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Abstract

Background: The recent public availability of the human metabolome and natural product datasets has revitalized
“metabolite-likeness” and “natural product-likeness” as a drug design concept to design lead libraries targeting
specific pathways. Many reports have analyzed the physicochemical property space of biologically important
datasets, with only a few comprehensively characterizing the scaffold diversity in public datasets of biological
interest. With large collections of high quality public data currently available, we carried out a comparative analysis
of current day leads with other biologically relevant datasets.

Results: In this study, we note a two-fold enrichment of metabolite scaffolds in drug dataset (42%) as compared
to currently used lead libraries (23%). We also note that only a small percentage (5%) of natural product scaffolds
space is shared by the lead dataset. We have identified specific scaffolds that are present in metabolites and
natural products, with close counterparts in the drugs, but are missing in the lead dataset. To determine the
distribution of compounds in physicochemical property space we analyzed the molecular polar surface area, the
molecular solubility, the number of rings and the number of rotatable bonds in addition to four well-known Lipinski
properties. Here, we note that, with only few exceptions, most of the drugs follow Lipinski’s rule. The average
values of the molecular polar surface area and the molecular solubility in metabolites is the highest while the
number of rings is the lowest. In addition, we note that natural products contain the maximum number of rings and
the rotatable bonds than any other dataset under consideration.

Conclusions: Currently used lead libraries make little use of the metabolites and natural products scaffold space.
We believe that metabolites and natural products are recognized by at least one protein in the biosphere
therefore, sampling the fragment and scaffold space of these compounds, along with the knowledge of
distribution in physicochemical property space, can result in better lead libraries. Hence, we recommend the
greater use of metabolites and natural products while designing lead libraries. Nevertheless, metabolites have a
limited distribution in chemical space that limits the usage of metabolites in library design.

Background
An established idea of similarity-based virtual screening
is that similar structures tend to have similar properties
[1]. Diversifying the compound library collection for in
silico and in vitro high-throughput screening without
compromising biological activity remains an active
research area. Chemical space is enormous but mostly
biologically insignificant [2] and therefore, uninteresting
from a drug design perspective. Given the large number
of currently available chemical compounds in one of the

largest public databases, PubChem [3], it is impossible
and irrational to screen all known compounds for
potential ligands. One key methodology, fragment-based
virtual screening (FBVS) or fragment-based drug discov-
ery (FBDD), is an emerging area to identify novel, small
molecules for preclinical studies. In FBDD, the starting
points are small low molecular weight, drug-like frag-
ments. Examples of such fragments are ring systems,
functional groups, side chains, linkers and fingerprints.
Over the past decade, substructures contributing to

drug-like or lead-like properties have governed library
design [4]. In one of the pioneering works to understand
the distribution of common fragments in drugs, Bemis
and Murcko [5] fragmented a drug dataset (taken from
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the Comprehensive Medicinal Chemistry database) into
rings, linkers, frameworks and side chains. Using two-
dimensional topological graph-based molecular descrip-
tors, they found 2506 different frameworks for a set of
5120 drug compounds, with the top 32 accounting for
the topologies of 50% of the database compounds. They
concluded a skewed distribution of molecular frame-
works in drugs. Metabolite-likeness is increasingly being
used as filter to design lead libraries similar to metabo-
lites with better absorption, distribution, metabolism,
elimination and toxicology (ADMET) properties [6].
Many recent studies have compared chemical space
occupied by compounds of pharmaceutical interest
[7-12]. Grabowski and Schneider [7] studied the mole-
cular properties and chemotype diversity of drugs, pure
natural products (NPs), and natural product derived
compounds. Following the approach described by Bemis
and Murcko [5], they virtually dissected the molecules
into frameworks, corresponding to scaffolds and side-
chains. The drug dataset was ranked most structurally
diverse, followed by marine and plant derived NPs,
respectively. However, in contrast to the observation of
Bemis and Murcko, that only 32 frameworks form the
basis of nearly 50% of the compounds in CMC drug
database, they found that 160 graph-based frameworks
are needed to explain the chemotype of 50% of the com-
pounds in the Collection of Bioactive Reference Analo-
gues (COBRA) dataset [13] which contains drug-like
reference molecules for ligand-based library design. In
the same year, Siegel and Vieth [8] examined a set of
1386 marketed drugs and found that 15% of the drugs
are embedded within other larger drugs, differing by
one or more chemical fragments while 30% of drugs
contain other drugs as building blocks. Recently, Franco
et al. [9] analyzed scaffold diversity of 16 datasets of
active compounds, targeting five protein classes, using
an entropy-based information metric. They found that
compounds targeted to the vascular endothelial growth
factor receptor kinase, followed by compounds targeted
to HIV reverse transcriptase and phosphodiesterase V,
are maximally diverse. On the other hand, molecules in
the glucocorticoid receptor, neuraminidase and glycogen
phosphorylase b datasets are least diverse. Singh et al.
[10] employed multiple criteria to compare libraries of
drugs, small molecules and NPs, in terms of physico-
chemical properties, molecular scaffolds and finger-
prints. The degree of overlap between libraries was
assessed using the R-NN curve technique and the biolo-
gically relevant chemical space occupied by various
compound datasets delineated. Hert et al. [11] com-
pared a comprehensive dataset of 26 million compounds
(i.e. a representative sample of the full chemical space)
with 25810 purchasable screening compounds, metabo-
lites, and natural product dataset. They found that

almost 1300 ring systems present in NPs are missing in
current day screening or lead libraries and suggest intro-
ducing bias in screening libraries towards molecules that
are likely to bind protein targets. Khanna and Ranga-
nathan [12] compared current day drugs with toxics and
metabolites and found that drugs are more similar to
toxics than to metabolites in physicochemical property
space distribution.
As discussed above, there are many studies analyzing

the scaffolds and physicochemical properties of the var-
ious chemical datasets. However, none of the studies
contains a comprehensive comparison of the com-
pounds obtained from publically available datasets of
human metabolites, toxics, drugs, natural products and
currently used lead libraries. In addition, we believe that
inclusion of the experimental compounds from National
Cancer Institute open database and the recently released
ChEMBL database would enhance our analysis and
prove useful in recognizing fragments in biologically
interesting compounds.
In this study, we aim to answer questions such as 1)

What is the physicochemical property space distribution
of compounds for the datasets under comparison? 2)
Are there any pharmaceutically relevant scaffolds or
fragments present in metabolites and natural products
that are missing in current lead libraries? 3) Are there
any preferred or frequently occurring fragments and
scaffolds in these datasets? 4) What is the percentage
similarity of the scaffolds and fragments found in drugs
to those found in other datasets?
We found patterns of commonly occurring fragments

using extended connectivity functional class fingerprint
(FCFP_4; details in Methods section). FCFP is a variant
of extended connectivity atom type (ECFP) fingerprint,
differing from the latter in the assignment of initial code
[14]. The highly specific initial atoms types in ECFP fin-
gerprints are replaced with more general atom types,
with functional meaning in the FCFP fingerprints. For
example, a single initial code is assigned for all halogen
atoms in the FCFP fingerprints as they can often substi-
tute each other functionally. In accord with their defini-
tion, ECFP fingerprints are a better choice to measure
diversity. Therefore, we used ECFP fingerprints for
diversity analysis while the more generic FCFP finger-
prints were selected for Tanimoto analyses.

Results and discussion
Five different types of pharmaceutically relevant public
molecular datasets were selected for this study: drugs,
human metabolites, toxics, natural products and a sam-
ple of currently used lead compounds. Furthermore, we
have also considered two popular small molecule data-
bases viz. National Cancer Institute (NCI) database and
ChEMBL database (details in the Methods section). Our
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results are presented in three sections, viz. preliminary
analysis (measuring diversity and Tanimoto similarity),
calculating physicochemical properties and scaffold
analysis.
After carefully pruning and filtering the datasets, all

the datasets were clustered (see Methods section) to
avoid biased results due to overrepresentation of similar
molecules.

1. Preliminary analysis
1.1 Diversity analysis
In order to compare the diversity of features (fragments)
present in each dataset, we have plotted the total num-
ber of non-redundant fingerprint features calculated,
using ECFP fingerprints, up to order 8 (Figure 1). Our
results indicate that overall, the ChEMBL dataset gener-
ates the maximum number of fragments and is highly
diverse, while the metabolite dataset is the least diverse.
From Figure 1a, we note that initially toxics outnumber
other molecular datasets in generating features. This
could be due to the high heteroatom content in toxics,
resulting in large numbers of ECFP features generated
during the first iteration step of fingerprinting. Similarly,
the NCI dataset contains a large number of features
during the initial iteration step of fingerprint feature

generation. Metabolites, on the other hand, produce the
least number of features, which suggests a limited occu-
pancy of chemical space. Drugs were moderately diverse
throughout and we find an increase in fragment diver-
sity with increasing order of fingerprints.
1.2 Tanimoto analysis
The Tanimoto similarity coefficient compares two
molecules, A and B, having NA as the number of fea-
tures in A, NB as the number of features in B, and NAB

as the number of features common to both A and B as
given in equation 1. This value is usually reported in
the binary form, represented as Tb, and reported for
simple comparisons between molecules. However, the
Tanimoto coefficient can also encompass nonbinary
data [15]; for example, if a fingerprint encodes not just
the fragment incidences but also the frequencies of
occurrence, as in the case of comparison between two
compound datasets. In this case, the Tanimoto coeffi-
cient (Tnb) is given by equation 2 where xiA, xiB are
the number of times the ith fragment occurs in A and
B, respectively, summed over n elements of each fin-
gerprint.

Tb =
NAB

NA + NB − NAB
(1)

Figure 1 The number of non-redundant fingerprint features as a function of ECFP fingerprint order. Fingerprints of orders 2, 4, 6 and 8
for datasets comprising drugs, metabolites, toxics, natural products, leads, NCI and ChEMBL are presented.
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Tnb =

i=n∑

i=1
xiA.xiB

i=n∑

i=1
(xiA)2 +

i=n∑

i=1
(xiB)2 −

i=n∑

i=1
xiA.xiB

(2)

We extend this concept to compare different datasets
used in this study. To calculate how similar two datasets
are, we first calculated the Scitegic Pipeline Pilot con-
nectivity fingerprints, FCFP_4 (details in the Methods
section) for all the datasets. Subsequently, the sum of
squares of the frequency of fingerprint features was cal-
culated over the n elements for each dataset. Finally, the
common features present in both datasets were counted
and their frequencies multiplied, to determine Tnb.
For the five different datasets described in the Meth-

ods section, as well as the two reference datasets, NCI
and ChEMBL, the Tanimoto coefficient values are
shown in Table 1. We note that the FCFP fingerprint
patterns (of order 4; FCFP_4) found in drugs are most
similar to toxics (FCFP_4: 0.91) than to any other data-
set, except for the fingerprint patterns found in refer-
ence datasets. On the other hand, drugs are least similar
to metabolites (FCFP_4: 0.72). These observations are
consistent with our earlier study on smaller datasets
[12]. We also note that ChEMBL contains more drug-
like fragments than any other biologically relevant frag-
ment type present in this study (FCFP_4: 0.94). Further,
we note that the fragments found in metabolites are
least similar to the fragments present in NPs and lead
dataset. Additionally, with the increasing order of finger-
prints (FCFP_6 and so on), although the number of
fragments generated increases, the Tanimoto similarity
coefficient values fall slightly for all the datasets com-
pared (data not shown). This suggests an inverse rela-
tionship between the size of the fragment and the
probability of its occurrence in two separate datasets, i.e.
the larger the fragment, the less likely that it will be
found in the two datasets being compared.

2. Physicochemical property analysis
2.1 Lipinski’s properties for “rule of five” (Ro5) compliance
Ro5 has dominated drug design since 1997 and there-
fore, we believe it would be useful to analyze these data-
sets for compliance with the Ro5 test. Ro5 predicts
passive and oral absorption based on log P, molecular
weight, hydrogen bond donors and hydrogen bond
acceptors. We report in Table 2, the percentage of
molecules “failing” the Ro5 test, i.e. at least not meeting
one condition of the Ro5 test. The results are compar-
able for both kinds of datasets, showing that randomly
selected subsets are representative of the clustered data-
sets. Also, for the clustered datasets, initially, over 25%
of drugs do not adhere to Ro5 while 68% of the metabo-
lites are outside Lipinski’s universe. However, by remov-
ing lipids from metabolites we note that the percentage
of molecules failing Ro5 test drops to 20% indicating
that majority of the lipids do not follow Lipinski’s rule.
Further, we found that similar to drugs, only 26.5% of
the toxics fail the Ro5 test. Lipinski’s rule was originally
designed to estimate bioavailability of compounds rather
than toxicity. Therefore, the above result suggests that
empirical rules such as Ro5 can be supplemented with
toxicity information in order to reduce high attrition
rates during drug discovery programs as has been
reported in the literature [16,17]. Further, we found that
only 16% of NPs failed Lipinski’s test. Many other
related studies on NPs have reported similar results
[7,18]. Grabowski and Schneider [7] analyzed pure nat-
ural products (isolated exclusively from plants and ter-
restrial microorganisms) from MEGAbolite and
Interbioscreen, natural products derivatives (isolated and
synthesized natural products and derivatives from nat-
ural sources like plants, fungi, bacteria and sea organ-
isms) from BioSpecs and marine natural products
(isolated from sponges (41%), Coelenterates (21%), mar-
ine microorganisms and phytoplankton (10%)) from the
literature. They found that 18% of the pure natural pro-
ducts, 30% of the marine natural products and only 8%
of the natural product derived compounds violate
Lipinski’s rule, averaging 18.7%. While Grabowski and
Schneider have reported results very similar to ours,
Ganesan [18] analyzed a focused set of 24 natural pro-
ducts that were the starting point for marketed drugs in
the 25-year period from 1981-2006 and found that 50%
of these failed Lipinski’s rule. In general, NPs do not
necessarily abide by Lipinski’s rule because they are
thought to enter the human body not by passive diffu-
sion but by more complex mechanisms such as active
transportation, and so are not expected to comply with
the rules for bioavailability. The probable explanation of
our results could be the manner in which the NP data-
set is pooled at the ZINC database. ZINC is a public
database for commercially available compounds and

Table 1 Tanimoto similarity values using circular
connectivity fingerprint descriptors for different datasets
under study.

Datasets Drugs Metabolites Toxics NPs Leads NCI ChEMBL

Drugs 1 0.72 0.91 0.85 0.78 0.92 0.94

Metabolites 1 0.73 0.58 0.49 0.67 0.63

Toxics 1 0.80 0.75 0.94 0.84

NPs 1 0.76 0.84 0.88

Leads 1 0.85 0.88

NCI 1 0.90

ChEMBL 1

The upper half of the diagonal contains non-binary Tanimoto similarity values
calculated using the FCFP_4 fingerprint.
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NPs present in ZINC are pre-filtered to cover more
drug-like space, contributing towards Ro5-like charac-
teristics. Lead molecules on the other hand also did well
in the Ro5 test as only 19.5% of the molecules violated
one or more than one condition of the Lipinski’s rule.
This is in accordance with the lead-likeness concept
proposed earlier [19] which states that leads should be
simple, low molecular weight molecules and thus,
should fall well within Lipinski’s universe. Further, our
results indicate that, NCI compounds follow Lipinski’s
rule more strictly than compounds present in ChEMBL
dataset.
2.2 Lipinski’s properties as boxplots
Box plots for Lipinski properties for random subsets are
available from Figure 2. We find that the mean value for
the molecular weight in the metabolite dataset is rela-
tively low when compared to the other datasets such as
drugs, leads and natural products. We also observe that
the lead dataset is well within Lipinski’s universe and
covers a fair amount of drug space. Further, we find a
noticeable difference in lipophilicity values of metabo-
lites as compared to drugs and leads. The mean value of
lipophilicity (measured as AlogP) suggests that metabo-
lites prefer a hydrophilic environment. Our results are
comparable to the recent study using similar datasets
[6]. In this study, lipophilicity (measured by a similar
parameter, clogD) for drugs, metabolites and library
compounds showed that the distribution of library com-
pounds is similar to that of drugs, but differ markedly
from metabolites and that metabolites are more hydro-
philic than both drugs and library compounds.
2.3 Other physicochemical properties
For a comprehensive study on the physicochemical
property space distribution, we computed four more
common whole molecule descriptors: the molecular
polar surface area, the number of rotatable bonds, the
molecular solubility and the number of rings (details in
the Methods section). Distributions of these physico-
chemical properties as box plots are available from
Figure 3. We note that metabolites show relatively

higher solubility, higher molecular polar surface area but
lower complexity (less rings, less rotatable bonds and
lower molecular weight) compared to drugs. Further,
our results indicate that, in general, NCI molecules are
also low molecular weight compounds with less com-
plexity and slightly higher solubility than drug mole-
cules. In addition, we note that a large part of the
ChEMBL database contain drug-like compounds with a
biasness towards higher molecular weight and more
complex molecules than drugs.

3. Scaffold or cyclic system analysis
It is quite informative to study the molecular frame-
works while comparing different datasets of chemical
compounds. Since the publication of Bemis and Murcko
[5], many attempts have been made to explore the che-
mical space occupied by bioactive scaffolds [20] as scaf-
fold hopping remains an active area under research [21].
In this study, we define scaffolds as the core structure of
the molecule after removing side chains but not the lin-
kers, similar to the definition of atomic frameworks used
by Bemis and Murcko. A detailed analysis of the total
number of non-redundant scaffolds present in the differ-
ent datasets is available in Table 3. The percentage of
singletons (scaffolds occurring only once) relative to the
total number of scaffolds in a dataset has also been
reported. In addition, we have tabulated the proportion
of non-redundant scaffolds containing aromatic and
non-aromatic rings.
The drug dataset generates the largest proportion of

non-redundant scaffolds (50.0%) relative to the dataset
size, followed by the toxics (42%), ChEMBL (33.4%),
leads (32%) and NCI dataset (28%). Exceptionally low
number of scaffolds in metabolites (14.3%) and natural
products (21.2%) suggest lower scaffold diversity in
these datasets. The higher scaffold diversity in drugs
could be attributed to the fact that drugs are derived
from various biologically relevant compounds. The drug
scaffold diversity is probably also due to the patenting
requirements, to position functionality in the same way

Table 2 Comparision of the number of molecules failing Lipinski’s “rule of five” (Ro5) in clustered and randomly
selected datasets.

Dataset Total no. of
molecules

(in clustered dataset)

% of molecules failing Ro5 in clustered
datasets

% of molecules failing Ro5 in randomly selected
subset

Drugs 3788 25.7 23.0

Metabolites 6124 68.0 20.0*

Toxics 2166 26.5 21.5

NPs 61972 16.2 15.0

Leads 67983 19.8 19.5

NCI 161336 19.5 15.5

ChEMBL 379827 36.4 36.0

*Metabolite dataset excluding lipids and large molecules (details in the Methods section)
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as an existing drug but outside of its patent space, that
is often achieved by a minor change in the scaffold.
Similarly, a large number of scaffolds in the toxic com-
pound set is indicative of the high diversity of com-
pounds with toxicity potential. Further, we note that
distribution of scaffolds in all the datasets in highly
skewed with large number of them occurring only once
(singletons). In fact, almost 70% of the scaffolds in
drugs, toxics, NCI and ChEMBL dataset occur only
once. We also found that natural products comprise
maximum number of recurring scaffolds (100 - % of sin-
gletons = 64%) followed by metabolites (38.9%) and
leads (35.7%) suggesting that the compounds in these
datasets revolve around certain preferred types of scaf-
folds. Our results agree with the recent study using
similar natural product and drug dataset [10]. In their
study, authors found high scaffold diversity in drugs
(39.7%) while low diversity in natural products (17.9%)
which is in accordance with our results. By counting the
number of aromatic rings in non-redundant scaffolds,

we note that metabolites contain least number of aro-
matic rings (only 47.3% contain one or more aromatic
rings in a scaffold) as compared to other datasets. 85%
of the drugs on the other hand have scaffolds with aro-
matic rings. Furthermore, we note that 97.4% of the
scaffolds found in lead dataset contain aromatic rings.
There seems to be a bias towards aromatic ring contain-
ing scaffolds in presently used lead libraries.
The top five scaffolds and their relative percentages

based on the total number of scaffolds found in each
dataset are shown in Figure 4. Benzene is the most
abundant scaffold system in all the datasets, particularly
in metabolites (over 36%). Apart from metabolites,
toxics (15%) and NCI compounds (13%) also contain
benzene in high percentages. Drugs and leads, on the
other hand contain benzene in moderate amounts (10%
and 7% respectively). While benzene is the most com-
mon scaffold type in NP (2.2%) and ChEMBL datasets
(3.4%), the relative abundance of benzene in these data-
sets is far lower than that in the other datasets.

Figure 2 Box plots for the Lipinski physicochemical properties: (a) molecular weight, (b) the number of hydrogen bond acceptors, (c) AlogP
and (d) the number of hydrogen bond donors.
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Following benzene, pyridine is the second most com-
monly occurring scaffold type in the top five scaffolds. It
is found in four out of seven datasets: metabolites
(5.2%), drugs (1%), leads (1%), and NCI (1.2%). We also
note that steroid derivatives are largely present in drugs
and NPs. Similarly, most of the fused large scaffolds are
found in NPs (four of the top five scaffolds) followed by

drugs and the ChEMBL dataset. Metabolites, on the
other hand, seem to prefer smaller, less complex sys-
tems. Likewise, toxics and lead compounds also have
few complex fused systems. Other commonly occurring
scaffold systems are purine and purine derivatives
(found mainly in metabolites and ChEMBL dataset),
imidazole and biphenyls.

Figure 3 Box plots for other significant physicochemical properties: (a) molecular polar surface area, (b) the number of rotatable bonds, (c)
molecular solubility and (d) the number of rings.

Table 3 Scaffold analysis of various clustered datasets under study.

Dataset Occurrence of scaffolds (% relative to
dataset size)

No. of singletons (% relative to number
of scaffolds)

Aromatic scaffolds (% relative to number
of scaffolds)

No. % No. % No. %

Drugs 1874 50.0 1411 75.3 1588 85.0

Metabolites 296 14.3 181 61.1 140 47.3

Toxics 905 42.0 689 76.1 656 72.3

NPs 13151 21.2 6053 46.0 11776 90.0

Leads 21621 32.0 13819 64.0 21057 97.4

NCI 44324 28.0 31880 72.0 36778 83.0

ChEMBL 126843 33.4 87750 69.2 119419 94.1

Frequency of occurrence for non-redundant scaffolds (relative to the dataset size) and number of aromatic ring containing scaffolds (relative to the total number
of non-redundant scaffolds) have been reported.
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In Table 4, we tabulate the percentages of non-redun-
dant shared scaffolds between pairs of different datasets.
From Table 4 we note that drugs and metabolites share
6% of the total non-redundant scaffolds whereas NPs,
leads and toxics share overall 2.4%, 1.4% and 7.5% of
scaffolds with drugs, respectively. It is interesting to
note that metabolites and leads do not share as many
scaffolds (0.3%) as drugs and metabolites (6%). Due to
the uneven size of the datasets, we have also reported
the contribution of each dataset to the set of shared
scaffolds. We find that of the total 296 non-redundant
scaffolds found in metabolites (Table 3), 123 (42%) are
shared by drugs whereas only 68 (23%) are shared by
the lead dataset. This suggests that lead compounds

need further optimization to become more metabolite-
like. Similarly, there seems to be little overlap between
the scaffolds of presently used lead libraries and NPs
(2.1%). Since metabolites and NPs are recognized by at
least one protein in the biosphere, they seem to be
appropriate candidates in lead library design. Our results
however, indicate that neither metabolites nor NP scaf-
folds are being sampled enough while designing lead
libraries. In addition, we note that over 7% of scaffolds
are shared between drugs and toxics while metabolites
and toxics share over 6% of the scaffolds, suggesting the
recurrence of common scaffolds between these datasets.
Compounds in the NCI and ChEMBL datasets are quite
diversified; however, the NCI dataset clearly contains

Figure 4 Top 5 scaffolds derived from A. drugs, B. metabolites, C. toxins, D. natural products, E. leads, F. NCI and G. ChEMBL. The
extent of occurrence of the scaffold relative to the total number of scaffolds in the dataset (as %) are listed.
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Table 4 Scaffolds shared between pairs of clustered datasets.

Datasets D M T P L N C

D 100% 123
(6%; D: 7%, M: 42%)

192
(7.5%; D: 10%, T: 21%)

347
(2.4%; D: 19%, P: 3%)

310
(1.4%; D: 17%, L: 1%)

840
(2%; D: 45%, N: 2%)

1347
(1.0%; D: 72%, C: 1%)

M 100% 71
(6.3%; M: 24%, T: 8%)

140
(1.1%; M: 47%, P: 1%)

68
(0.3%; M: 23%, L: 0.3%)

230
(0.5%; M: 78%, N: 0.5%)

215
(0.2%, M: 73%, C: 0.2%)

T 100% 174
(1.3%; T: 19%, P: 1%)

144
(0.7%; T: 16%, L: 1%)

534
(1.2%, T: 59%, N: 1%)

532
(0.4%, T: 59%, C: 0.4%)

P 100% 706
(2.1%; P: 5%, L: 3%)

1734
(3.1%; P: 13%, L: 8%)

1947
(1.4%, P: 15%, C: 1.5%)

L 100% 2753
(4.4%; L: 13%, N: 6%)

3470
(2.4%; L: 16%, C: 3%)

N 100% 7600
(5.0%; N: 17%, C: 6%)

C 100%

The overall percentage of shared scaffolds is given in the brackets, along with percentages of shared scaffolds from each contributing dataset.

D: Drugs, M: Metabolites, T: Toxics, P: Natural Products, L: Leads, N: NCI, C: ChEMBL.

Khanna
and

Ranganathan
Journalof

Chem
inform

atics
2011,3:30

http://w
w
w
.jchem

inf.com
/content/3/1/30

Page
9
of

14



more toxic scaffolds than the ChEMBL dataset. Further-
more, we note that large part of the drug scaffold space
is present in NCI (45%) and ChEMBL (72%) implying
that these datasets cover good amount of drug-like com-
pounds. We also note that a large part of metabolite
scaffold space is present in natural product (47%), NCI
(78%) and ChEMBL (73%) datasets.
We expect that lead libraries biased towards molecules

that biological targets have evolved to recognize, would
yield better hits rates, than unbiased or universal
libraries. Metabolites and NPs could potentially provide
suitable lead molecules. Consequently, we further ana-
lyzed these datasets for the type of scaffolds that are
currently missing in lead libraries. In fact, we note a
very slight overlap in the scaffold space of lead libraries
and these datasets as discussed above. We therefore,
suggest that with the optimum coverage of biologically
relevant scaffold space, hit rates in high throughput
screening experiments can be improved. We report a set
of scaffolds that occur in NPs (Figure 5) and metabolites
(Figure 6), with a minimum Tanimoto similarity of 0.9
to the scaffolds found in drugs, which are actually miss-
ing in currently used lead datasets.

Conclusions
In this study, we have carried out a detailed analysis of
commonly occurring fragments in various datasets of
biological interest. Dataset comparison using the Tani-
moto coefficient shows that drugs and toxics share a
large number of topological fragments whereas drugs
are least similar to metabolites than to any other data-
set studied. However, in scaffold analysis we found
that drugs and metabolites share 6% of the total non-
redundant scaffolds, i.e. over 42% of the metabolite
scaffolds are present in drugs, whereas only 23% of the
metabolite scaffolds are represented in current leads.
This shows that although drugs and metabolites share
many scaffolds, they largely differ in topological frag-
ment space. Further, we conclude that current lead
libraries do not cover much of metabolite scaffold
space.
Library design is a multi-class optimization problem.

It often presents a trade-off between several factors,
including diversity and ADMET properties. Since meta-
bolites and NPs are already optimized by millions of
years of evolution to bind to at least one biological
macromolecule therefore, it is highly likely that libraries
designed based on the scaffolds and fragments occurring
in metabolite and NP space will result in molecules with
better ADMET properties. Hence, the use of metabolites
and NPs while designing lead libraries would be benefi-
cial. However, metabolites occupy a limited space in
chemical universe that limits their usage in library
design.

From physicochemical properties analysis, we note
that there is a need to diversify present day lead libraries
in order to optimize the coverage of chemical space. We
also note that with the exception of few compounds,
most of the drug molecules follow Lipinski’s rule
whereas over 68% of metabolites are outside Lipinski’s
universe. On a closer examination of metabolites, we
found that the compounds that do not follow Lipinski
rule are mainly lipids and large molecules. Further, we
note that lipid-free metabolite dataset contains low
molecular weight and less complex molecules as com-
pared to other datasets. Our studies on scaffolds systems
suggest that drugs are most diverse (50% scaffolds rela-
tive to the dataset size) and prefer aromatic to non-aro-
matic ring-containing scaffolds. Metabolites, on the
other hand, have a very narrow distribution of scaffolds
(only 14.3% scaffolds relative to the dataset size) of
which 38.9% recur. The exceptionally low number of
cyclic systems in metabolites implies lower scaffold
diversity in metabolites. Further, we confirm earlier
reports of skewed distribution of scaffolds, with many
more singletons than recurring scaffolds.

Methods
Preparation of datasets
Five different types of biologically relevant molecular
datasets have been considered in this study. Beside these,
the contents of public databases like NCI and ChEMBL
were also analyzed. Table 5 presents a summary of all the
databases used in this study. The drug dataset was
assembled by merging molecules obtained from the
DrugBank [22] and a subset of Kyoto Encyclopedia of
Genes and Genomes database (KEGG DRUG) [23]. Drug-
Bank is a comprehensive resource on drugs and includes
over 1350 FDA-approved small drugs. KEGG is a bioin-
formatics resource and currently provides 19 databases;
we used the KEGG DRUG subset as it contains all the
drugs approved in the USA and Japan. It not only con-
tains prescription drugs but also “over-the-counter”
(OTC) drugs. Similarly, for metabolite dataset we used
the Human Metabolome Database (HMDB) [24],
HumanCYC [25] database and BiGG [26] database.
HMDB contains information on nearly 8,000 metabolites
found in the human body. HumanCYC is a bioinfor-
matics database that combines human metabolic pathway
and genome information, providing KEGG, PubChem
and ChEBI identifiers for the metabolites present in
this database. BiGG stores manually annotated human
metabolic network information, with links to KEGG
metabolites.
Likewise, for the toxics dataset, compounds from var-

ious public sources were integrated to make a single
dataset focusing largely on carcinogenic molecules. The
Distributed Structure-Searchable Toxicity (DSSTox)
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Carcinogenic Potency Database [27] contains experi-
mental results and carcinogenicity information for 1547
substances tested against different species. Contrera et
al. [28] published a dataset of 282 human pharmaceuti-
cals obtained from FDA database for carcinogenicity
studies on mouse and rat. They reported 125 (44% of
the above 282) of the positive chemicals that were used
in this study. Toxicology Excellence for Risk Assessment
(TERA) is an independent non-profit organization

dedicated to the public health. Since 1996, TERA has
maintained an International Toxicity Estimate for Risk
database [29] which provides chronic human risk assess-
ment data from organization around the world for over
650 chemicals [30]. Finally, ~1000 molecules with med-
ium and high toxicity were downloaded from the Super-
Toxic database [31]. The dataset for NPs was obtained
from the ZINC database [32]. These molecules can be
searched under the subset tab, as “Meta subsets”. For

Figure 5 A set of scaffolds present in NPs but are missing in lead dataset. The Tanimoto distance of these scaffolds with the closest
counterparts in drugs is also reported.
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Figure 6 A set of scaffolds present in metabolites but are missing in lead dataset. The Tanimoto distance of these scaffolds with the
closest counterparts in drugs is also reported.

Table 5 Databases used in this study

Datasets Number of molecules Clustered dataset Reference

Drugs DrugBank 1372 3788 [22]

KEGG drugs 7057 [23]

Metabolites HMDB 7888 6124, 2072* [24]

HumanCYC 984 [25]

BiGG 730 [26]

Toxics DSSTox 582 2166 [27]

FDA Carcinogenicity 125 [28]

ITER 514 [30]

SuperToxic 1097 [31]

NPs ZINC NP database 89425 61972 [32]

Leads BioNET 42699 67983 [33]

Maybridge 60550 [34]

NCI NCI database 260071 161336 [39]

ChEMBL ChEMBL dataset 600625 379827 [36]

*Metabolite dataset excluding lipids and large molecules (details in the Methods section).
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lead dataset, we merged two independent screening sets
obtained from BioNET [33] and Maybridge database
[34]. The molecules in these two databases are well
diversified and we integrated them to form a dataset of
lead compounds as found in pharmaceutical collections.
Further, we included molecules from NCI open database
[35]. The latest September 2003 release of the database
stores 260071 organic compounds tested by NCI for
anticancer activity. Since many of the compounds are
experimental, have not been tested for human consump-
tion and covers high diversity therefore, we believe it
would be good choice to include this dataset in our
study. One other public dataset, ChEMBL [36] was used
as the reference dataset for biologically interesting mole-
cules. ChEMBL is a chemogenomics data resource with
over 8000 targets and about 622,884 bioactive
compounds.
All datasets are current as of 10-November-2010.

Cleaning and processing of the datasets
We followed a standard cleaning procedure (see addi-
tional file 1) to obtain a non-redundant dataset in each
category. Finally, clustering was performed to address the
issue of possible overrepresentation of the chemical
space, which might bias the analysis results towards simi-
lar molecules [6]. Clusters were generated, using the
Cluster “Clara” algorithm embedded in the Pipeline Pilot
(PP) software [37] by employing an atom type fingerprint
as a chemical descriptor and Euclidean distance was the
distance metric selected. Cluster centers served as the
representatives for clusters containing more than one
molecule while singletons were directly used as cluster
centers. This resulted in 30% decreases of each dataset.
Upon further analysis, we found that clustered metabolite
set contains lipids in large numbers. In order to remove
the bias towards lipids and large molecules, we filtered
out lipids resulting in 2072 molecules in the “lipid-free”
metabolite dataset, used for analysis in this study.
To simplify the analysis, we randomly selected 2000

compounds from each of the clustered datasets and
lipid-free metabolite dataset in case of metabolites. The
majority of the analysis was carried out using the clus-
tered datasets and lipid-free metabolite dataset, except
for preliminary analysis, where these randomly selected
molecules were used and in the case of Ro5 test, where
both datasets were compared.

Molecular descriptors
All the descriptors were calculated using PP. Beside the
four Lipinski properties: molecular weight, the number
of hydrogen bond acceptors, AlogP (a hydrophobicity
measure) and the number of hydrogen bond donors [4],
other descriptors such as molecular polar surface area
(MPSA), molecular solubility (MS), the number of rings

(NR) and the number of rotatable bonds (NRB) were
also computed. AlogP was calculated using the Ghose-
Crippen method [38] which takes into account the
group’s contribution to Log P. MPSA is defined as the
sum over all the polar atoms. This descriptor is corre-
lated with drug transport capabilities and is important
in penetrating the blood-brain barrier. The NRB is a
direct measure of the flexibility of molecules thus
related to MPSA. Binary descriptors (ECFP_4 and
FCFP_4) were calculated using a structural property cal-
culator embedded in PP. Initially, each atom is assigned
a code based on its properties and connectivity. With
increasing iteration, each atom code is combined with
the code of its immediate neighbours to produce the
next order code. This process is repeated until the
desired number of iterations has been achieved, typically
to four iterations, generating ECFP_4, or FCFP_4
fingerprints.

Cyclic systems
In addition to examining the physicochemical proper-
ties, each dataset was also explored for the frequent
scaffold systems. We used an inbuilt PP protocol to
identify the most common fragments, by setting “Frag-
mentType” to MurckoAssemblies and adjusting “Max-
FragSize” parameter at the required level.

Additional material

Additional file 1: Supplementary figure S1. Flowchart adapted for the
overall methodology.
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