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Introduction
Left ventricular (LV) heart failure (HF) is a prevalent cardiac 
syndrome, characterized by altered LV size and shape, elevated 
filling pressure, increased biomarkers, specific risk factors, plus 
a wide variety of symptoms and signs.1 In HF often a distinc-
tion is made between patients on the basis of their ejection frac-
tion (EF). About half of all HF patients present with a reduced 
EF (denoted as HFrEF), while the others show a preserved 
EF (denoted as HFpEF). In order to distinguish between 
both groups, the following criteria are commonly used2: an EF 
larger than or equal to 50% and an end-diastolic ventricular 
volume index (EDVI) smaller than 97 mL/m2 are required for 
HFpEF, while an EF smaller than 50% is set for HFrEF. For 
both groups, the gold standard3 of an end-diastolic ventricular 
pressure (EDP) larger than 16 mmHg (millimeter mercury) is 
an additional requirement. Thus, the combination of LV pres-
sure and volume plays a prominent role in the analysis of HF 
phenotypes.

EF is the pivotal measure in the current classification 
scheme.1 However, the EF is both a quantitative measure 
that relates the ejected stroke volume (SV) to the EDV, as a 

percentage, as well as a qualitative measure that summarizes 
the complex ventricular interplay with the venous sys-
tem during the filling phase (preload) and the arterial sys-
tem during the ejection phase (afterload) within that same 
single metric. As a result, the EF as a preferred measure of 
ventricular performance is often questioned.1,4–8 To quote 
Robotham, for instance: “Thus, EF, although a relatively 
simple measure that is intuitively easily comprehended, is an 
extremely complex parameter describing the entire cardio-
vascular system and requires additional study”.5 Concentrat-
ing more specifically on HF, it is noted that despite recent 
insights into the recognition of the importance of LV reverse 
remodeling in HF, many clinicians do not consider simple 
measurements of LV structure (ie, LV volume) in their rou-
tine clinical decision-making process.9 Instead, they often 
rely on EF when making decisions about medical and surgi-
cal treatment options.9

Rather than combining the end-diastolic volume (EDV) 
and the end-systolic volume (ESV) of the ventricle in the 
single percentage of the EF, some authors advocate to study 
ventricular performance on the basis of both LV volumes by 
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using a graph with the EDV on the abscissa and the ESV on 
the ordinate.1,10 Recently, a linear relationship

	 ESV  EDV= q s+ 	 (1)

with slope s and intercept q, was reported for a study concern-
ing 34 HFpEF patients and 29 HFrEF patients (Fig. 1). Each 
group clustered around its own regression line with a quite 
small overlap in the ESV versus EDV graph and, moreover, 
the slopes of these two lines were reported to be significantly 
different.8 To be specific, Kerkhof reports a slope of 0.35  in 
HFpEF versus a slope of 0.80 in HFrEF (P , 0.0004) and an 
intercept of –6.97 mL/m2 in HFpEF versus –19.24 mL/m2 in 
HFrEF.8 Clearly, the EF and the slope of the regression line 
in the EDV–ESV graph are related, namely

EF EDV ESV
EDV

EDV
EDV

= = =− − +( )
− + 
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
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q sEDV
s q

EDV
1

	
(2)

For a vanishing intercept (q  =  0), this relation shows 
that EF equals 1 minus the slope s in the ESV–EDV graph. 
As expected, Figure  1  shows a steeper regression line for 
the HFrEF group (EF ,50%) than for the HFpEF group 
(EF $50%). However for a nonvanishing intercept (q ≠ 0), 
the relation between EF and s may be strongly influenced 
by EDV. Indeed, from Figure  1  significant nonvanishing 
intercepts for both groups can be inferred, and hence, the 
presumed simple relation between EF and s is seriously dis-
torted by prevailing values of EDV. And, therefore, the EF 
and the ESV–EDV graph must be considered as different 
and noncomparable metrics representing the volumes EDV 
and ESV.

Clearly, the EF and the ESV–EDV graph appear to reflect 
quite differently the relationship between EDV and ESV and, 
with that, the (patho-)physiological mechanisms of ventricu-
lar performance in the HF spectrum. Therefore, this study 
aims to identify the dependence of the EF and the EDV–ESV 
graph on the major determinants of ventricular performance, 
in particular, for the phenotypes HFpEF and HFrEF, and 

preferable by using a simple mathematical model of the car-
diovascular system. Using a monoventricular model, first the 
major determinants are identified and second the dependence 
of the EF and the EDV–ESV graph on these determinants is 
calculated.

Methods
Cardiovascular model. Our model of the cardiovascu-

lar system consists of the systemic circulation only, with the 
atrium and ventricle being filled from a simple constant pres-
sure source and the heart ejecting into a circulatory system. 
The model is discussed in detail in Appendix A.

In each simulation run, the model provides results on 
EDV, ESV, SV, EF, and end-diastolic pressure EDP. The out-
comes are classified as follows (2):

–	 HFpEF, if EF $50%, EDV  ,175  mL and EDP 
.16 mmHg;

–	 HFrEF, if EF ,50% and EDP .16 mmHg.

and any result of a simulation run outside of these constraints 
was neglected.

In order to be able to guide the model simulations, one 
aspect of the model needs explanation here. The single-sided 
cardiac unit consists of a left atrium and a LV together with the 
mitral and aortic valves. For both the atrium and the ventricle, 
the well-known Suga–Sagawa elastance model is used for the 
pressure–volume characteristics.11 This model reads as:

	
P t E t V t V( ) ( ) ( )= −{ }0 	 (3)

where P(t) is the time-dependent ventricular pressure 
(mmHg), V(t) the time-dependent ventricular volume (mL), 
V0 the (extrapolated) ventricular volume (mL) at zero ven-
tricular pressure, and E(t) the time-dependent ventricular 
elastance (mmHg/mL). Note that this relation holds for 
every point in time during the cardiac cycle and, in particu-
lar, for the end-systolic moment, in which case the relation is 
referred to as the end-systolic pressure–volume relationship. 
For the LV, Senzaki et al provide a formulation enabling to 
express the elastance as a function of time, namely in terms 
of a Fourier series.12 We will use the Suga–Sagawa elastance 
model to investigate the major determinants of EDV and 
ESV and, by the same token, those of the EF (see below in 
this section).

Major determinants. In order to identify the major 
determinates of EF and the EDV–ESV graph, we reason as 
follows:

	
EF EDV ESV

EDV
ESV
EDV

= = =− − −1 1
min{ ( )}
max{ ( )}

V t
V t

	 (4)

where t represents time (s) and V(t) is the time-dependent 
ventricular volume (mL). Clearly, EDV is the maximum of 

200

150

E
S

V
 (

m
L

/m
2 )

100

50

0
0 50 100 150

EDV (mL/m2)
200

pEF rEF

250

Figure 1. Graph of end-systolic volume index (ESVI) versus end-diastolic 
volume index (EDVI), illustrating the distinct patterns for heart failure 
patients with preserved (pEF, n = 34) and reduced EF (rEF, n = 29). 
Volumes are normalized for body surface area. Diagram slightly modified 
from Kerkhof et al.8
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V(t) during diastole (denoted as max{V(t)}) and ESV is the 
minimum of V(t) during systole (denoted as min{V(t)}).

In order to relate the EDV and ESV to ventricular 
elastance, Suga–Sagawa’s pressure–volume relation P(t) = E(t) 
{V(t) − V0} is used.13 Upon rewriting the Suga–Sagawa’s 
relation, the EDV is
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with the following rationales at the numbered equal signs: 
(1) EDV is the maximum ventricular volume during diastole; 
(2) a rewritten form of Suga–Sagawa’s pressure–volume rela-
tion; (3) the maximum of the sum of a ratio and a constant 
equals the maximum of the ratio summed to the constant; 
(4) by application of the general rule that the maximum of a 
ratio is smaller than or equal to the ratio of the maximum of 
the fraction’s numerator divided by the minimum of the frac-
tion’s denominator; (5) the maximum pressure of the ventricle 
during diastole is the filling pressure PFILL (mmHg) (neglect-
ing the atrial kick) and the minimum ventricular elastance is 
defined as EMIN (mmHg/mL); (6) rewriting in a more conve-
nient form by factoring the term PFILL/EMIN.

Likewise, and mutatis mutandis, the ESV is found
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with the following rationales at the numbered equal signs: 
(1) ESV is the minimum ventricular volume during systole; 
(2) a rewritten form of Suga–Sagawa’s pressure–volume rela-
tion; (3) the minimum of the sum of a ratio and a constant 
equals the minimum of the ratio summed to the constant; (4) 
by application of the general rule that the minimum of a ratio 
is larger than or equal to the ratio of the minimum of the 
fraction’s numerator divided by the maximum of the fraction’s 
denominator; (5) the minimum pressure of the ventricle dur-
ing ejection is equal to the end-diastolic pressure in the aorta, 
ie, PDIAS (mmHg) and EMAX (mmHg/mL) is the maximum 
ventricular elastance and referred to as the maximum systolic 
elastance; (6) rewriting in a more convenient form by factoring 
the term PDIAS/MAX.

The ratio of ESV to EDV is found by substitution of 
Eqns. (5) and (6). To be specific:
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and the EF follows by substitution of Eq. (7) into Eq. (4):
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In Eqns. (7) and (8) the last approximation holds, only if 
V0 vanishes (ie, V0 = 0) or if the numerical values of the ratios 
EMAX/PDIAS and EMIN/PFILL are of equal size because, in either 
way, the terms (1 + V0EMAX/PDIAS) and (1 + V0EMIN/PFILL) 
cancel. Typical values are calculated from Table 1. In HFpEF: 
EMAX/PDIAS = 0.11 mL−1 and EMIN/PFILL = 0.01; in HFrEF: 
EMAX/PDIAS = 0.02 mL−1 and EMIN/PFILL = 0.005 mL−1. Notice 
that EMAX in Table 1 is estimated assuming that V0 = 0 and 
that, therefore, these values are rough estimates only. So, these 
numerical values indicate that the terms (1 + V0EMAX/PDIAS) 
and (1 + V0EMIN/PFILL) only cancel in the unlikely case of a 
vanishing V0. Therefore, the final approximations in Eqns. (7) 
and (8) are somewhat questionable.

To summarize these mathematical results:

1.	 There is no reason to assume that V0 vanishes in this 
model simulation study.

2.	 The major determinants of the EDV (see Eq. (5)) are 
the ratio of the filling pressure (PFILL) over the elastance 
during diastole (EMIN) and the zero-pressure volume of 
the ventricle (V0). Note that the ratio PFILL/EMIN can be 
interpreted as the preload normalized to the diastolic 
ventricular elastance.

3.	 The major determinants of the ESV (see Eq. (6)) are 
the ratio of the diastolic aortic pressure (PDIAS) over the 
elastance during systole (EMAX) and the zero-pressure 
volume of the ventricle (V0). Note that the ratio PDIAS/
EMAX can be interpreted as an indicator of the afterload 
normalized to the systolic ventricular elastance.

4.	 Because the EF and the ESV–EDV graphs are defined in 
terms of the EDV and ESV, both the EF and the ESV–
EDV graphs share common determinants. Note that this 
sharing of determinants does not imply the equivalence 
of the EF and the ESV–EDV graph. See the Introduc-
tion for the relation between EF and the slope of the 
ESV–EDV graph.

5.	 The result for the volume ratio of ESV over EDV (Eq. (7)) 
predicts a linear relation in the ESV–EDV graph with a 
small or even vanishing intercept and slope smaller than 
1 and, moreover, infers an elastance-normalized after-
load PDIAS/EMAX smaller than the elastance-normalized 
preload PFILL/EMIN.
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On the basis of these findings, we decided to study the 
EF and the ESV–EDV plot by varying the abovementioned 
determinants (PDIAS, EMAX, PFILL, EMIN, and V0) in order to 
identify major factors contributing to the distinct LV volume 
patterns manifested in HFpEF relative to HFrEF (cf. Fig. 1).

Results
Figure 2 shows the simulation results of pressures, volumes, 
and elastances as a function of time and, additionally, the LV 
pressure–volume and elastance–volume loops for a control and 
the HFpEF and HFrEF groups.

Note that the model parameters are chosen such that 
the latter two groups represent values as given in Table 1. The 

control represents the values provided by Katz,14 ie, filling 
pressure of 7  mmHg, maximum ventricular pressure of 
120 mmHg, end-systolic pressure of 95 mmHg, end-diastolic 
pressure in the aorta of 80 mmHg, EDV 120 mL including 
atrial kick of 20 mL, end-systolic volume 50 mL, and an EF of 
60%. Note in particular the large difference in the maximum 
ventricular elastance in the three simulations. The simulations 
closely resemble the data in Table 1 and those reported by Katz, 
with the exception of the pressures in HFrEF.

Note that, the elastance–pressure plot and the pressure–
volume plot for the ventricle in Figure  2 clearly show the 
constant value of the elastance during diastole and, conse-
quently, a linear dependence of the pressure on the volume.

Table 1. Hemodynamic data of HFpEF and HFrEF patient groups; average values (standard deviation).

HFpEF (n = 26) HFrEF (n = 27) P-value

Ventricular pressures

LVP peak (mmHg) 174.12 (38.19) 138.00 (24.47) ,0.00007

LVEDP (mmHg) 22.88 (4.63) 22.26 (3.71) ns

Aortic pressures

Systolic (mmHg) 169.62 (36.51) 137.33 (23.14) ,0.0002

Diastolic (mmHg) 73.54 (16.05) 72.33 (12.84)  ns

PP (mmHg) 96.08 (28.69) 65.00 (21.74) ,0.00003

MAP (mmHg) 110.04 (21.58) 96.22 (13.82) ,0.005

Volumes

SVI (mL/m2) 47.67 (10.62) 43.29 (16.49) ns

SV (mL) 85.81 77.92

EDVI (mL/m2) 63.04 124.97

EDV (mL) 113.47 224.95

ESV (mL) 27.66 147.02

Flows and heart rate

Heart rate (bpm)  67.15 (11.22) 85.67 (14.93) ,0.000003

CI (L/m2.min) 3.20 (0.86) 3.61 (1.33) ns

CO (L/min) 5.76 6.50

Characteristic parameters

R (mmHg⋅s/mL) 1.15 0.89

C indexed for BSA (mL/mmHg.m2) 0.52 (0.15) 0.72 (0.33) 0.004

C (mL/mmHg.m2) 0.94 1.30

EMAX indexed for BSA (mmHg.m2/mL) 14.36 (9.35) 2.03 (1.27) ,0.00001

Emax (mmHg/mL) 7.98 1.13

EMIN (mmHg/mL) 0.20 0.10

Ea indexed for BSA (mmHg.m2/mL) 3.43 (0.99) 3.33 (1.48) ns

Ea (mmHg/mL) 1.91 1.85

Coupling index k 4.32 (2.75) 0.63 (0.31) ,0.000001

Notes: Modified from Kerkhof et al.8,16 In particular, the highly significant group differences in LVP peak, systolic and pulse pressure, and EMAX – possibly 
indicating a difference in systolic ventricular performance – and, moreover, differences in HR and circulatory parameters R and C – possibly indicating a 
neurohumoral compensation in HFrEF. The original volumetric data was indexed for body surface area (BSA). Nonindexed mean values were calculated using a 
BSA of 1.8 m2. Moreover, the mean flow resistance R was calculated from MAP over CO; ESV was calculated from EDV and SV; EMIN was calculated as  
LVEDP/EDV.
Abbreviations: ns, not significant; LVP peak, maximum left ventricular pressure; LVEDP, left ventricular end-diastolic pressure; PP, pulse pressure; MAP, mean 
arterial pressure; CO, cardiac output; CI, cardiac index; R, flow resistance; C, arterial compliance; EMAX , maximum of ventricular elastance (assuming V0 = 0);  
Ea the arterial elastance, and k is the coupling index (ie, EMAX/Ea).
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Figure 2. (Continued) 

Figures 3–7 show the changes in the cardiovascular model 
when one of the model parameters is varied. To be specific, in Fig-
ures 3, 4, 5, 6, and 7, respectively, the variable varied is the diastolic 
elastance (EMIN), the filling pressure, the systolic elastance, the 
capillary resistance (RC), and finally, the zero-pressure ventricular 
volume (V0). In each of these figures, the following is shown:

–	 First and second rows show the LV pressure–volume and 
elastance–volume loops, respectively.

–	 Third row shows the arterial and ventricular pressures 
and the ventricular volumes, the SV, and the EF as func-
tions of the running variable.

–	 Fourth row shows the ESV–EDV plot (with slope and 
intercept of regression line) and the Starling curve with 
SV as function of EDV.

See the legends for information on the range of the run-
ning variable.
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Note that in Figure  6, the ventricular volume and 
ventricular EF (third row, third and fourth graph) are shown 
as a function of diastolic pressure in the aorta. The rationale 
for this exception is that end-diastolic pressure in the aorta 
(PDIAS) was identified as one of the determinants of ESV but 
PDIAS is a variable calculated in a simulation with the model 
while the other running variables are parameters set in the 
model. In order to vary PDIAS, the parameter capillary resis-
tance (RC) was varied instead with the results plotted with 
PDIAS on the abscissa.

In Figures 3–7, the graphs with ventricular volume versus 
the varying parameter (third row, third graph from left) show 
that the EDV and ESV vary in correspondence with Eqns. (5) 
and (6); ie, for EDV a proportional relation with filling pres-
sure (PFILL) and an inverse proportional relation with diastolic 
elastance (EMIN) is found, and moreover, for ESV a propor-
tional relation with diastolic pressure in the aorta (PDIAS) and 
an inverse proportional relation with systolic elastance (EMAX) 
is found. Finally, for both EDV and ESV a proportional rela-
tion with the zero-pressure ventricular volume (V0) is found. 
These findings confirm Eqns. (5) and (6).

The ESV–EDV graphs in Figures  3–7 are found to be 
quite different. Table 2 summarizes the slopes and intercepts 
of these lines. Clearly, the same line is found by varying the 
diastolic elastance (EMIN) and filling pressure (PFILL), the 
major determinants of EDV (Eq. (5)), and also, another line 
is found by varying the systolic elastance (EMAX) and dia-
stolic pressure in the aorta (PDIAS), the major determinants of 
ESV (Eq. (6)). Thus, because of the differences in slopes and 

intercepts of these lines in the ESV–EDV graph, it might be 
possible to infer the involvement of diastolic factors (filling 
pressure or diastolic elastance) or, in contrast, systolic factors 
(the diastolic pressure in the aorta or the systolic elastance) on 
the basis of the location of a patient’s EDV and in ESV in the 
ESV–EDV graph.

The EF–ESV graphs in Figures 3–7 show that, although 
the graphs are rather different, the results (ie, lines) over-
lap in a common region of the graph. So, from the position 
of the line in the EF–ESV graphs, it cannot be interpreted 
which of the factors was involved. This is a disadvantage of the  
EF–ESV graph in comparison with the ESV–EDV graph.

Discussion
By using a simple mathematical model of a monoventricular 
cardiovascular system, this study identified the major deter-
minants of EDV and ESV and, by the same token, the major 
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Figure 2. (A) The simulated pressures, volumes, and elastances for healthy control conditions. Left column: Pressures (top), volumes (middle), and 
elastances (bottom) as function of time with the colors as follows: atrium in blue, ventricle in black, and arterial in red. The colors of the abscissa refer to 
cardiac phases: filling in green, ejection in red, and both iso-volumetric phases in blue. Right column: Pressure–volume loop (top) and elastance–volume 
loop (bottom) with the colors referring to the cardiac phases: filling in green, ejection in red, and both iso-volumetric phases in blue. (B) Simulation for 
HFpEF conditions (see legend Fig. 2A). (C) Simulation for HFrEF conditions (see legend Fig. 2A).

Table 2. Numerical values of slopes and intercepts of the lines in the 
ESV–EDV graphs.

Running variable Slope Intercept

Diastolic elastance (EMIN) 0.26 16

Filling pressure (PFILL0) 0.26 16

Systolic elastance (EMAX) 2 −200

Diastolic pressure in aorta (PDIAS) 2.1 −200

Zero-pressure ventricular volume (V0) 1 −73
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determinants in the graph of ESV versus EDV and the EF, in 
particular, for the different phenotypes HFpEF and HFrEF.

By using Suga–Sagawa’s elastance model of ventricular 
function (Eq. (3) and a simple mathematical reasoning (Eqns. 
(5) and (6)), the diastolic elastance and the filling pressure 
were identified as the major determinants of EDV, while the 
systolic elastance and the end-diastolic aortic pressure were 
identified as the major determinants of the ESV. Simulations 

with the cardiovascular model, indeed, clearly confirmed these 
findings on the major determinants of ESV and EDV (see 
Figs. 3–7). Elsewhere, Shoucri described theoretical aspects 
of the relationship between EF and EMAX in HFpEF patients 
with emphasis on iso-volumic pressure (ie, the active force of 
the myocardium).15

Unfortunately, filling pressure and elastance during sys-
tole and diastole are difficult to measure in clinical practice. 
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Figure 3. For control setting, simulation results for increasing diastolic elastance (EMIN) of 0.025, 0.05, 0.1, 0.2, 0.4, and 0.8 mmHg/mL, respectively. 
First and second row show the left ventricular pressure–volume and elastance–volume loops, respectively. Third row shows the arterial and ventricular 
pressures and the ventricular volumes, SV, and EF are shown as functions of the diastolic elastance. Fourth row shows the ESV–EDV plot (with slope and 
intercept of regression line) and the Starling curve with SV as function of EDV.
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But, in contrast, EDV and ESV are far more easily measured 
in standard clinical routine using modern imaging modalities. 
Thus, EDV and ESV can be regarded as measures that are 
closely related (Eqns. (5) and (6)) to the major determinants of 
the filling and diastolic pressures and the diastolic and systolic 
elastances. In fact, by virtue of our findings in Eqns. (5) and 
(6), the EDV is related to a normalized preload, ie, the fill-
ing pressure relative to the diastolic elastance (neglecting the 
zero-pressure ventricular volume V0), while the ESV is related 

to as a normalized afterload, ie, the end-diastolic pressure in 
the aorta relative to the systolic elastance (neglecting the V0). 
So, EDV and ESV represent, in a normalized form, the clas-
sical concepts, of preload and afterload, respectively.

In using ESV and EDV in clinically diagnostic decision 
making, a graph with the ESV on the ordinate and EDV on 
the abscissa (the so-called ESV–EDV graph) allows the rep-
resentation of ESV and EDV independently, and, with that, 
the normalized preload and afterload. This study showed that 
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Figure 4. For control setting, simulation results for increasing filling pressures of 2.5, 5, 7.5, 10, and 12.5 mmHg, respectively. See legend of Figure 3 for 
further explanation.
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the HFpEF and HFrEF are represented in this ESV–EDV 
graph with different regression lines and, moreover, that the 
slope of the regression lines is related to the EF (see Eq. (2) 
in Introduction). That is, the lower the EF, the steeper the 
regression line, although this relation is obscured considerably 
by the EDV. So, the ESV–EDV graph allows the differentia-
tion between the phenotypes HFpEF and HFrEF (Fig. 1).

This differentiation of HFpEF and HFrEF in the ESV–
EDV graph, on the basis of the ESV and EDV, can be given 

a more (patho-)physiological interpretation. Table  1  shows 
that the major difference between HFpEF and HFrEF as 
regards the maximum elastance (ie, the systolic elastance) is 
7.98 mmHg/mL in HFpEF and 1.13 mmHg/mL in HFrEF, 
while in both groups the left ventricular end-diastolic pres-
sure (LV EDP), as a measure of the filling pressure, is elevated 
to around 22.5 mmHg (much higher than 7 mmHg typically 
found in healthy controls) and, finally, the diastolic pressure in 
the aorta is 73 mmHg (around 70–80 mmHg typically found in 
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Figure 5. For control setting, simulation results for increasing systolic elastance (EMAX) of 1, 2, 4, 6, 8, and 10 mmHg/mL, respectively. See legend of 
Figure 3 for further explanation.

http://www.la-press.com
http://www.la-press.com/clinical-medicine-insights-cardiology-journal-j48


Faes and Kerkhof

82 Clinical Medicine Insights: Cardiology 2015:9(S1)

healthy controls). This finding shows that the normalized after-
load (end-diastolic pressure in the aorta relative to the systolic 
elastance) is significantly increased from 9.2 mL in HFpEF to 
64 mL in HFrEF (from Table 1 by dividing diastolic pressure 
by EMAX), a finding that is reflected by the ESV, ie, 27.66 mL 
in HFpEF and 147.02 mL in HFrEF (Table 1). Note that the 
ratios are almost equal, ie, 9.2/64 = 0.15 fairly well compares 

with 27.66/147.02 = 0.19. So, this confirms that the ESV may 
be given a (patho-)physiological interpretation as normal-
ized afterload with end-diastolic aortic pressure and systolic 
elastance as major determinants. Likewise, the pathophysi-
ological interpretation of the normalized preload (filling pres-
sure relative to the diastolic elastance) could be confirmed 
by experimental findings. Unfortunately, Kerkhof et  al.8,16  
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Figure 6. For control setting, simulation results for increasing capillary resistance (RC) of 0.6, 1, 2, 3, 4, 5, 6 mmHg⋅s/mL, respectively. See legend of 
Figure 3 for further explanation. Note that the ventricular volume and ventricular EF (third row, third, and fourth graph are shown as function of end-
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provided no data on the diastolic elastance. But, from the 
reported filling pressure of around 22.5 mmHg in both groups, 
considerably higher than in healthy controls, and the sig-
nificantly increased EDV of 224.95 mL in HFrEF compared 
to 113.47  mL in HFpEF (Table  1), we calculate a diastolic 
elastance of 0.2 mmHg/mL in HRrEF and of 0.1 mmHg/mL 
in HFpEF (calculated from Table 1 by dividing LVEDP by 
EDV). For an equally increased filling pressure and a two-fold 

larger diastolic elastance, the normalized preload in HFrEF is 
expected to be twice as large as in HFpEF, a finding reflected 
by EDV in HFrEF and HFpEF. We infer that the EDV may 
be given a (patho-)physiological interpretation as normalized 
preload with filling pressure and diastolic elastance as major 
determinants. So, the ESV–EDV graph differentiates between 
HFpEF and HFrEF and, moreover, may be given a (patho-)
physiological interpretation.
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Figure 7. For control setting simulation results for increasing zero-pressure ventricular volume (V0) of −10, 0, 20, 40, 60, 80 mL, respectively. See legend 
of Figure 3 for further explanation.
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In contrast to the ESV–EDV graph that represents the 
ESV and EDV independently, the EF summarizes the ESV 
and EDV in one single metric and with that the EF sum-
marized the complex interplay of cardiac filling and ejection 
in one metric. In terms of our model, the interplay of sys-
tolic and diastolic elastances as well as the filling and the end-
diastolic aortic pressures, as the major determinants of ESV  
and EDV, are mapped into a single number with a size between 
0 and 100%. Given the complex interplay of the major deter-
minants (see Eq. (8)), it is highly implausible that each (patho-)
physiological condition in one of the determinants is mapped 
into a unique numerical value of the EF and, consequently, 
it is equally implausible that a given value of the EF can be 
interpreted unambiguously in terms of the underlying (patho-)
physiological mechanism. Loss of insight is the price paid for 
summarizing too briefly.

From these model-based results, one may infer that a plot 
of a patient’s ESV and EDV in the ESV–EDV graph allows 
a clinical differentiation between diastolic or systolic involve-
ment while the EF does not offer such a distinction. So, the 
ESV–EDV graph allows a better tool for the understanding 
of HFrEF and HFpEF. However, this model-based result is a 
guidance for future clinical research that should establish the 
practical value of the ESV–EDV graph over the single metric 
of EF.1

The advantage of mathematical modeling is the experi-
menter’s full control of all parameters and conditions in the 
model and, with that, the simplicity to carry out a simula-
tion experiment that is not so easily clinically performed. The 
validity of the modeling study needs, however, to be demon-
strated by either the validity of model itself or by the valid-
ity of the obtained results. In this study, the validity of the 
model is based on the following considerations: (1) The model 
is built up of well-established components (ie, Suga–Sagawa’s 
elastance model of the ventricle, Senzaki et  al’s normalized 
elastance function, and the generally accepted three-element 
Windkessel model of the arterial circulation).17 (2) By com-
paring the simulation results (Fig.  3) with the pressure and 
volumes in HFpEF and HFrEF (Table 1), we recognize the 
validity of the model. (3) By using the Suga–Sagawa’s elas
tance model, major determinants of the ESV and EDV were 
identified and these major determinants correspond with the 
simulations as well as the pathophysiological knowledge, ie, 
(a) diastolic elastance and filling pressure together mainly 
determine EDV, while (b) systolic elastance and end-diastolic 
pressure in the aorta together mainly determine ESV. In this 
perspective of the model’s validity, we suggest to use our find-
ings as a guidance in future clinical studies in order to provide 
supporting evidence.

Limitations
Although the model mimics the characteristics of control, 
HFpEF, and HFrEF patients quite accurately, this study 
clearly has its limitations because of the assumptions made 

in our mathematical model. To be more specific, (1) only the 
systemic part of the circulation is modeled with a mono-
atrial–ventricular heart connected to a simple model of the 
filling system of the heart and a three-element Windkessel 
extended with a venous part, to model the systemic circula-
tion. (2) The system is an open loop with the simple model 
of a filling system that is not connected to the venous part of 
systemic circulation. (3) The model represents a denervated 
heart and a circulation without many control mechanisms, eg, 
neuro-humoral control of heart rate, flow resistance, filling 
pressure, and cardiac contractility. For some of the limita-
tions, we could compensate by choosing adequate parame-
ters – eg, the different filling pressures, heart rate, maximum 
elastance in HFpEF and HFrEF – while other features will 
be incorporated in a future more advanced model – eg, a 
model with a closed circulation of both the systemic and 
the pulmonary circulation including neuro-humoral mecha-
nisms. It is to be expected that a more advanced model will 
reveal more details in the determining factors of ESVs and 
EDVs (and with that in the ESV–EDV plots and EF). Nev-
ertheless, it is hoped that the present insight will provide an 
adequate guidance for both clinical and modeling studies in 
the future.

Conclusion
By using a simple mathematical model of the circulation, the 
filling pressure and diastolic elastance are identified as the 
major determinants of EDV, while the end-diastolic aortic 
pressure in the aorta and the systolic elastance are identi-
fied as the major determinants of the ESV. By mathemati-
cal analysis and with simulations, the dependence of the EF 
and the ESV–EDV graph on the determinants was studied. 
It was found that the ESV–EDV graph allows the separation 
between diastolic and systolic dysfunction, while these two 
pathologies are intricately summarized in the single metric of 
EF. Therefore, the ESV–EDV graph can provide an advantage 
in HF studies.
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Appendix A. Mathematical Model of the Circulation
This mathematical model comprises one half of the circula-
tion, implying that the pulmonary circulation referring to 
the right ventricle (RV) is not included as a separate entity. 
This limitation means that LV–RV interaction is not consid-
ered. Also, interaction with the pericardium is not covered. 
These restrictions are assumed to only minimally influence 
our results, particularly because the present study does not 
intend to simulate pathology of the RV or pericardium. Thus, 
we concentrate on the systemic circulation. Figure A1 shows 
the circuitry in terms of an electrical analog. To be specific, 
from left to right:

•	 The heart, filled from a constant pressure source PFILL0 
through a fluid resistance RVS2AT, consists of an atrium 
and a ventricle – which are both modeled with a time-
varying elastance EAT(t) for the atrium and EVL(t) for 
the ventricle with time t as independent variable– and, 
moreover, the two valves each are represented by one-way 
diodes with valvular resistances RAT2VL and RVL2AR in 
series, where the resistors mimic the small flow resistance 
of the valves.

•	 The circulation consists of a three-element Windkessel 
model – a characteristic impedance ZAR0, a total arterial 
compliance CAR, a total vascular resistance RC – and a 
venous part with a total venous compliance CVS, and a 
total venous resistance RVS connected to a constant pres-
sure source PVS0.

In this model, the standard symbols read as follows: (1) 
the rectangular elements represent Poiseuille fluid resistances 
(mmHg⋅s/mL), (2) the parallel lines represent both the volume 
storage capacity of compliant vessels (mL/mmHg), as well as 
(3) the time-varying elastances (mmHg/mL) of the atrium and 
ventricle, and, finally, (4) the circles represent constant pressure 
sources (mmHg). The connecting lines represent how the blood 
is flowing through the different components in the circulation.

Blood flow is defined for every branch in the circuitry by 
a pertinent name, eg, FAT(t). The flow is defined as positive 
in the direction of the arrow. Pressure is defined for almost 
every node in the analog by a specific name, eg, PAT(t); the 
pressure is measured relative to the bottom line of the analog 

(in electrical engineering terms relative to the “ground” as 
depicted by the symbol with the multiple parallel lines of 
unequal length at the bottom line).

In the following calculations, we employ the standard 
mathematical–physical nomenclature ie, a single italic letter 
is used to refer to a variable or a parameter (like: V for volume, 
C for compliance), while one or more characters in a subscript 
are used to distinguish between different variables and param-
eters (such as CAT and CVE). Moreover, with t used as symbol 
for time, a time dependence of a variable is indicated by add-
ing (t) to the right of the variable (eg, VVL(t) for a time-varying 
ventricular volume). The time derivative is, in Leibniz’s nota-
tion, indicated as dVVL(t)/dt. Finally, variables or parameters 
written in combination are to be interpreted as a multiplica-
tion (such as: CVLdPVL(t)/dt for the multiplication of CVL and 
dPVL(t)/dt). The rationale of this nomenclature is an unam-
biguous and compact notation that facilitates easy calculus.

To simulate this model numerically by employing 
MATLAB, six steps need to be made. First, for each of the 
components of the analog, the constitutive relations need to 
be specified. Second, the state variables need to be chosen, 
where the governing rule is that one state variable is needed 
for every component with a derivative in its constitutive rela-
tion. Third, the conditions governing the opening and clos-
ing of the valves need to be reformulated in terms of the state 
variables. Note that there are four combinations for the two 
valves system: closed-closed (iso-volumetric phase), open-
closed (filling phase), closed-open (ejecting phase), and open-
open (remaining phase). Fourth, a state equation for each of 
the four state variables is calculated from the analog and the 
constitutive relations, but each cardiac phase requires its own 
equation. Thus, for each of the four cardiac phases, four state 
equations are calculated. Fifth, the analog and the constitu-
tive relations are used to formulate auxiliary equations that 
enable the calculation of other variables of interest from the 
state variables. Sixth, the state and auxiliary equations need to 
be programmed and tested in a suitable software development 
environment, like MATLAB. In the following, for reasons of 
brevity, the last two steps are discussed in less detail. The full 
approach will be described as five consecutive stages.

I.	 To start with, the following constitutive relations are 
defined in the analog:
For every node, the local flows add to zero, taking 

the direction of the flows into account. For example, at the 
node with pressure PAT(t), the relation FFILL(t) − FAT(t) − 
FAT2VL(t) = 0 holds.

In every branch containing a single Poiseuille resistor, the 
flow equals the pressure difference divided by the resistance. 
For example, for the branch with flow FFILL(t), the relation 
FFILL(t) =  (PFILL0(t) – PAT(t))/RVS2AT holds. Note that the 
one-way flow characteristic of a valve (diode) complicates the 
relation between pressure difference, flow, and resistance. 
That is, if the pressure on the left side of the valve is smaller 

++
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PVS0
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FFILL(t)

EAT(t)
FAT(t)

EVL(t)

FAT2VL(t)
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RVL2AR ZAR0

PVL(t) PAR(t)

FCAR(t) FCVS(t)
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Figure A1. Electrical analog of the circulation (see text for discussion).
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than the pressure at the right, then the valve is closed. For 
example, for the uttermost left branch with a valve, the fol-
lowing relations holds: (1) if PAT(t) , PVL(t) (ie, valve closed), 
then FAT2VL(t) = 0 and, conversely, (2) if PAT(t) $ PVL(t) (ie, 
valve open), then the relation FAT2VL(t)  =  (PAT(t) – PVL(t))/
RAT2VL holds. Therefore, the valve is in fact described by two 
relationships that have to be dealt with.

In every branch with a compliant vessel, the flow equals 
the vessel’s rate of volume change and, this in turn, equals 
the compliance times the rate of pressure change. For exam-
ple, for the compliance CAR, the relation FAR  =  dVAR(t)/
dt = CARdPW(t)/dt holds.

Finally, in the branches including the atrium and the 
ventricle, the flow equals the rate of volume chance. For 
the ventricle, for example, FVL(t)  =  dVLV(t)/dt. The pres-
sure–volume relation is given by the time-varying elastance 
model of Suga and Sagawa.11 For the ventricle, for exam-
ple, the relation PVL(t)  =  EVL(t) {VVL(t) – VVL0} holds. The 
time-varying elastance of the ventricle EVL(t) is defined by a 
modification of Senzaki et al’s elastance function.12 For the 
iso-volumetric and ejecting phases, Senzaki et al’s elastance 
function is scaled in amplitude so that it fits between a pre-
defined maximum and minimum elastance; for the filling and 
remaining phases of the ventricle, the elastance is equal to the 
minimum elastance. Finally, the elastances are scaled in time 
so that they fit in predefined filling and nonfilling parts of the 
cardiac cycle.

This completes the description of the constitutive relations.
II.	 The following state variables are selected: the atrial vol-

ume VAT(t), the ventricular volume VVL(t), the Windkes-
sel pressure PW(t), and the venous pressures PVS(t). This 
selection comprises all components with a derivative in 
its constitutive relation and, thus, defines the set of the 
state variables.

III.	 The conditions that govern the opening and closing of 
the valves need to be reformulated in terms of the state 
variables. That is, the pressures PAT(t), PVL(t), and PAR(t) 
need to be reformulated in terms of the four state vari-
ables VAT(t), VVL(t), PW(t), and PVS(t).
The volume–pressure relations for the atrium and ven-

tricle, as given by the Suga–Sagawa model, allow the direct 
calculation of the required pressure PAT(t) and PVL(t) from 
the state variables VAT(t) and VVL(t). So, PAT(t) and PVL(t) fol-
low directly from VAT(t) and VVL(t) using the Suga–Sagawa 
relation.

A somewhat more sophisticated reasoning is required to 
calculate the pressure PAR(t) in terms of the state variables PAT(t), 
PVL(t), PW(t), and PVS(t). If the valve is closed (iso-volumetric 
and filling phase), then the flow FAR(t) is zero and, consequently, 
the pressure drop over ZAR0 is zero and, hence, PAR(t) equals 
PW(t). Thus, for a closed valve, the condition PVL(t) , PAR(t) 
can be rewritten as PVL(t) , PW(t). In the opposite case of an 
open valve (ejecting and remaining phase), the resistors RVL2 AR 
and ZAR0 form a series connection with a pressure difference 

PVL(t) – PW(t) applied. Hence, PAR = PW + α(PVL – PW) = (1 – α) 
PW + αPVL, with α = ZAR0/(RVL2 AR + ZAR0) and, hence, the 
auxiliary variable PAR can be calculated directly from the state 
variables PW(t) and PVL(t). The condition PVL , PAR can now 
be written as PVL , PAR = (1 – α)PW + αPVL and this result can 
be rewritten, by subtraction of αPVL, as (1 – α)PVL , (1 – α)PW,  
which can be further simplified to PVL,PW by dividing by 
(1 – α) (provided that 1 – α ≠ 0, implying that RVL2 AR ≠ 0).  
Again, the condition PVL(t)  ,  PAR(t) can be rewritten as 
PVL(t) , PW(t). In conclusion, the condition PVL(t) , PAR(t) 
is equivalent to the conditions PVL(t) , PW(t). And, conversely, 
the condition PVL(t) $ PAR(t) is equivalent to the conditions 
PVL(t) $ PW(t).

With this result, the four conditions that determine the 
four cardiac phases, can be written in term of the state vari-
ables. To be specific:

•	 In the iso-volumetric phase (with both valves closed), 
the ventricular pressure PVL(t) is larger than the atrial 
pressure PAT(t) and, at the same time, smaller than 
the arterial pressure PAR(t), ie, PAT(t)  ,  PVL(t) and 
PVL(t) , PAR(t). This is rewritten in terms of the state 
variables as PAT(t) , PVL(t) and PVL(t) , PW(t).

•	 In the ejection-phase (with a closed valve between the 
atrium and ventricle and, moreover, an open valve between 
ventricle and arterial circulation), the ventricular pressure 
PVL(t) is larger than the atrial pressure PAT(t) and, at the 
same time, larger than or equal to the arterial pressure 
PAR(t), ie, PAT(t)  ,  PVL(t) and PVL(t) $ PAR(t). This is 
rewritten in terms of the state variables as PAT(t) , PVL(t) 
and PVL(t) $ PW(t).

•	 In the filling-phase (with an open valve between the atrium 
and ventricle and, moreover, a closed valve between ven-
tricle and arterial circulation), the ventricular pressure 
PVL(t) is smaller than or equal to the atrial pressure PAT(t) 
and, at the same time, smaller than the arterial pressure 
PAR(t), ie, PAT(t) $ PVL(t) and PVL(t) , PAR(t). This is 
rewritten in terms of the state variables as PAT(t) $ PVL(t) 
and PVL(t) , PW(t).

•	 Finally, in the remaining phase (with both valves open and 
assuming PFILL0 $ PVS0), that occurs some time after the 
heart completely stops beating (ie, death), the ventricu-
lar pressure PVL(t) is smaller or equal to the atrial pres-
sure PAT(t) and is, at the same time, greater or equal than 
to the arterial pressure PAR(t), ie, PAT(t) $ PVL(t) and 
PVL(t) $ PAR(t). This is rewritten in terms of the state 
variables as PAT(t) $ PVL(t) and PVL(t) $ PW(t). Note 
that, this remaining phase is included for reasons of com-
putational completeness but is not occurring during the 
simulations.

IV.	 From the analog model, for each of the four cardiac 
phases, a set of four differential equations (one equation 
for each state variable) is calculated.
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However, the calculation starts, for all cardiac phases, 
with the Suga–Sagawa’s pressure–volume relations which 
relate the atrial volume VAT(t) to the atrial pressure PAT(t) and, 
likewise, the ventricular volume VVL(t) to the ventricular pres-
sure PVL(t) by the relations
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Note that, dVLV(t)/dt = 0, implies that VLV(t) is constant 
as expected in the iso-volumetric phase.

Likewise, the state equation for the Windkessel pressure 
PW(t) is found:
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Finally, the state equation for the venous pressure PVS(t) 
is found:
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In the ventricular ejection phase the atrial–ventricular 
valve is closed with condition PAT(t) , PVL(t) and the ventric-
ular–arterial valve is open with condition PVL(t) $ PW(t).

The state equation for the atrial volume VAT(t) equals the 
state equation in the iso-volumetric phase, ie, Eq. (10).

The state equation for the ventricular volume VLV(t) is:
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The state equation for the Windkessel pressure PW(t) is:
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The state equation for the venous pressure PVS(t) takes 
the same form as the state equations for the iso-volumetric 
phase, ie, Eq. (13).

In the ventricular filling phase, the atrial–ventricular valve 
is open with condition PAT(t) $ PVL(t) and the ventricular–
arterial valve is closed PVL(t) , PW(t).

with the elastances EAT(t) and EVL(t) as defined by Senzaki et al.12

For the LV, Senzaki et al provide a formulation for the 
normalized elastance as a function of time, in terms of a Fou-
rier series. Senzaki et al applied a double normalization such 
that the maximum of the amplitude equals 1 and that the 
normalized time moment of the maximum amplitude is also 
assigned to the value of 1.12 In our model, we rescale Senzaki 
et al’s normalized elastance in such a way that: (1) the duration 
of systole and diastole become equal to preset values of TSYS 
and TDIA and, moreover, (2) the elastances are shifted in such 
a way that the systolic part of the atrial elastance preceeds the 
systolic part of the ventrical elastance and, finally, (3) that the 
amplitude of the rescaled elastance is between the preset values 
of EMAX for the maximum and EMIN for the minimum. This 
adjusted elastance is employed for both the atrium and the 
ventricle, although differently scaled in amplitude and time. 
See Figure 2(A) (lower-left graph) for a clear example.

The Suga–Sagawa relation together with the Senzaki-
elastance allow the calculation of the pressures. To be specific: 
for a given moment, first, the elastance is calculated using the 
Senzaki et al’s elastance function and, then, the pressure is cal-
culated from the elastance and the volume using Suga–Saga-
wa’s relation. The calculation of the volume is discussed below.

In the ventricular iso-volumetric phase, both valves are 
closed with the conditions PAT(t) , PVL(t) and PVL(t) , PW(t). 
The state equation for the state variable atrial volume VAT(t) is 
found as follows:
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A similar reasoning yields the state equation for ventricu-
lar volume VLV(t). That is:
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% Atrial and ventricular pressure-volume relations: 
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Table A.1. The Suga–Sagawa pressure–volume relations for the atrium and ventricle and the state equations for the four state variables (VAT(t), 
VVL(t), PW(t), and PVS(t)) for each of the four cardiac phases.
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The state equation for the atrial volume VAT(t) is
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The state equation for the ventricular volume VLV(t) is
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The state equations for the pressures PW(t) and PVS(t) in 
the filling phase take the same form as the state equation in 
the iso-volumetric phase, ie, Eqns. (12) and (13).

In remaining phase, both valves open with conditions 
PAT(t) $ PVL(t) and PVL(t) $ PW(t).

The state equation for the atrial volume VAT(t) takes the 
same form as in the filling phase Eq. (16).

The state equation for the ventricular volume VLV(t) is:

Table A2. Numerical values of the model parameters for the cases of normal control, HFpEF, and HFrEF.

Parameter Control HFpEF HFrEF

CAR (mL/mmHg) 1.50 0.94 1.30

CVS (mL/mmHg) 15.0 9.40 13.0

Heart rate (bpm) 60.00 67.15 86.67

PFILL0 (mmHg) 7.0 22.9 22.2

PVS0 (mmHg) 8.0 23.9 23.2

RVS2AT (mmHg⋅s/mL) 0.02 0.02 0.02

RAT2VL (mmHg⋅s/mL) 0.02 0.02 0.02

RVL2AR (mmHg⋅s/mL) 0.01 0.01 0.01

ZAR0 (mmHg⋅s/mL) 0.03 0.03 0.03

Atrium (Suga–Sagawa–Senzaki et al)

EMIN (mL/mmHg) 0.17 0.17 0.17

EMAX (mL/mmHg) 0.9 0.32 0.4

V0 (mL) −2.7 −2.7 −2.7

Ventricle (Suga–Sagawa–Senzaki et al)

EMIN (mL/mmHg) 0.05 0.24 0.1

EMAX (mL/mmHg) 4 8 1.13

V0 (mL) 8 8 20
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The state equations for state variables PW(t) and PVS(t) 
take the form of the ejecting phase and the iso-volumetric 
phase, respectively, ie, Eqns. (15) and (13).

This completes the state equations in each of the four dis-
tinct cardiac phases. All the state equations are summarized 
in Table A.1 while the typical values of the parameters are 
summarized in Table A2.

In fact, Table A1 can be considered as the model’s 
equations in a pseudo-code. Then, an outline of the compu-
tational scheme to simulate the model is as follows: A built-
in Matlab solver of differential equations calls the function 
with the state equations in Table A.1 and with the initial 
conditions of the four state variables and the time moment 
as input to the function. As a result, the function returns the 
derivatives of the four state equations to the solver. Then, the 
solver calculates the state variables at an incremental time 
moment from the initial conditions and these calculated 
derivatives. Next, the solver calls the function again but with 
the new values of the state variables and, as result, the new 
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derivatives of the state variables are returned. This process is 
repeated, again and again, until the end of the simulations 
interval is reached. The calculated values of the state vari-
ables at all time moments form the simulation result.

In order to ensure the nonnegativity of the state variables 
in the numerical calculations, the following rule was added. 
If a state variable was smaller than or equal to zero and the 
calculated derivative of the state variable was also smaller than 
zero at any particular instant, then the state variable’s deriva-
tive was set equal to zero for that time moment. So, by this 
rule, a nonpositive value is not allowed to decrease. In the 
practice of small incremental time steps, this rule is sufficient 
to guarantee nonnegativity of the state variables.

All simulations started from the following initial condi-
tions for the state variables:

VAT  =  10  mL, VVL  =  80  mL, PW  =  80  mmHg, 
PVS =  10 mmHg. Each simulation run included a sufficient 
number of heart beats to guarantee a steady state in the sim-
ulation results. Results of the last beat were used in further 
analysis.
V.	 The calculated state variables allow the calculations of 

all other variables. To be specific: The atrial and ven-
tricular pressures, PAT(t) and PVL(t), can be calculated 

from the atrial and ventricular volumes, VAT(t) and 
VVL(t), with the Suga–Sagawa relation for each time 
moment. Next, with this pressure and the state vari-
ables PW(t) and PVS(t), the flows in all the resistances 
can be calculated by Poiseuille’s law, taking into account 
the characteristics of the valves. For example: (1) for the 
ejecting and remaining phase FAR(t) = (PVL(t) – PW(t))/
(RVL2 AR + ZAR0), while for the filling and iso-volumet-
ric phase FAR(t)  =  0; (2) With the flows through the 
resistances being known, the flow into the capacitances 
follow by application of the fact that flows add to zero 
in each node. For example: FCAR(t)  =  FAR(t) – FC(t). 
Finally, the volume of a capacitance at time t is found 
by integration of the flow from the starting point of 
the simulation up to time t taking the initial condition 
regarding the volume into account.

The parameters of the model were tuned so that the 
model mimics the hemodynamic characteristics of either a 
control14 or HFpEF and HFrEF as summarized in Table 1. 
The numerical values assigned to the parameters in the model 
(see Fig. A.1 for reference) are given in Table A2. Simulation 
results with these parameter values are shown in Figure 2.
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