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ABSTRACT Accurate iFR calculation can provide important clinical information for intracoronary
functional assessment without administration of adenosine, which needs to locate object points in the pressure
waveforms: peak, the dichrotic notch and the pressure nadir at the end of diastole. We propose a DFENet that
is capable of locating object points to calculate iFR accurately. We first design a SFRA into DFENet with
the idea of DenseNet. To avoid overfitting when dealing with sparse signals, we set appropriate number
of network layers, growth rate of dense blocks and compression rate of transition blocks in 1D DenseNet.
Then, we introduce a feature enhancement mechanism named 1D SE block for enhancing inconspicuous
but vital features from SFRA, which guides DFENet to focus on these important features via feature
recalibration. Finally, we prove an effective interaction mode between SFRA and 1D SE block to locate object
points accurately. Adequate experiments demonstrate that DFENet reaches a high accuracy of 94.22%, error
of 5.6 on object point localization of 1D pressure waveforms that include 1457 samples from 100 subjects
via a cross-validation of Leave-One-Out. Comparison experiment demonstrates that the accuracy of DFENet
exceeds other state-of-the-art methods by 3.35%, and ablation experiment demonstrates that the accuracy of
SFRA and cSE exceed the other variations by 6.63% and 2.56% respectively. Importantly, we reveal how
the DFENet enhance inconspicuous but vital feature by applying gradient-weighted class activation maps.
DFENet can locate object points accurately, which is applicable to other signal processing tasks, especially
in health sensing.

INDEX TERMS iFR, object point localization, SFRA, 1D SE block.

I. INTRODUCTION
Accurate instantaneous wave-free ratio (iFR) calculation
determined by one-dimensional (1D) aortic pressure wave-
forms has important clinical significance for intracoronary
functional assessment. Clinically, there are two intracoro-
nary physiologic indexes to diagnose coronary artery disease,
which are fractional flow reserve (FFR) requiring the admin-
istration of adenosine and iFR without the administration
of adenosine [1]–[4]. FFR is the most widely used index in
clinical practice with a large body of evidence. However, iFR
is gradually gaining more approvals from clinicians because
iFR negates the need for administration of adenosine, saving

time, reducing costs and side effects, and leading to improved
adoption in the cardiac catheter laboratory [1]. Besides, stud-
ies have shown that iFR has diagnostic accuracy similar to
that of FFR as independent measures of ischemia [5], [6]. iFR
can be used as an indicator to diagnose the degree of coronary
artery stenosis. Coronary artery lesions determined to have
iFR ratios less than 0.89 and FFR ratios less than 0.8 cur-
rently are recommended to undergo further treatment with
PCI [7], [8]. As it is still a newer technology, some providers
consider an iFR ratio of 0.86 to 0.93 an area of uncertainty
and recommend a hybrid approach utilizing evaluation with
FFR. As a adenosine-free index of stenosis severity, the iFR is
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FIGURE 1. Examples of object point localization on 1D pressure
waveform by DFENet. Compared with existing methods that only use
low-level morphological features, DFENet is advantageous in locating
object points comprehensively. The colorful small circles in feature
enhancement step denote recalibrated feature with different weights.

calculated by measuring the resting pressure gradient across
a coronary lesion during the portion of diastole. The iFR is
determined by a defined-time window that is decided over
the wave-free period. The wave-free period is identified by
accurately locating the object points on resting aortic pressure
waveform. These object points include the peak, the dichrotic
notch and the pressure nadir at the end of diastole. Moreover,
it is widely accepted that the wave-free period is calculated
the beginning 25% of the way into diastole and ending 5ms
before the end of diastole, and the onset of diastole was
determined from the dicrotic notch [1]. So iFR is calcu-
lated as the mean pressure distal to the stenosis during the
diastolic wave-free period (P̄dwave−free period ) divided by the
mean aortic pressure during the diastolic wave-free period
(P̄awave−free period ).
The existing algorithms still have difficulty in locating

object points robustly for calculation of iFR due to individual
difference [9]. Fig. 1 shows that the features of 1D pres-
sure waveforms are sparse morphologically. Besides, many
object points on 1D pressure waveforms from subjects are
inconspicuous intuitively. Clinically, a range of mathemat-
ical algorithms are proposed to analyze and locate object
points of 1D pressure waveforms [1], [9]. They all focus
on low-level morphological feature representation that are
vulnerable for 1D pressure waveforms. Meanwhile, they are
difficult to get the correlation between object points and other
points that assists in locating inconspicuous object points.
Therefore, the existing algorithms are difficult to obtain rich
information included deep high-level feature for feature rep-
resentation because of the sparsity of 1D pressure waveform.

Moreover, they are hard to mine inconspicuous but vital
features. So we need a powerful and robust approach to locate
object points for the calculation of iFR. Obviously, deep
learning is powerful to exploit high-level spatial information
for outstanding feature representation automatically from the
input data [10]–[12]. Besides, it is able to explore the corre-
lation between object points and other points [13].

Recently, deep learning has become a powerful approach
for solving various classification and regression problems
of 1D signal. As early as the 1940s, Pitts andMcCulloch et al.
referred to the structure of biological neurons and proposed
an abstract neuron model (MP) [14]. Hebb et al. put forward
the theory of neuropsychology, which led to the birth of the
first artificial neural network perceptron in the 1950s [15],
[16]. Perceptron can learn and recognize some simple digital
data. Multilayer perceptron has effect of nonlinear classifica-
tion, which is very computationally intensive. In the 1980s,
Hinton et al. proposed backpropagation (BP), which can
solve complex nonlinear problems [17]. After that, a series of
deep learning networks were developed. Typically, the deep
belief network was developed by Hinton et al., and its perfor-
mance on theMNIST data set surpassed that of support vector
machines (SVM) [18], [19]. In addition, typical deep learning
architectures also include recurrent neural networks (RNN)
[20], the stacked autoencoder (SAE) [21] and convolutional
neural networks (CNNs) [22]. Deep learning has an outstand-
ing feature learning on the 1D signals [23], [24]. In the field
of 1D signals, deep learning methods are generally used to
solve two classes of problems: 1) classification problems.
2) regression problems.
1) Classification Problems: Most attempts have adopted

deep learning methods for classification problems of 1D
signal, such as the classification of Electrocardiogram(ECG)
[25]–[28], analysis of Electroencephalogram (EEG) [29],
[30]. In [27], the authors proposed a 1D CNN that fused
the feature extraction and classification into a single learning
sample, which was valuable for a real-time implementation
for heart monitoring and anomaly detection. The adaptive
implementation of 1D CNN could extract handcrafted fea-
tures and achieve the classification of long raw ECG data
stream. In [31], the authors proposed a 1D-Convolutional
LSTM neural network for EEG-based user identification sys-
tem, which utilized the spatiotemporal features of the EEG
signals with LSTM. In [29], the authors used a framework
combined 1D CNN and SAE to classify EEG motor imagery
signals. 1DCNN extracted the information of time, frequency
and location on EEG. Then the deep network SAE was used
to classify EEG records. In [32], the study introduced a
dual-channel CNN that consisted of a 1D dense block and
a two-dimensional (2D) dense block to extract the hierarchi-
cal spectral features and hierarchical spatial-related feature
respectively for image classification. In [25], the authors
proposed an eleven-layer deep CNN to automatically detect
four different ECG class and obtain high accuracy.
2) Regression Problems: A few studies have focused on

the regression problems of 1D signal. In [33], the study
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developed a LeNet-style ConvNet that had a six-layer deep
CNN without dropout layers to detect and locate the waves
in heartbeat, include the P-waves, the QRS-waves, and the
T-waves.

Existing deep learningmethods are hard to deal with object
point localization task of 1D pressure waveform due to three
unusual challenges. Firstly, it is a challenge to solve regres-
sion problems for 1D signal such as object point localization.
The solution of object point localization demands highly
concentrated feature learning. In [33], the authors proposed
a six-layer CNN to locate the waves effectively. But the
locations are not must at peak of the waves but just inside
the wave intervals. It means that the proposed method is hard
to locate exacted points and has a poor feature representa-
tion. Undoubtedly, the existing methods have been mostly
concentrate on classification problems rather than regression
problems for 1D signal. Secondly, the existing methods have
difficulty to perform a feature representation for 1D sparse
signal. The 1D pressure waveform with sparse features is
different from the ECG, EEG or facial image that has a
wealth of information generally. In [25], the proposed CNN
was adopted to analyze ECG signals due to the complexity
and non-linearity of them. Sufficient information from ECG
could be utilized to automatically detect the different ECG
segments. But it is hard to explore sparse features of 1D signal
effectively. In addition, unlike facial feature point detection
task, which is based on a large amount of available facial
appearance information, the task of locating object point
of 1D pressure waveform faces a sparse signal [34], [35].
It needs to build an appearance model for sparse signals
and a model of the relationship between object points and
points. Therefore, the existing methods to deal with the 1D
pressure waveform are likely to have the problem of overfit-
ting. Thirdly, the existing methods have difficulty to enhance
inconspicuous but vital features of 1D signal. Fig.1 shows that
part of object points of 1D pressure waveform are inconspic-
uous but vital. The existing methods are mostly designed for
feature learning and object classification, such as [27], [28].
There are no feature enhancement mechanism applied to 1D
signal. [30] proposed a channel-wise competition mechanism
to focus on vital and relevant EEG channels. But its function
is just setting neurons to zero via channel-wise ranking, which
is hard to realize enhancement of inconspicuous feature.
Besides, the input data of network was changed into 2D
picture to be trained. Therefore, the amount of parameters was
increased.

To overcome the aforementioned challenges, we propose a
deep feature enhancement network (DFENet) for 1D signal
object localization task in this paper. As shown in Fig. 1,
the proposed DFENet consists of a sparse feature repre-
sentation architecture (SFRA) and a feature enhancement
mechanism. The SFRA in the DFENet adopt the idea of 1D
densely connected convolutional networks (DenseNet) to
implement effective feature representation of 1D sparse sig-
nal [36]. SFRA is capable of densely connecting learned
features to obtain rich information include high-level spatial

features and low-level features, and also has powerful gen-
eralization ability. Because of the sparsity of 1D pressure
waveforms, the main settings of 1D DenseNet are changed
to ensure that there will be no overfitting problems. The
feature enhancement mechanism of DFENet adopt the idea of
Squeeze-and-Excitation (SE) block [37] to enhance incon-
spicuous but vital features of 1D signal, which is named
1D SE block. The 1D SE block is capable of enhancing the
features by recalibrating features.Moreover, we find an effec-
tive interaction mode of SFRA and 1D SE block inside the
DFENet for object point localization accurately by adjusting
the position of them in DEFNet.

The primary contributions of this work are summarized as
follows:
• We propose DFENet for object point localization on 1D
sparse signal. We employ proposed DFENet to locate
object points on 1457 samples of 1D pressure wave-
forms from 100 subjects. We achieve a high accuracy
on object point localization for calculation of iFR.

• We design SFRA into DFENet for 1D signal. SFRA
adopt the idea of 1D DenseNet, which set appropriate
number of network layers, growth rate of dense blocks
and compression rate of transition blocks to deal with
sparse signals. It can obtain rich information and avoid
overfitting for effective sparse feature representation.

• We introduce 1D SE block into DFENet for enhancing
inconspicuous but vital features that come from SFRA.
This mechanism is capable of guiding DFENet to focus
on these important features via feature recalibration
strategy.

• We prove an effective interaction mode between SFRA
and 1D SE block by adjusting the position of SFRA and
1D SE block inside DFENet for object point localization
accurately.

The rest of this paper is organized as follows: In Section II,
we present the method of DFENet. In Section III, we provide
adequate experimental results to demonstrate the effective-
ness and performance of DFENet. In Section IV, we draw a
conclusion on this paper.

II. METHODS
A. AN OVERVIEW OF DFENet
Our DFENet consists of a sparse feature representation archi-
tecture (SFRA) shown in Section II-B and a feature enhance-
ment mechanism (1D SE block) shown in Section II-C.
Meanwhile, an effective interaction mode of SFRA and 1D
SE block inside DFENet is proved shown in Section II-D.
Fig.2 shows the details of our work flow and network struc-
ture. The inputs are the 250 points extracted from 1D pressure
waveforms. And the output of DFENet are the localizations
of object points. Firstly, the SFRA inside DFENet obtain a
wealth of details from input data via dense connection opera-
tion, which ensures SFRA acquire an ability feature learning
robustly. Meanwhile, it eliminates redundant information for
sparse 1D pressure waveforms via compressing the depth
and filters appropriately. Then, 1D SE block inside DFENet
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FIGURE 2. (a) Work flow of DFENet. The SFRA conduct feature connection, compression and prediction. The 1D SE block performs feature recalibration.
(b) Network structure of DFENet. The input is 1D pressure waveforms and output is the location of the object points. SFRA captures effective features
from sparse signals with the idea of feature dense connection. 1D SE block enhances inconspicuous but vital features from SFRA via feature recalibration.

FIGURE 3. Three types of 1D SE block. The architecture of cSE, sSE and
scSE are shown in (a), (b), and (c), respectively. U denotes the
combination of channels.

provides feature enhancement for enhancing inconspicuous
but vital features that come from SFRA. It utilizes global
pooling and a gating mechanism to recalibrate features as
illustrated in Fig.3 (a). Finally, we adjust the position of
SFRA and 1D SE block inside DFENet to obtain an effective
interactionmode. This interactionmode is capable of locating
object points accurately.

B. SFRA FOR FEATURE REPRESENTATION
To obtain effective feature representation of 1D pressure
waveform, we design SFRA for feature learning that employ
the idea of densely feature connection. Considering power-
ful ability of DenseNet in extracting sufficient and effective
information, we shrink the 2DDenseNet to develop SFRA for
1D signal. We compress the depth and number of 1D filters
appropriately. It is thus able to eliminate redundant informa-
tion for 1D signal. SFRA consists of three dense blocks to
connect the features densely, two transition blocks without

bottleneck layer to compress channels, and a prediction block
to predict object points. Fig.2(b) shows that SFRA inside
DFENet is able to acquire a feature representation through
dense block, transition block, and prediction block.

The densely feature connection of SFRA is attributed to
the dense block. It ensures that the features learned in the
previous layer can be directly connected to any layer of all
subsequent layers. When the distance between the two ends
of the network contracted, the gradient would backpropagate
from the output to the input more easily [38]. Therefore,
the dense block effectively alleviates the vanishing gradient
problem. It is composed of four convolution blocks with
multiple convolution filters, which connect together before
going into next block. The convolution block is made up
of three composite functions: a Batch Normalization (BN)
[39], a rectified linear units (ReLU) [40], a convolution layer
with a kernel of 3. The BN layer reduces internal covariate
shift, which can accelerate network convergence speed and
make training easier. The ReLU layer increases the nonlinear
relationship between layers of the neural network and lightens
overfitting. The dense block in SFRA is capable of collecting
sufficient features to represent contextual information in the
1D pressure waveform. Hence, the lth layer has access to all
previous feature maps x0, · · · , xl−1, as input:

xl = Rl([x0, x1, · · · , xl−1]) (1)

where [x0, x1, · · · , xl−1] means the concatenation of the fea-
ture maps in layers 0, · · · , l − 1. The Rl means the three
composite functions of convolution block.

The transition block effectively compresses the original
channels to decrease parameters and cuts down the feature
maps to unified input, which also make sure the features go
smoothly to the next block. It consists of a BN, a ReLU, a con-
volution layer with a kernel size of 1, an average pooling layer
that could reduce feature dimension. The channels would be
increased after the dense block that has the function of feature
dense connection. Then the channels would be reduced after
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transition block that has the function of feature compression.
Considering the unique sparsity and contextuality of the 1D
pressure waveform, we conduct a couple of considerable
settings. The number of dense blocks is set at 3. And the
appropriate number of network layers, growth rate of dense
blocks and compression rate of transition blocks are set in
SFRA. To protect the valuable information, the dropout layer
is not set in the network.

The prediction block applies ReLu activation function
to predict the object points of 1D pressure waveforms,
which is different from the image classification used softmax
function.

C. 1D SE BLOCK FOR FEATURE ENHANCEMENT
The feature enhancement mechanism of DFENet is attributed
to 1D SE block with a feature recalibration strategy for 1D
signal. The 1D SE block employs a global pooling operation
to capture contextual information and a lightweight gating
mechanism to enhance representational power by modelling
channel-wise relationships. Therefore, 1D SE block is capa-
ble of activating useful features and suppressing useless
features. Because SFRA is difficult to characterize incon-
spicuous but vital feature in 1D pressure waveform, 1D SE
block could make up for its shortcomings and strengthens
the correlation between object points and other points for
feature learning of inconspicuous object points. 1D SE block
is already applied for image classification [41] and segmen-
tation [42], which all yield an extraordinary performance.
However, 1D SE block in this work is used on 1D signal for
the first time. 1D SE block is a computational unit which
can be built for any given transform Ftr : X → U , X ∈
RW ′×C ′ , U ∈ RW×C . It is committed to improving the
sensitivity of the network to informative features so that sub-
sequent transformations are able to take advantage of these
features and suppress less useful features. Thus, explicitly
modelling channel interdependencies is employed to achieve
this function through two steps: squeeze operation (Fsq) that
can turn each 1D signal’s feature channel into a collection
of the local descriptors and excitation operation (Fex) that
can generate distinctive weights for each feature channel and
reweight the original features. The SE block can recalibrate
filter responses, which means that it is more likely to acquire
critical features.

For the problem of exploiting channel dependencies from
1D pressure waveform, every learned filter operates with
a global average pooling to catch contextual information
outside of the local receptive field. The Fsq of our 1D SE
block can be represented as follow:

zk = Fsq (uk) =
1
W

W∑
i=1

uk (i) (2)

where U = [u1, u2, · · · , uc] can be explained as the
collection of output feature maps, k is the number of filters,
z ∈ Rk is produced by feature map U with length W, zk is k th

element of z.

The Fex of our 1D SE block is aimed at fully capturing
channel-wise dependencies. It utilizes a gating mechanism of
sigmoid function:

s = Fex(z,W ) = α2(g(z,W )) = α2(W2α1(W1z)) (3)

where α1 is the sigmoid function, α2 is the RuLU function
and parametersW1 ∈ R

C
r ×C ,W2 ∈ RC×C

r , r is the reduction
ratio that is set to 8. Two fully connected layers and a rectified
linear activation are utilized to parameterize the mechanism.

At last, 1D SE block has a final output, which is obtained
by the operation as follow:

X̂c = Fscale (uc, sc) = sc · uc (4)

where X̂ =
[
X̂1, X̂2, X̂ · · · , X̂C

]
, Fscale (uc, sc) refers to

channel-wise multiplication between the feature map uc ∈
RW and scalar sc, which takes the rescaled weight that
weighted to the original feature to boost feature discrim-
inability. The output uwith the activations is rescaled thought
the channel-wise multiplication. To learn more useful infor-
mation from the spatial level, 1D SE block is created with two
variants [43]. Fig.3 shows three structures included spatial
squeeze and channel excitation block (cSE), channel squeeze
and spatial excitation block (sSE), and concurrent spatial
and channel squeeze & channel excitation block (scSE).
The cSE block has already been introduced above, which
was a clever structure that enhances useful feature. The
sSE block applies a sigmoid layer α1 (·) to rescale activa-
tions and a convolution layer to achieve a squeeze operation
whose kernel is 1 and stride is 1. The input tensor is U =
[u1,1, u1,2, · · · , up,q, · · · , uH ,W ], where p ∈ {1, 2, · · · ,H}
and q ∈ {1, 2, · · · ,W }, up,q ∈ R1×1×C means spatial
location (p, q). And the operation of sSE block is below:

UsSE = α1(l1,1)u1,1, · · · , α1(lp,q)up,q, · · · , α1(lH ,W )uH ,W

(5)

α1(lp,q) means the relative importance of an information
(p, q). UsSE squeezes the feature map along the channel
and excites spatially, which could learn spatial information.
Recalibration operation in UsSE has function of ignoring
irrelevant spatial location and enhancing the relevant ones
between points. The scSE block is a combination of the two
SE blocks above, which can contain global spatial informa-
tion and provide a global receptive field at each stage of the
network. Its receptive field implements channel squeezing
through the global average collection layer, which is different
from sSE block. In addition, The channel squeeze operation
of scSE is also performed by a convolution layer with a kernel
of 1. In summary, scSE block pays more attention on assisting
object point prediction. However, compared with the cSE
block and sSE block, the parameters amount of scSE block is
increased and the model may not be able to avoid overfitting
when dealing with our sparse signals.
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FIGURE 4. Combinations of 1D SE block and SFRA inside DFENet. The dense block, transition block and prediction block are inside SFRA. The
recommended configuration of P5 is highlighted.

D. POSITION OF SFRA AND 1D SE BLOCK INSIDE DFENet
FOR OBJECT POINT LOCALIZATION
Effective interaction mode is attributed to appropriate posi-
tion of SFRA and 1D SE block inside DFENet. Different
position of SFRA and 1D SE block inside DFENet has differ-
ent ways of information flow for the whole network, which
create distinct collective effect. The collective effect includes
feature representation and enhancement effect. Therefore,
effective interaction mode of them is able to achieve promi-
nent performance of DFENet. We explore six positions of
SFRA and 1D SE block inside DFENet to find effective
interaction mode of them shown in Fig.4. The six possible
configurations listed below:

P1: Position after dense block.
P2: Position after transition block.
P3: Position after prediction block.
P4: Position after dense block and transition block.
P5: Position after dense block and prediction block.
P6: Position after dense block, transition block and

prediction block.
As can be seen in Fig.4, multiple combinations have more

blocks and feature connections than single combination in
the network, which mean more parameters created in the net-
work correspondingly. However, an overly complex network
with excessive parameters might bring the vanishing gradient
problem. 1D SE block has power of enhancing useful features
and suppress useless features, which is beneficial to increase
gradient flow and eliminate much redundant information.
However, too much block participation may result in too
many parameters.

III. RESULT AND DISCUSSION
To verify the effectiveness and performance of DFENet,
we run four types of experiments as follows. Firstly, in order
to validate effective feature representation by SFRA and
feature enhancement by 1D SE block, we compare the per-
formance between different ablated variations of SFRA and
ablated variations of 1D SE block by adopting performance
metrics (see Section III-A). The experiment demonstrates
that the accuracy of SFRA surpassed the other variations
by 6.63% and the accuracy of cSE surpassed the other
variations by 2.56%. Secondly, to verify the effectiveness

of DFENet, we compared it with the state-of-the-art meth-
ods. DEFNet achieves higher accuracy that surpasses other
state-of-the-art methods 3.35%. Thirdly, in order to observe
the feature enhancement effect of 1D SE block inside
DFENet, the method of gradient-weighted class activa-
tion maps (Grad-CAM) is applied to provide insight into
how DFENet enhances inconspicuous but vital features
(see Fig.11 and Fig.12). Finally, to verity effective interaction
mode of SFRA and 1D SE block in DFENet, we compare the
performance of DFENet and other five combinations.

A. DATA ACQUISITION AND EXPERIMENTAL SETTINGS
1) DATA ACQUISITION
In this study, we establish a dataset from Insight Lifetech
Co. Ltd. A total of 1457 samples of 1D pressure wave-
form complexes from 100 unparalleled subjects (64 men and
36 women) are adopted. The 100 subjects come from two
different hospitals. Because the number of samples collected
by each person is not the same, we assign data sets by the
number of people. The 100 subjects are assigned to training
set (n = 75), validation set (n = 24) and test set (n = 1).
The process consists of two steps. The first step is data
pre-processing for the DFENet. The second step is the train-
ing and testing of the DFENet. The pre-processing produce
is described as follows. The first step is extracting pressure
waveform complexes from 1D pressure waveforms of every
subject. The waveforms are periodic and every period is a
complex, so we separate them firstly. Extracting complexes
have different lengths because of individual differences. The
networks need fixed-length signals to feed. Thus, the second
step is making all complexes of waveforms the same length
of 250 data point signals by padding the signals with the
last value of every period. In addition, Labelling all data is
completed by three experienced clinicians. The inter-observer
error ranged between 0.43 and 5.11% (average: 1.61%).

2) EXPERIMENTAL SETTINGS
All the proposed deep learning networks are implemented
using a Python tool in the Keras framework (Tensorflow
as backend). The training is implemented on a Linux
(Ubuntu 16.04) desktop computer with the Intel Xeon CPU
E5-2620 and NVIDIA TITAN XP GPU with 24G memory.
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FIGURE 5. Qualitative results generated from the DFENet. The blue dots
and red small star represent predicted points.

All pressure waveforms from the same subject are put into
the same data set to test our model. Note that all the reported
results are followed by a cross-validation of Leave-One-Out.
The DFENet model is trained on training subset which is
consist of waveforms of 1s long (sampled at 250Hz).

3) PERFORMANCE METRIC
Reliability-based metric. The reliability-based metric mea-
sures the root mean squared error (RMSE), which certainly
proves the performance of SFRA and 1D SE block. In the
experiment, loss function needs to determine the distance
between the predicted location of the key points and the
marked annotation of the pressure waveforms. RMSE can
indicate the quality of the match, going from the best match
to the worst match, whose range is [0,∞]. It is given by:

RMSE =

√√√√1
k

k∑
i=1

(mi − ni)2 (6)

Here, k= 3, which means the three dimensions to the output.
Every dimension represents the locations of predicted object
point. Mi is the ith predicted location and ni is the ith actual
object point locations that experienced clinicians marked. As
a loss function, RMSE is used into the neural network to
train the weights with the back-propagation method [44].
The accuracy of prediction can be obtained by computing
RMSE [33].

Accuracy metric. In order to more intuitively see the effect
of the entire networks, we design an evaluation metric based
on RMSE. Considering there are 250 points, if the prediction
is randomly determined, then the average accuracy would be
125 data points. Therefore, accuracy can be acquired from
Eq. (7):

Accuracy =
125− RMSE

125
(7)

The accuracy was measured on test data of the entire subject.
Average error metric. The average error is a common eval-

uation indicator for the performance test, which indicates the
distance between predicted point and labeled data in the same
cross-validation test. In the field of face recognition, the aver-
age error is widely used to evaluate method performance.

It is defined as follow:

Error =
1
M

M∑
i=1

1
N

N∑
j=1

√
(x̂i,j − xi,j)2 (8)

where x̂i,j and xi,j denotes predicted localization and the
ground truth, respectively, M is the number of samples, N
denotes the number of landmarks on one piece of test data.
Mean Distance Error (MDE): To see the distance error

of two point on pressure waveform, we design the MDE
which is a measurement index for mean error of predicted
point-to-point. It is defined as follow:

MDE =
1
M

M∑
i=1

1
H

H∑
j=1

∣∣(x̂j+1 − x̂j)− (xj+1 − xj)
∣∣ (9)

where x̂j+1 and x̂j is the (j + 1)th and jth predicted localiza-
tion on pressure waveform, xj+1 and xj is the (j + 1)th and
jth labeled localization, M is the number of samples, H is
the number of segments of distance between points in each
sample and H = 2 here.

Cumulative error distribution (CED). It is used to the
cumulative error of all points that can take a comprehen-
sive comparison for DFENet. The abscissa indicates the
normalized point-to-point error defined as follow:

ei =

∥∥xi − x∗i ∥∥2
dMD

(10)

where xi means the predicted value of location, x∗i means
the ground truth and dMD = 125 in our experiment. The
ordinate indicates the proportion of the sample smaller than
the normalized error to the total sample.

4) PARAMETER INITIALIZATION
In order to set the appropriate initial parameter value of
DFENet to show its best effect, we run the parameter ini-
tialization experiment. Basic initial parameters include the
number of network layers inDFENet, the growth rate of dense
block, the compression factor of transition block and the
reduction ratio of 1D SE block. Firstly, different number of
network layers d in DFENet means different memory cost of
whole network. As d increases, the memory cost increase and
the ability of the prediction would be affected. Fig.6 (a) shows
performance of DFENet with different depths of 10, 20, 30,
40, and 50, which denotes that DFENet display the best
ability when d = 20. Secondly, growth rate g of dense blocks
means g feature maps generated by function Rl in lth layer.
Fig.6 (b) shows that small growth rate (g = 6, 12) is sufficient
to acquire efficient results on the test set. One explanation for
this is that each layer could connect all the preceding feature
maps in its block and thus has access to global information.
DFENet would have a large amount of parameters when g
is large, which would cause overfitting. Thirdly, compression
factor c of transition block denotes that reducing (1 − c)m
(m is feature maps from dense block) feature maps in transi-
tion block to improve model compactness. Fig.6 (c) demon-
strates that DFENet has the best performance when c = 0.6.
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TABLE 1. Overall results of ablation experiment with three metrics. The highlighted one represent the best performance compared with four SFRA
ablation and two SE variants.

FIGURE 6. Comparison of effect with different values of basic initial
parameters in DFENet.

Finally, reduction ratio r of 1D SE block denotes the dimen-
sions of output feature channels would be 1

r of the input.
It varise the capacity and computational cost of the 1D SE
blocks in our model. To investigate effect of this hyperpa-
rameter, we conduct experiments with DFENet for a range of
different r values (r = 2, 4, 8, 16, 32). Fig.6 (d) demonstrates
DFENet perform best with r value of 8. In addition, our
batch size is set to 32. An Adam optimizer is applied to the
training procedure. Because of the sparsity of 1D pressure
signal, the dropout layer is not set. The training epoch is set
as 100 and the initial learning rate was 0.0001.

B. ABLATION AND COMPARISON EXPERIMENT
In order to illustrate the power of effective feature represen-
tation of SFRA and feature enhancement of cSE, we conduct
the ablation experiments that compared them with related
variants. The details of the experiment are displayed below,
which indicate that the effectiveness of DFENet. After that,
we perform the comparison experiment between DFENet and
five other methods to reveal the effectiveness of DFENet.
Then, we apply correlation analysis and Bland-Altman anal-
ysis to evaluate our method. Finally, we explore the practical
application effect of DFENet.

We investigate four SFRA variants and two SE variants,
which are utilized to test our data comparedwith our DFENet.
Due to our SFRA adopt the idea of DenseNet, we adopt dif-
ferent configurations of 1D DenseNet, which are respectively
1D DenseNet-121, 1D DenseNet-169, 1D DenseNet-201, 1D
DenseNet-161. Meanwhile, two SE variants displayed in the
method are used to compare the performance. The specific
evaluation metrics include accuracy, error, and RMSE are
utilized to compare the performance of various methods in
the experiments. Compared to [45], our evaluation metric is
more comprehensive and the performance is very impressive.
Table 1 shows the overall results of ablation experiment. The
accuracy of the DFENet is 94.23%, which demonstrates the
superiority of SFRA and 1D cSE block.

FIGURE 7. Comparison of RMSE, MDE, Error and accuracy between
different methods. The DFENet has the lowest RMSE, Error and MDE
(left axis). Besides it has the highest accuracy outperform five other
methods (right axis). The ranges on both sides of the ordinate are
5∼15 and 0.86∼0.96, respectively.

FIGURE 8. Comparison of cumulative error distribution (CED) curves on
the test data. We set the abscissa ei in the range of 0∼0.25 and the
ordinate in the range of 0∼1.0. The DFENet obtain a larger proportion in
the same error ei , indicating that it has the stronger display.

Meanwhile, we compare the performance of DFENet
and five state-of-the-art methods included 1D AlexNet, 1D
VGG16, 1D GoogleNet, 1D ResNet, SFRA. As we can
see, the performance of DFENet (accuracy of 94.23%, error
of 5.6) prevails the 1D AlexNet (88.26%, 10.89), 1D VGG16
(88.1%, 10.72), 1D GoogleNet (89.98%, 9.69), 1D ResNet
(89.13%, 10.24), and SFRA (90.88%, 8.49). Fig.7 shows that
DFENet has the lowest RMSE of 7.21, error of 5.6 and MDE
of 8.33 in a Leave-One-Out test. Meanwhile, Fig.7 shows
that DFENet yields high accuracy rate (94.23%) between the
predicted point and labeled data in the same cross-validation
test, which proves powerful ability of DFENet. We can also
see that SFRA has better ability to characterize sparse signals
compared with others. Fig.8 shows DFENet has the better
error distribution than the others on the test data, whose curve
is on the left. Referring to the above figures, we can see
that previous approaches include 1D AlexNet, 1D VGG16,
1D GoogleNet, and 1D ResNet are hard to get the accurate
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FIGURE 9. Correlation analysis (a) and BlandAltman analysis (b) shows
the agreement between the predicted positions of object point
determined by automatic localization and labeled positions.

FIGURE 10. Comparison of accuracy of different methods on the test data
from different hospital centers.

localization of all object points robustly. This manifests that
it take advantage of extracted features more robust compared
against other approaches. All results below all prove that the
DFENet can determine accurate localization of object points
to calculate iFR, which is represented visually in Fig.5.

Then, correlation analysis and Bland-Altman analysis are
applied to evaluate the consistency between DFENet and
the manual drawing method. Correlation analysis is uti-
lized to explore the correlation of both predicted result and
labeled position. Bland-Altman analysis is applied to assess
the agreement between DFENet and the manual drawing
method. Fig.9 shows that DFENet achieves high correlation
(The correlation coefficient r = 0.9930) on locating object
points when compared with experts. The mean difference
between automatic and manual measurements of locating
object point is 4.653. Yet the red lines in Fig.9 (b) represent
the 95% limits of agreement. 97.7% of the bias points are
within the confidence intervals. These result plots illustrate
that our DFENet has a high agreement with the referenced
object points from experienced experts, which reveals the
clinical potential of DFENet.

Finally, to prove that DFENet is suitable for real
application scenarios, We use the data of one hospital as the
training set (74 subjects) and the data of the other hospital as
the test set (26 subjects) to test our model. Fig.10 shows that
DFENet has the best performance among all methods, which
denotes its effect on actual scenarios.

C. FEATURE ENHANCEMENT OF 1D SE BLOCK
To verity the feature enhancement of 1D SE block, we
conduct two experiments on the same test data. Firstly,
to understand how 1D SE block enhances the features learned

FIGURE 11. Feature maps in the same position of SFRA and DFENet.
(a) shows original input data, (b) and (d) show all feature maps, (c) and
(e) show three specific feature maps of DFENet and SFRA. Both (d) and
(e) show that DFENet could suppress redundant information compare to
SFRA.

from SFRA, we compare the feature maps of DFENet and
SFRA. Secondly, we apply gradient-weighted class activation
maps (Grad-CAM) to visualize learned features for enhanced
effect display.

1) COMPARISON OF FEATURE MAPS IN DFENet AND SFRA
To comprehend the feature enhancement of 1D SE block,
we now try to analyze the function of feature enhancement
for 1D pressure waveform during training. Note that the
enhanced feature maps, similar to channel activation maps
are element-wise multiplied with original feature maps from
the SFRA.We could know the effect of enhanced mechanism
via observing the feature maps. Firstly, in order to view the
feature maps of all channels from one piece of test data,
we run the experiment that extracts feature maps of all chan-
nels in the same position of SFRA and DFENet. The input
data is shown in Fig. 11 (a), and the visualization result is
shown in Fig.11 (b) and Fig.11 (d), which indicates that the
1D SE block reduces the redundant information distinctly.
Then, we extract the feature map of three channels shown
in Fig.11 (c) and Fig.11 (e). We can clearly see that many
values of feature element come from SFRA are set to 0, which
is likely considered as useless part. This indicates that 1D SE
block has the function of feature weight re-adjustment.

2) GRAD-CAM VISUAL EXPLANATION FOR
FEATURE ENHANCEMENT
We are committed to visualizing focused region of network
to explain feature enhancement. We apply Grad-CAM to
DFENet and SFRA using a piece of test data. Grad-CAM
is a visualization method which utilizes gradients to calcu-
late the importance of the spatial locations in convolutional
layers. Owning to the gradient is calculated with respect to
object points, Grad-CAM result clearly show the location
of interest. By observing the location that network focuses
on, we attempt to look at how 1D SE block in DFENet
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FIGURE 12. Grad-CAM visual explanation for locating object point by
DFENet and SFRA. (a) Input pressure waveform consists of three labelled
object points. (b) Grad-CAM explanations of the feature enhancement in
DFENet. (c) Grad-CAM explanations of the feature enhancement in
DFENet. The Grad-CAM visualization is calculated for the last
convolutional outputs.

enhancing vital features. Grad-CAM results could demon-
strate the attended regions clearly shown in Fig.12. We can
clearly see that DFENet take more attention on vital feature
than SFRA. That is, the proposed DFENet learns well to
exploit information in target regions and enhance features
from them.

D. COMPARISON OF PERFORMANCE WITH
DIFFERENT INTERACTIVE MODES
To prove the effectiveness of interaction mode with 1D SE
block and SFRA in DEFNet, we compare the performance of
DFENet and other five possible configurations mentioned in
Section II. The indicators for comparison of six combinations
are nearly the same as above.

Table 2 shows that DFENet with configuration of P5 is
more prominent than others.We apply four evaluation indices
to compare the effect that include running time, parameters,
average error and accuracy. In Table 2, several worth explor-
ing behaviors about combinations are displayed. Firstly,
we observe that 1D SE block leads to a clear promotion of
localization accuracy and an obvious reduction of error at
every position (P1-P6) of the network. Secondly, the combi-
nation of multiple blocks has more advantages than inserted
1D SE block of a single position, but there is little difference
between them with respect to running time and parameters.
As can be seen in Table 2, the performance of network which
combined multiple blocks is better, such as P4, P5 and P6.
Thirdly, the effect is more outstanding in the prediction block
(P3), compare to dense block (P1) and transition block (P2)
because of different interactive modes. Finally, the effect of
P5 is the best among all combinations of multiple block,
though they have less running time and fewer parameters than
P6. In Tabel 2, we can observe that the parameters increased
but the average running time of position did not increase

TABLE 2. Comparison of DFENet performance in different configurations
with the depth of 20. P1∼P6 denote six positions of 1D SE block in the
network.

much (249.7s at P1, 250.6s at P2, 256s at P4, 249.8s at P5).
This shows that the computing power of the network is still
strong after adding multiple SE blocks.

IV. CONCLUSION
In this paper, we develop a deep feature enhancement network
(DFENet) for object points localization of 1D pressure wave-
forms. The DFENet incorporates the feature representation
architecture and feature enhancement mechanism named
1D SE block, obtaining an effective feature representation
and enhancing inconspicuous but vital features. Moreover,
we prove an effective interaction mode between feature rep-
resentation architecture and 1D SE block. It overcomes the
problem of non-robust localization of object points on 1D
pressure waveforms by existing algorithms. Experimental
results show that theDFENet has obvious advantages in locat-
ing object points robustly, which means that the method can
provide accurate iFR for clinic diagnoses and intracoronary
functional assessment.
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