the connectivity to be reliably derived, it is important to ensure data quality. This involves 
a range of modelling issues, such as setting spatial resolution, choosing time step and formulating governing 
equations to represent the physical processes23,28. In this study, the connectivity analysis is built upon previ-
ous studies of hydrodynamic simulations6,29. When applying the data-driven approaches to other case studies, it 
would be important to first validate the hydrodynamic model and simulation data. This would lay the basis for an 
effective connectivity analysis. Further, it is pointed out that in hydrology, there are various types of connectivity 
that can be either static or dynamic5,8,11. The data-driven approaches in this study are particularly for the deriva-
tion of flood-mediated connectivity. This kind of connectivity is dynamic, and it exhibits spatial heterogeneity 
and continuity. We note that other approaches, e.g., statistical methods26, are available for the analysis of other 
connectivities.

Conclusions
We develop PNNS and PiNNS based on the classic NNS to derive the flood-mediated connectivity between river 
channels and floodplains. Compared with NNS that derives a distance-based connectivity, PNNS accounts for 
spatial heterogeneity and incorporates dynamically updated simulation data into the analysis. PiNNS further con-
siders spatial continuity. Both PNNS and PiNNS are used in forward tracking to derive the connection between 
newly and previously inundated cells. Then, through backward tracing, inundated floodplain cells are collectively 
connected to river channels. PNNS and PiNNS, as well as NNS, are applied to the case study of the Flinders 
and Norman rivers in Northern Australia. The results show that NNS-derived connectivity does not reflect the 
physical connection. PNNS improves and tends to capture the progression of floodplain inundation. PiNNS is 
the most promising because it devises iterative searches to ensure that the connectivity is derived continuously 
through adjacent cells. Among the three approaches, PiNNS is the most effective in identifying flood pathways on 
floodplains and critical sections of river channels.

Data–driven approaches take advantage of spatial–temporal data and extract connectivity from dynamic 
flooding processes. In this study, the utility of these approaches was demonstrated with simulation data. They 
can be further extended to other applications. For example, these methods can be readily used to exploit remote 
sensing data. Given their capacity to reveal flood pathways on floodplains and critical river channel sections 
efficiently, these approaches can serve as useful tools in river basin planning and management. Nevertheless, 
these data-driven approaches rely on data, and they cannot explain the mechanism that generates the data. Future 
studies can focus on elucidating the flooding mechanism and attributing the flood-mediated connectivity to 
the potential influencing factors, including river basin topography, floodwater, and hydraulic characteristics of 
floodplains and river channels. Insights into the mechanism are expected to facilitate physical understandings 
of flood-mediated connectivity. Such insights can also enhance the accessibility of PNNS and PiNNS and guide 
further improvements in the data-driven approaches.

Methods
Spatial–temporal datasets from hydrodynamic simulation or remote sensing describe flooding processes in 
river channels and on floodplains. The data-driven approaches are meant to exploit the data and derive the 
flood-mediated connectivity between river channels and floodplains. PNNS and PiNNS are built on the classic 
NNS. PNNS accounts for spatial heterogeneity, whereas PiNNS further considers continuity.

NNS. The NNS approach is a popular spatial analysis tool20,34,37. The shortest distance to the river chan-
nel, which is determined by NNS, is an important metric in floodplain delineation21,24. NNS facilitates a 
distance-based connectivity. That is, a floodplain cell is associated with the nearest river channel cell. The general 
optimization model for NNS can be formulated as follows:

. . ∈
.

dist i j

s t i RCC

min ( , )

(1)
i

In Eq. (1), dist() represents an operator of the Euclidean distance between cell i and j, i is an element of the 
reference set RCC (the collection of river channel cells in our study), and j is the element for which the nearest 
neighbor is searched from RCC. Selecting i as the decision variable, the model determines the nearest neigh-
bor i* in I for j.

The sets of river channel cells and inundated floodplain cells are denoted as RCC and IFC, respectively. The 
NNS optimization model that connects IFC to RCC is formulated as follows:
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. . ∈
∈

.{
dist i j

s t i RCC
j IFC

min ( , )

(2)

i

The NNS algorithm kd-tree34–36 is employed to solve Eq. (2). This algorithm is wrapped in an R package (https://
cran.r-project.org/web/packages/RANN/index.html). One advantage of kd-tree is that instead of conducting 
one-by-one search (Eq. 1), it simultaneously determines the nearest neighbors, which are from RCC, for all elements 
of IFC, i.e.,

↔ ∈ ∈ .⁎ ⁎j i j IFC i RCC( , ) (3)

NNS facilitates straightforward connectivity analysis. However, when applying this approach to all the inun-
dated floodplain cells, the obtained connectivity may, in many cases, fail to represent the physical connection 
between a river channel and a floodplain. This outcome is due to the fact that aside from distance, other factors 
such as vegetation, slope, and surface roughness influence flooding processes6,23,24. As a result, floodwater that 
inundates a certain floodplain cell may not be directly from the nearest river channel.

PNNS. The PNNS approach takes advantage of the flexibility of NNS and applies NNS in a step-by-step man-
ner. Specifically, NNS is implemented in each time step to identify the connection between newly inundated 
floodplain cells and previously inundated cells. The stepwise search in PNNS derives the connection progres-
sively. Supposing the flooding process lasts for T time steps, the set of cells that become inundated in time step t is 
denoted as Gt. In addition, supposing that flow remains in the river channel until t0 +  1, the joint set of Gt (t =  1, 
2, … , t0) is taken as the set RCC of the river channel cells (Eq. 2):

∪= .
=

RCC G
(4)t

t

t
1

0

The joint set of Gt (t =  t0 +  1, t0 +  2, … , T) is formulated as the set IFC of inundated floodplain cells:

∪= .
= +

IFC G
(5)t t

T

t
10

On the basis of hydrodynamic simulation data, the time step at which cells become inundated can be effi-
ciently identified via Boolean operations. Considering that judging which cells comprise river channels and which 
cells constitute floodplains is not an easy task, this study separates RCC from IFC by time (Eq. 5) and thus circum-
vents the issue of river channel identification.

PNNS determines the connection for Gt (t =  t0 +  1, t0 +  2, … , T), instead of the whole IFC:

∪. .









∈

∈

.
=

− −

+ˆ

dist i j

s t
i RCC G

j G

min ( , )

a
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i

k

t t

t k

t

0

10

0

The connection between Gt (cells that become inundated at time step t) and ∪ =
− −

+ˆRCC Ga k
t t

t k0
10

0
 (cells that 

are inundated before t) is obtained as follows:

∪↔ ′



 ∈ ′ ∈





.

=

− −

+ˆj i j G i RCC G, a
(7)

t
k

t t

t k
0

10

0

Stepwise search from time step t0 +  1 to T determines the connection for all the inundated floodplain cells.
The mathematical formulations of PNNS are illustrated in Fig. 12. A total of 36 cells are used; they are indexed 

by numbers 1 to 36, from left to right and from top to bottom. The indexing follows the arrangement of raster 
cells in spatial analysis:

(1) At the initial step t0, the set of inundated cells is RCC =  {3, 8, 13, 14} (Fig. 12a).
(2) At time step t0 +  1, the connection between newly inundated cells +Gt 10

 =  {20, 21, 22, 25, 27} and previously 
inundated cells RCC =  {3, 8, 13, 14} is determined by NNS (Fig. 12b):

1. Cell 14 is identified as the nearest neighbor for cells 20, 21, 22, and 27.
2. Cell 13 is identified as the nearest neighbor for cell 25.

(3) At time step t0 +  2, NNS is re-applied to newly inundated cells +Gt 20
 =  {23, 28, 29} and previously inundated 

cells ˆRCC a +Gt 10
 =  {3, 8, 13, 14, 20, 21, 22, 25, 27} (Fig. 12c):

1. Cell 22 is the nearest neighbor for cells 23 and 29;
2. Two nearest neighbors are present, namely, cells 22 and 27, for cell 28.

https://cran.r-project.org/web/packages/RANN/index.html
https://cran.r-project.org/web/packages/RANN/index.html
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Compared with NNS, PNNS accounts for dynamically updated simulation data in connectivity analysis. As a 
result, the PNNS-derived connection reflects the flooding process, particularly the spatially heterogeneous prop-
agation of floodwater on floodplains. However, the applications of PNNS are limited by two issues. The first is 
that the connection may not be physically plausible under certain circumstances. As shown in Fig. 12b, cell 25 is 
connected to cell 13 based on the shortest distance, although cell 19, which is between these two cells, is not yet 
inundated. Thus, floodwater “jumps” from cell 13 to cell 25; the jump does not represent the actual flood pathway. 
This problem is handled using iterative searches in PiNNS in the next section. The second issue is that there can 
be more than one nearest neighbor (four at the maximum) for an inundated floodplain cell. For example, cell 28 
is connected to cells 22 and 27. Without additional information, judging which cell is the “true” nearest neighbor 
is difficult. To account for relative elevation can help in this situation, but it introduces additional complexity 
to connectivity analysis and may fail to work because floodplains are usually flat. Considering this, the nearest 
neighbor is randomly selected following the default setting of kd-tree34–36.

PiNNS. The idea behind iterative searches in PiNNS is that “flood does not jump”. More specifically, floodwa-
ter that inundates one floodplain cell must flow over adjacent cells. Please refer to Fig. 13 for an illustrative exam-
ple of the idea and the PiNNS approach. Eight adjacent cells correspond to one given cell. Supposing the size of 
cells is d ×  d, the distance to adjacent cells is either d or d2 . The minimum distance to non-adjacent cells is 2d. 
Considering that < < . <d d d d2 1 5 2 , we choose a threshold at 1.5d (any value between d2  and 2d works) 
and devise iterative searches as follows:

∪. .











∈ ⇒

= ∆ ∆
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1 1 2

1

2

0

0

The left-hand side of Eq. (8) is the same as that of Eq. (6), and the right-hand side of the equation divides Gt 
into two subsets Δ 1 and Δ 2. Cells in Δ 1 are adjacent to cells in ∪ =

− −
+ˆRCC Ga k

t t
t k0

10
0

, and their connection is built 
as follows:

∪↔ ′



 ∈ ∆ ′ ∈
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(9)k

t t

t k1
0

10

0

By contrast, cells in Δ 2 are not neighboring ∪ =
− −

+ˆRCC Ga k
t t

t k0
10

0
. Their connection is determined iteratively 

as follows:

. .





∈ ∆ ⇒ ∆ = ″ < . ∆ ″ ≥ . ∆
∈ ∆

.ˆ

dist i j

s t
i j dist j i j dist j i
j

min ( , )

{ ( , ) 1 5 }a{ ( , ) 1 5 }

(10)

i

1 2

2

In Eq. (10), the nearest neighbor of j is denoted as i″ . i″  ∈  Δ 1 is differentiated from ∪′ ∈ =
− −

+ˆi RCC Ga k
t t

t k0
10

0
 

(Eqs 8 and 9). As illustrated on the right side of the equation, Δ 2 can be further partitioned into two subsets by 

Figure 12. Schematic of PNNS (connections derived by NNS are marked by solid blue arrows). 
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using the threshold distance. With regard to elements in the first subset ∈ ∆ ″ < . ∆j j dist j i{ , ( , ) 1 5 }1 , the con-
nection is determined based on the connection of i″  as follows:

′ ″ ↔ ′ .
″

⟷j i i i( ) (11)
i

That is, j is connected to i’, to which i″  is connected. This operation results in a continuous connection between 
j and i’. The rationales are that j is adjacent to i″  and that i″  is continuously connected to i′.

For elements in the second subset ∈ ∆ ′ ≥ . ∆j j dist j i{ , ( , ) 1 5 }1 , the connection is determined iteratively. At 
the beginning of each iteration, the two subsets on the right side of Eq. (10) are applied to update Δ 1 and Δ 2 on 
the left side of Eq. (10):







∆ = ∈ ∆ ″ < . ∆
∆ = ∈ ∆ ″ ≥ . ∆

.
j j dist j i
j j dist j i

{ , ( , ) 1 5 }
{ , ( , ) 1 5 } (12)

1 2

2 2

The iterative computations, namely, Eqs (10–12), progress until Δ 1 becomes an empty set. In this situation, two 
outcomes are possible. One case is that Δ 2 also becomes an empty set, which indicates that a spatially continuous 
connection has been derived for all the elements in Gt (Eq. 8). The other case is that Δ 2 contains certain isolated 
cells for which the nearest neighbor cannot be obtained from adjacent cells. This phenomenon relates to noises 
in the simulation data. Another cause is that the time step at which the data are saved is slightly long. Floodwater 
propagates to and recedes from some cells within one time step. For these isolated cells, their nearest neigh-
bors are identified from the other inundated cells in Gt and then connected to cells that are inundated before t. 

The iterative applications of NNS in PiNNS are illustrated in Fig. 13 as follows:

(1) In time step t0 +  1, the set +Gt 10
 of newly inundated cells is {20, 21, 22, 25, 27}.

1. The first iteration determines the connection for +Gt 10
 and partitions this set into Δ 1 =  {20, 21} and  

Δ 2 =  {22, 25, 27}. Cells 20 and 21 in Δ 1 are adjacent to cell 14 and are connected to this cell (Fig. 13a).
2. The second iteration relates elements in Δ 2 to elements in Δ 1. Cells 22 and 27 are related to cell 21 and 

are finally connected to cell 14. Cell 25 is related to cell 21 and is thus connected to cell 14 (Fig. 13b).

Figure 13. Schematic of iterative searches in PiNNS: dashed red arrows indicate iterative searches and 
solid red arrows represent iNNS-derived connection. (a) The first iNNS in time step t0 +  1; (b) the second 
iNNS in t0 +  1; (c) iNNS-derived connection between cells inundated in t0 +  1 and those inundated before t0 +  1; 
(d) the first iNNS in time step t0 +  2; (e) iNNS-derived connection between cells inundated in t0 +  2 and those 
inundated before t0 +  2.
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3. Therefore, the connection for +Gt 10
 is derived by two iterative searches (Fig. 13c).

(2) In time step t0 +  2, set +Gt 20
 comprises {23, 28, 29} (Fig. 13d).

1. These three cells are all adjacent to previously inundated cells, with the distances being shorter than the 
threshold 1.5d. Thus, the connection is determined by one search (Fig. 13e).

PiNNS differs from PNNS in iterative searches, which ensures that a newly inundated cell is continuously 
connected to a previously inundated cell. As shown in Fig. 13, PiNNS connects cell 25 to cell 14. This connection 
is built through an inundated cell 20, which is also connected to cell 14 (Eq. 11). By contrast, PNNS connects cell 
25 to cell 13. In this light, iterative searches in PiNNS are deemed to be more effective than the single search in 
PNNS. PNNS can obtain a connection that is inconsistent with the physical relationship in some cases, whereas 
PiNNS derives a spatially continuous connection between newly and previously inundated cells.

Backward tracing for PNNS and PiNNS. A forward tracking process is used in PNNS and PiNNS. That 
is, in one time step, the connection is built between newly and previously inundated cells. These connections are 
pooled to form the connectivity between river channels and floodplains as follows:

∪

∈ ↔ ′ ∈

∈ ↔ ′ ∈
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+

+ +
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1

0
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We devise backward tracing, which is essentially the inverse of forward tracking, to connect any j ∈  IFC to a river 
channel cell:

First, for the cell under investigation, the time step t0 +  k0 (k0 >  0, based on Eq. 5) is identified when it becomes 
inundated. Using connections in Eq. (13), we connect this cell to another cell:

∈ ↔ ′.+j G i (14)t k 10 0

The period when ′i1 becomes inundated is denoted as t0 +  k1. (k1 <  k0, based on Eq. 13). Depending on k1, cell 
′i1 is from either IFC or RCC as follows:







′ ∈ >
′ ∈ ≤

.
i IFC k
i RCC k

( 0)
( 0) (15)

1 1

1 1

If ′ ∈i RCC1 , then j is successfully connected to a river channel cell. Otherwise, the connectivity of ′i1 is ana-
lyzed as follows:

′ ∈ ↔ ′.+i G i (16)t k1 20 1

Similarly, the time step in which ′i2 is checked to judge whether ′i2 is a river channel cell. Therefore, an iterative 
process occurs as follows:

′ ∈ ↔ ′ .+ +i G i (17)m t k m 1m0

It progresses until ′ ∈+i RCCm 1 . A series of inundated floodplain cells is identified in this process:

Figure 14. Schematic of backward tracing that connects inundated floodplain cells to river channel cells. 
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∈ ↔ ′ ∈ ↔ ↔ ′ ∈ ↔ ′ ∈ .+ + + +j G i G i G i RCC (18)t k t k m t k m1 1m0 0 0 1 0

In Eq. (18), > > >k k km0 1 . In consideration that flooding processes last from t0 to T, a floodplain cell needs, 
at the maximum, T–t0 time steps to become inundated. Consequently, an inundated floodplain cell can be con-
nected to a river channel cell within T–t0 iterations.

Two examples of backward tracing are demonstrated in Fig. 14: (1) Fig. 14a is for PNNS, and the backward 
tracing corresponds to the forward tracking in Fig. 12. Cell 25, which becomes inundated in time step t0 +  1, is 
connected to floodplain cell 13 in one iteration. Cell 29 is inundated at time step t0 +  2, and it is connected to cell 
22 (inundated at time step t0 +  1) and then to floodplain cell 14. (2) Figure 14b is for PiNNS and relates to Fig. 13. 
Both cells 25 and 29 are connected to floodplain cell 14. With regard to PiNNS, all the inundated floodplain cells 
20, 21, 22, 23, 25, 27, 28, and 29 are finally connected to cell 14 on the basis of the connections in Fig. 13c,e.
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