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INTRODUCTION 
 

Intracerebral hemorrhage (ICH), which is characterized 

by high mortality and disability, is the most severe form 

of stroke with no effective treatment modality, although 

considerable progress has been made in animal and 

preclinical research [1, 2]. ICH often comprises a series 

of injuries caused by two different phases. The 

formation and expansion of ICH results in mechanical  

 

damage of the brain tissue, followed by edema, 

inflammation, and necrosis, which lead to the 

destruction of neurons and glial structures, an aberrant 

release of the neurotransmitters and mitochondrial 

dysfunction, and ultimately to apoptosis. In the central 

nervous system (CNS), astrocytes constitute one of 

several types of glial cells, which provide not only 

structural support but also nutritional supply for neurons 

and help maintain homeostasis of the extracellular 
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ABSTRACT 
 

Intracerebral hemorrhage (ICH) is a common acute nervous system disease with high mortality and severe 
disability. Mesenchymal stem cells (MSCs) have been reported to promote neurogenesis and to alleviate side 
effects in areas of brain injury areas. The Hippo pathway regulates diverse cellular processes, including cell 
survival, proliferation, differentiation, and organ size. Here, we found that transplantation of bone marrow 
MSCs (BM-MSCs) into the brains of mice could alleviate ICH-mediated injury and protect astrocytes from 
apoptosis by regulating mammalian sterile 20-like kinase (MST)1 and Yes-associated protein (YAP). Knocking 
down of MST1 by si-RNA triggered YAP nuclear translocation. We further demonstrated that astrocytes 
undergo astroglial-mesenchymal phenotype switching and become capable of proliferating after BM-MSC 
transplantation via the Hippo signaling pathway. Together, our identification of the Hippo pathway in 
mediating the beneficial effects of BM-MSCs may provide a novel therapeutic target in the treatment and 
management of ICH. 
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environment [3, 4]. In response to the CNS is threatened 

and damaged, such as nerve injury, infection, ischemia, 

hemorrhagic stroke, or neurodegeneration, astrocytes 

are activated, which causes them to proliferate, migrate, 

and finally to form glial scars [5]. A better 

understanding of the potential mechanisms underlying 

astrocyte activation may help to improve the prognosis 

of patients. 

 

Mesenchymal stem cells (MSCs) are the prototype of 

pluripotent stem cells and have potential applications in 

regenerative medicine. MSCs are self-renewing and 

multipotent cells that generate progenitors, which are 

capable to differentiate into various and distinct cell 

lineages. They can be isolated from different human 

tissues, amplified and/or differentiated in vitro, and then 

used for the treatment of various diseases. The 

mechanism by which MSCs exert their regenerative 

activity is mainly related to their nutritional effects on 

other cells, as well as their highly anti-inflammatory 

and immunomodulatory capabilities [6, 7]. Jiang et al. 

have revealed that bone marrow MSCs (BM-MSCs) 

could interact with the injured microenvironment, and 

shift the balance from a toxic to a protective and 

regenerative milieu via releasing bioactive factors [8]. 

BM-MSCs were also found to promote neurogenesis 

and alleviate late side effects in brain injury areas, 

including an enhancement of the vascular system and 

restoration of motor, sensory, and cognitive functions 

[9]. These specific characteristics make BM-MSCs a 

promising therapeutic modality for several CNS 

conditions, such as ischemic stroke and ICH [10, 11]. 

 

The Hippo pathway is evolutionally conserved and 

regulates a myriad of cellular processes, including cell 

survival, proliferation, differentiation, and organ size. In 

mammals, this Hippo pathway consists of the 

serine/threonine kinases mammalian sterile 20-like 

kinase 1/2 (MST1/2) and large tumor suppressor 1/2 

(LATS1/2) [12], while Yes-associated protein (YAP) is 

its major downstream mediators of the Hippo pathway. 

Activation of the Hippo pathway results in the 

inactivation of YAP by LATS1/2-mediated direct 

phosphorylation. Phosphorylated YAP is sequestered in 

the cytoplasm by binding to 14-3-3 and subsequently 

degraded in a ubiquitin-proteasome-dependent manner 

[13]. Conversely, dephosphorylation of YAP induces its 

transport into the nucleus and subsequent interaction 

with TEA/ATTS domain (TEAD), forkhead box protein 

O1 (FoxO1), and other transcription factors, thereby 

inducing cell proliferation, organ growth, stem cell self-

renewal, epithelial-mesenchymal transition, and 

inhibition of apoptotic gene expression [12–14]. Zhao et 

al. advanced an additional consideration, namely that 

the Hippo pathway functions not only in cancer cells 

but also in immune cells [15]. Inflammatory conditions 

could affect the expression of MST1, further promoting 

inflammation, fibrosis, and tumorigenesis [16, 17]. In 

the CNS, MST1 was also found to be involved in neuro-

inflammation caused by cerebral ischemia [18]. 

Knockdown of MST1 was shown to reduce neuronal 

death and ameliorate neurological impairment in 

traumatic brain injury [19]. The YAP signaling pathway 

has also been also implicated in astrogliogenesis and 

astrocytic differentiation in the developing neocortex 

[20], and YAP knockout mice develop reactive 

astrogliosis in the cortex, supporting its critical 

involvement in brain development [21]. In our previous 

studies, we have found that astrocytes undergo 

dedifferentiation via Hippo signaling pathway following 

ICH [4]. 

 

Based on these foundations, we aimed to elucidate 

whether BM-MSCs could alleviate brain injury and 

promote astrocyte proliferation via the Hippo signaling 

pathway. We used both in vivo and in vitro techniques 

to test our hypothesis.  
 

RESULTS 
 

BM-MSCs purification and identification 

 

BM-MSCs were successfully isolated from the femoral 

and tibial bone marrow of adult male Sprague-Dawley 

rats and cultured in the medium for several generations. 

The cultured cells demonstrated a typical spindle-

shaped morphology (Supplementary Figure 1A, 1B). 

Flow cytometry analysis confirmed that the cells used 

for transplantation experiments were positive for CD29 

(99.83%) and CD90 (99.87%), and had low expression 

of CD34 (0.46%) and CD45 (1.33%) (Supplementary 

Figure 1C), which is highly consistent with the previous 

publications [22]. Using a red fluorescent dye (PKH-

26), we were able to track positive transplanted cells, 

which were confirmed to be located in the ICH 

hemisphere 3d after transplantation (Supplementary 

Figure 1D, 1E). 

 

BM-MSCs transplantation reduced hematoma 

volume and alleviated neurological deficits after 

ICH 
 

BM-MSCs transplantation led to a decrease in ICH 

hematoma volume on day 3 as compared with the PBS 

group (p < 0.05) (Figure 1A). We further tested the 

neurological outcomes at 1, 3, 7 and 14d after MSCs 

transplantation using the modified neurological severity 

score (mNSS) and the corner test. We observed a 

significant improvement in neurological deficits after 

BM-MSCs transplantation at 7 and 14d post-procedure 

(p < 0.05) (Figure 1B–1E), compared with the PBS 

group.  
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BM-MSCs transplantation promoted VIM, EAAT1, 

and YAP expression in astrocytes after ICH  

in vivo  
 

Vimentin (VIM) and glial fibrillary acidic protein 

(GFAP) are the two kinds of intermediate filaments 

(IFs) associated with astrocytes activation and reactive 

gliosis, which were shown to be expressed in the early 

and late stages of CNS damage. Therefore, the 

increased expression of VIM and GFAP are widely 

regarded as markers of reactive astrocytes [23, 24]. 

Immunofluorescence staining and Western blot were 

applied to detect the expression of these proteins 

following ICH. As shown in Figure 2A, VIM and 

GFAP were expressed at the hematoma margin in the 

PBS group after ICH at 3d post-procedure. Following 

BM-MSCs transplantation, the expression of VIM 

significantly increased, whereas the observed increase 

in GFAP was not statistically significant (Figure 2A–

2C), which was confirmed by Western blot (p < 0.05) 

(Figure 2D, 2E). We further examined the protein 

expression of aldehyde dehydrogenase 1 family member 

L1 (ALDH1L1) and excitatory amino acid transporter 1 

(EAAT1). After BM-MSCs transplantation, the 

expression of ALDH1L1 decreased (p < 0.01), while the 

expression of EAAT1 increased (p < 0.05) (Figure 2F, 

2G). In addition, the expression of phosphorylated (p-) 

MST1 and p-YAP, which decreased after ICH, 

decreased further following BM-MSCs transplantation, 

compared to the sham group (p < 0.05) (Figure 2H, 2I). 

 

 
 

Figure 1. BM-MSCs transplantation reduced hematoma volume and improved neurological outcomes after ICH. (A, B) The 
volume of ICH in BM-MSCs and PBS treated Mice after 3 d post-transplantation with Cresyl violet staining. Bar = 1mm. (C) BM-MSCs improved 
neurological outcomes both in mNSS and corner test. All data are displayed as means ± SD (n = 10). (C–E) *p< 0.05, compared with the  
PBS group. 
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BM-MSC-astrocyte co-culture enhanced astrocytes 

resistance of astrocytes to hemin neurotoxicity, 

promoted their proliferation, regulated cytokine 

mRNA expression, and increased TEAD2 expression 

in vitro 

 

Given our findings that astrocytes responded to BM-

MSCs in our in vivo experiments, so we established an 

ICH model in vitro by exposing primary astrocytes to 

hemin, with or without BM-MSCs coculture, as shown in 

Supplementary Figure 1A. We assessed astrocytes 

viability and death by the cholecystokinin (CCK)-8 and 

lactate dehydrogenase (LDH) releasing assays after 

hemin exposure with or without BM-MSCs (at a ratio of 

1:10). The results showed that astrocyte viability 

decreased in hemin dose-dependent manner, and 

subsequent experiments were carried out with 30 μM 

hemin as this concentration significantly increased cell 

mortality (p < 0.01) (Figure 3A, 3B). Expression of the 

cell cycle marker Ki67 was analyzed by 

immunofluorescence staining to determine whether BM-

MSCs could promote astrocyte proliferation. As shown 

in Figure 3E, 3F, the percentage of Ki67-positive 

astrocytes significantly increased when co-cultured with 

BM-MSCs (p < 0.01). Using quantitative real-time 

polymerase chain reaction (qPCR) we further found that 

mRNA expression of tumor necrosis factor (TNF)α and 

interleukin (IL)-6 significantly decreased upon co-culture 

with BM-MSCs (p < 0.05 for both), while IL-10 

significantly increased, as compared to astrocyte 

monoculture (p < 0.05) (Figure 3C). Astrocytic TEAD2 

mRNA levels also significantly increased in the presence 

of BM-MSCs in comparison with monocultures (p < 

0.0001) (Figure 3D). These results support the ability of 

BM-MSCs to activate astrocytes and enhance their 

proliferation and resistance to hemin neurotoxicity. 

 

 
 

Figure 2. The astroglial mesenchymal phenotype switching of astrocytes in ICH. (A) Immunofluorescence staining for VIM (purple) 
and GFAP (green) in ICH mouse brain at 3d post-PBS transplantation. Bar = 100μm. GFAP and VIM were expressed in reactive astrocytes 
around the lesion area. (B) Immunofluorescence staining for VIM (purple) and GFAP (green) in the ICH mouse brain at 3d post-BM-MSCs 
transplantation. Bar = 100μm. After the transplantation of BM-MSCs, VIM was strongly expressed, whereas GFAP remained at the same level. 
(C) The results of relative fluorescence intensity of GFAP and VIM, plotting into a histogram of five randomly fields. (D–I) Western blotting 
analysis of GFAP, VIM, ALDH1L1, EAAT1, p-MST1, MST1, p-YAP and YAP expression in the ICH mouse brain of Sham, PBS, and BM-MSCs 
treatment at 3d. Expressions were normalized against the internal reference GAPDH. The fold change values were calculated by normalizing 
to the sham group. The results were plotted as mean ± SD (n = 6). *p < 0.05, compared with sham group. 
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BM-MSC-astrocyte co-culture induced an astrocyte-

mesenchymal phenotype in vitro 

 

To confirm BM-MSC-mediated activation of astrocytes 

in vitro, immunofluorescence staining was performed to 

detect astrocytic GFAP and VIM in astrocytes with or 

without BM-MSCs co-cultures.  

We indeed observed an increase in VIM expression in 

astrocytes (Figure 4A, 4B), and Western blot 

corroborated increased VIM and GFAP expression in 

the presence of BM-MSCs compared to monocultures 

(p < 0.05) (Figure 4C, 4D). Additionally, the expression 

of ALDH1L1 significantly decreased, while EAAT1 

levels increased in co-cultures compared to astrocyte 

 

 
 

Figure 3. BM-MSCs coculture protected astrocytes from neurotoxicity induced by hemin. (A) Astrocytes were exposed to 0, 5, 10, 
20, 30, 40, 50μM hemin for 24 h with or without BM-MSCs coculture, then the cell viability was evaluated by CCK-8. (B) Astrocytes were 
exposed to 30μM hemin with or without BM-MSCs for 24 h, and the cell death was evaluated by LDH releasing assay; (C) mRNA expression of 
TNFα, IL-6, and IL-10 was checked. (D) mRNA expression of TEAD2 was checked. (E, F) Ki67 staining (green) was applied to mark cell 
proliferation, bar = 25μm. The results plotted as mean ± SD (n = 4), and the relative expression of the mRNA and results of proliferation rate 
were normalized to control and plotted into a histogram. *p< 0.05, **p < 0.01, ***p < 0.001 compared with ctrl; #p < 0.001. 
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monocultures (p < 0.01 for both) (Figure 4E, 4F). 

Together, our observations confirm that BM-MSCs 

induce a shift in astrocytes toward an astroglial-

mesenchymal phenotype in vitro. 

 

BM-MSC-astrocyte co-culture restrained MST1 

phosphorylation and induced YAP nuclear 

translocation in vitro 
 

To test whether phosphorylation levels of MST1 and 

YAP in astrocytes may be affected by BM-MSCs we 

performed Western blot analysis of p-MST1, MST1, p-

YAP, and YAP from BM-MSC-astrocyte co-cultures. 

The results show that the ratios of p-MST1/MST1 and 

p-YAP/YAP were significantly decreased as compared 

with astrocyte monocultures (p < 0.05, p < 0.01, 

respectively) (Figure 5B–5D). In addition, 

immunofluorescence staining demonstrated that hemin 

exposure triggered more YAP nuclear translocation in 

astrocytes co-cultured with BM-MSCs compared to 

those in monoculture (Figure 5A). This was also 

confirmed by significantly higher nuclear to 

cytoplasmic ratios of YAP expression in astrocytes in 

the presence of BM-MSCs as compared with astrocyte 

monoculture (p < 0.01) (Figure 5E, 5F). 

 

Knockdown of YAP attenuated BM-MSC-induced 

astrocyte proliferation 

 

YAP has transcriptional activity upon translocation into 

the nucleus, interacting with TEAD, FoxO1, and other 

transcription factors to promote cell proliferation and 

epithelial-mesenchymal transition, and to inhibit 

apoptosis [12]. We used small interfering RNA (si-

RNA) specific to YAP (si-YAP) to knock down its 

expression by more than 83% (p < 0.001) (Figure 6A, 

6B). The proportion of Ki67-positive astrocytes co-

cultured with BM-MSCs was significantly decreased by 

si-YAP compared with si-NC (p < 0.01) (Figure 6C, 

6D). Cytokine and TEAD2 mRNA expression was 

reversed through YAP knockdown in BM-MSC-

astrocyte co-cultures, whereby TNFα and IL-6 

increased (p < 0.01 for both), while IL-10 decreased, as 

compared to si-NC (p < 0.05) (Figure 6E). TEAD2

 

 
 

Figure 4. BM-MSCs coculture induced an epithelial-mesenchymal switching in astrocytes. (A) Immunofluorescence staining of 
astrocytes for VIM (red) and GFAP (green). The cell nuclei were counterstained with DAPI (blue). Bar = 25 μm. (B) The results of relative 
fluorescence intensity of GFAP and VIM, plotting into a histogram of five randomly fields. (C–F) Western blotting analysis of GFAP, VIM, 
ALDH1L1, and EAAT1 in astrocytes exposure to 30 μM hemin, with or without BM-MSCs coculture for 24 h. BM-MSCs coculture increased 
VIM, GFAP and EAAT1 expression, while decreasing ALDH1L1 expression. Expressions were normalized against the internal reference GAPDH. 
The fold change values were calculated by normalizing to control samples. The results were plotted as mean ± SD (n = 6). *p < 0.05, **p < 
0.01 compared with ctrl group. 
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mRNA levels significantly decreased (p < 0.01) (Figure 

6F). Furthermore, si-YAP reversed the previously 

observed BM-MSC-mediated upregulation of VIM and 

EAAT1 (p < 0.05, p < 0.01 respectively), and caused a 

significant increase in ALDH1L1 as compared to the si-

NC group (p <0.05) (Figure 6G, 6H). These data support 

the role of YAP in the proliferation and mesenchymal 

phenotype transition in astrocytes via BM-MSCs.

 

 
 

Figure 5. BM-MSCs coculture promoted YAP nuclear translocation in astrocytes. (A) Immunofluorescence staining of astrocytes 
with YAP (green). The cell nuclei were counterstained with DAPI (blue). BM-MSCs coculture treatment triggered YAP nuclear translocation in 
astrocytes exposure to 30 μM hemin. Bar = 25 μm. (B–D) Western blotting analysis of p-MST1, MST1, p-YAP and YAP expression in astrocytes 
exposure to 30 μM hemin, with or without BM-MSCs coculture for 24 h. (E, F) Western blotting analysis of cytoplasmic and nucleus extraction 
samples from astrocytes, with or without BM-MSCs coculture, with YAP antibody. GAPDH and H3 were used as a loading control for 
cytoplasmic and nucleus protein, respectively. The histogram showing the results of densitometric analysis of nucleus/cytoplasmic YAP 
expression in astrocytes cocultured with BM-MSCs or not. The results were normalized to control and plotted as mean ± SD (n = 4). *p < 0.05, 
**p < 0.01, compared with ctrl group. 
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Figure 6. si-YAP counteracted BM-MSCs coculture induced cell proliferation and GFAP/VIM switching. (A) Western blotting 
analysis of YAP expression in ctrl, si-NC, and si-Nrf2 transfected astrocytes. (B) The results of densitometric analysis of the bands were plotted 
as mean ± SD (n = 4). Over 83% of YAP expression was suppressed by si-YAP. ***p < 0.001 compared with si-NC group. (C) Representative 
pictures of Ki67 immunofluorescence staining. Ki67-positive cells were labeled in green. Bar = 50μm. (D) The results of the proliferation rate 
and densitometric analysis of the bands were plotted into a histogram of five randomly fields. (E). mRNA expression of TNFα, IL-6, and IL-10 
was checked. (F) mRNA expression of TEAD2 was checked. (G, H) Western blotting analysis of p-MST1, MST1, GFAP, VIM, ALDH1L1, and 
EAAT1 protein expression was examined. The relative expression was normalized to control. The results of densitometric analysis of the 
bands were plotted as mean ± SD (n = 4). *p < 0.05, **p < 0.01. 
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Knockdown of MST1 triggered YAP nuclear 

translocation in astrocytes 

 

We next sought to explore the mechanism of the Hippo 

signaling pathway in ICH. Specifically, we wanted to 

know whether YAP nuclear translocation may be triggered 

by MST1 downregulation. To this end, we used MST1-si-

RNA (si-MST1), which caused a reduction in MST1 

expression by more than 80% (p < 0.01) (Figure 7A, 7B). 

As shown by immunofluorescence staining, YAP nuclear 

translocation was evident in si-MST1 transfected 

astrocytes, while in the control and si-NC transfected 

group YAP was mainly located in the cytoplasm (Figure 

7C). These results could be corroborated by Western blot 

analysis (Figure 7D, 7E). Our findings confirm our 

hypothesis that MST1 downregulation triggers YAP 

 

 
 

Figure 7. Knockdown of MST1 triggered YAP nuclear translocation. (A) Western blotting analysis of MST1 expression in ctrl, si-NC, 
and si-Nrf2 transfected astrocytes. (B) The results of densitometric analysis of the bands were plotted as mean ± SD (n = 4). Over 80% of 
MST1 expression was suppressed by si-MST1. **p < 0.01 compared with ctrl group. (C) Immunofluorescence staining of ctrl, si-NC, si-MST1 
treated astrocytes with anti-YAP (green). The siRNA was labeled with fluorophore Cy3 (red) to show the transfected cells. The cell nuclei were 
counterstained with DAPI (blue). Bar = 50μm. (D, E) Western blotting analysis of cytoplasmic and nucleus extraction samples from control, si-
NC, si-MST1 transfected astrocytes with anti-YAP. GAPDH and H3 were used as a loading control for cytoplasmic and nucleus protein, 
respectively. The histogram showing the results of densitometric analysis of nucleus/cytoplasmic YAP expression in ctrl, si-NC, si-MST1 
transfected astrocytes. The results were normalized to control plotted as mean ± SD (n = 4). Si-MST1 significantly increased YAP nuclear 
expression. *p < 0.01 compared with control.  
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nuclear translocation in astrocytes, and the proposed 

mechanism is shown in Supplementary Figure 2D. 

 

DISCUSSION 
 

Astrocytes are one type of main glial cells in the CNS and 

play key roles in maintaining CNS homeostasis, including 

neurotrophic and structural supporting functions, 

maintaining the extracellular environment, stabilizing 

intercellular communications, and regulating oxidative 

stress in this organ  [25]. ICH is characterized by a series 

of pathological events, such as increased inflammation 

and cell death around injured perihematomal tissues. 

Astrocyte activation is a common response to CNS 

damage and reactive astrocytes can produce neurotrophic 

factors, protect neurons from injury, isolate injured sites 

from healthy tissues by forming a physical and chemical 

barrier, and prevent waves of harmful inflammation. On 

the other hand, reactive astrocytes are also known to 

inhibit axonal regeneration and obstruct other repair 

processes within the CNS [26, 27], rendering them a 

potential target in the treatment of ICH, whereby their 

beneficial effects could be enhanced and their detrimental 

effects limited. Astrocytes of VIM-GFAP double-

knockout mice are deficient in cytoplasmic IFs, with the 

consequence of decreased reactive glial degeneration and 

lack of characteristic hypertrophy of astrocyte processes 

after CNS injury [28]. In our previous studies, we have 

proposed that astrocytes may undergo dedifferentiation 

following ICH [4], which could be a stringent mechanism 

for the cells in response to injury, promoting their 

activation and survival. VIM is essential for proper cell 

spreading, which could regulate adhesion, adhesion 

strength, and focal contact size, thereby controlling the 

isolation of injured sites from healthy tissues [23, 29]. 

 

MSCs, when transplanted, are known to pass through 

the blood brain barrier, migrate to sites of injury and 

inhibit apoptosis of astrocytes [11, 30]. Early and 

sustained beneficial effects of MSCs secreting bioactive 

factors with neurotrophic/immunoregulatory potential in 

CNS injury have been observed [31]. In the present 

study, we found that transplantation of BM-MSCs into 

the CNS of mice with ICH significantly improved 

cognitive and motor function and reduced hemorrhagic 

volume, which is in line with previous studies [9]. 

MSCs therapy has also been reported to modulate 

microglia activation by maintaining a resting, 

regenerative microglial phenotype, or by limiting the 

microglial activation after stroke [32, 33]. Remarkably, 

Donega et al. also reported that MSCs treatment 

successfully reduced GFAP expression and glial scars 

formation in humans [34].  

 

Here, we observed that BM-MSC transplantation 

resulted in an elevation of VIM and GFAP expression, 

even though the change of the latter was not statistically 

significant. Both proteins were significantly increased 

in BM-MSC-astrocyte co-cultures, supporting our in 
vivo findings. 

 

As VIM is not astrocyte-specific but is expressed in 

many cell types, we further examined the expression of 

ALDH1L1 and EAAT1. ALDH1L1 is expressed in most 

quiescent cells in the developing mouse brain, while 

proliferating cells do not express this protein [35]. It is an 

abundant cytosolic enzyme involved in folate pathways, 

essential for several major cellular processes including 

biosynthesis of precursors for DNA and RNA [36]. Since 

the activation and proliferation of astrocytes in co-culture 

with BM-MSCs would lead to the consumption of folate, 

this may explain why they showed lower ALDH1L1 

expression as compared to monocultures. EAAT1, which 

was localized in areas of developing glial scar, was 

increased after ICH, and this increase was amplified 

through BM-MSCs both in vivo and in vitro. The 

majority of adult astrocytes are terminally differentiated, 

although under certain conditions, they may be able to 

divide or even display stem cell-like behavior to prevent 

damage or recover from injury [37]. This could be one 

possible explanation for the higher expression of VIM 

and EAAT1 by astrocytes in our experiments. In 

addition, we show that astrocytes co-cultured with BM-

MSCs were protected from neurotoxicity in vitro, which 

was accompanied by a downregulation of the pro-

inflammatory cytokines TNFα and IL-6 and an 

upregulation of the anti-inflammatory cytokine IL-10; 

this is consistent with the results of a previous report by 

Aggarwal and colleagues [38]. 

 

The Hippo pathway is a key regulator of tissue 

homeostasis, mediating contact inhibition signaling and 

regulating organ size by controlling cell proliferation 

and expansion. It has been reported that YAP is 

selectively expressed in neural stem cells (NSCs) and 

astrocytes, but not neurons [39]. In astrocytes, YAP is 

required for astrocytic proliferation, and the deletion of 

this protein in NSCs or astrocytes leads to impaired 

astrogliogenesis and increased neocortical 

neurodegeneration [20]. Repression of either YAP or 

TEADs in the neural tube causes a significant increase 

in cell death, cell cycle exit, and differentiation of 

neuronal precursors [39].  

 

In our in vivo experiments, p-MST1 and p-YAP were 

highly expressed in the normal brain, and nuclear 

translocation of YAP was suppressed. Upon ICH, the 

levels of p-MST1 and p-YAP decreased, and following 

BM-MSC transplantation, YAP was translocated into the 

nucleus. Similar results were found in co-cultures in vitro, 

whereby BM-MSCs inhibited phosphorylation of MST1 

and YAP, triggering their nuclear translocation in 
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astrocytes. In addition, TEAD2 mRNA expression was 

increased in astrocytes in the presence of BM-MSCs. 

Subsequently, astrocyte dedifferentiation enhanced and 

VIM expression increased, which inhibited apoptosis, 

promoted proliferation, and ultimately reduced hemin-

mediated neurotoxicity. Conversely, we found that 

astrocyte proliferation and dedifferentiation was inhibited 

upon YAP knockdown in vitro. High YAP activity 

enables the cell to circumvent contact inhibition, induces 

epithelial-mesenchymal transition, and eventually tumor 

development [40]. 

 

ALDH1L1, on the other hand, is silent in malignant 

tumors, and its re-expression in cancer cells elicits anti-

proliferative effects [35, 41]. This may explain our 

finding that ALDH1L1 was highly expressed in 

astrocytes following YAP knockdown, and that BM-

MSC-induced astrocyte proliferation was attenuated due 

to the subsequent blockage of YAP-TEAD interactions. 

 

On the other hand, knockdown of MST1 induced YAP 

dephosphorylation triggering their nuclear translocation. 

Mo et al. have previously shown that a loss of MST1/2 

or LATS1/2, or activation of YAP-TEAD led to a 

marked expansion of neural progenitors [14]. Chen and 

Yuan et al. have reported that inhibition of MST1 or 

reduction in p-MST1 level could effectively alleviate 

neurological deficits during cerebral ischemia-

reperfusion injury and ICH [42, 43]. However, MST1 

was also found to activate inflammatory cytokines such 

as TNF-α and IL-6, which caused inflammation and cell 

death [42], while BM-MSCs could regulate the 

production of inflammatory cytokines [38]. Taken 

together, our findings, in support by previous studies, 

suggest that transplanted BM-MSCs ameliorated 

neurological deficits in ICH mice via inhibiting the 

MST1/Hippo pathway in astrocytes. 

 

There are several limitations to our study. Firstly, 

although we used si-RNA to interfere with MST1, it is 

ineffective for other members of the MST family, which 

may have affected our results. Secondly, MST is only 

one of the upstream regulatory factors of YAP, and 

others such as LATS were not investigated in this study. 

Lastly, we only analyzed changes during the early stage 

of ICH, so that further research is needed to explore the 

effect of BM-MSCs in later stages of this condition. 

 

In conclusion, we demonstrated that BM-MSC 

transplantation has an important role in alleviating 

neurological deficits, promoting astrocyte proliferation 

and mesenchymal phenotype switching after ICH. These 

effects were at least in part mediated via BM-MSC-

mediated regulation of the MST1/YAP/Hippo signaling 

pathway, thus supporting the potential clinical value of 

YAP as a target in the treatment of brain injury after ICH.  

MATERIALS AND METHODS 
 

Animals and ethics 

 

Adult male C57BL/6 mice aged 6 - 8 weeks, weighing 

22 - 25g were purchased from Jiesijie, Co., Ltd 

(Shanghai, China). The animal experiment protocol was 

approved by the Animal Care and Use Committee of 

Ruijin Hospital, Shanghai Jiao Tong University and 

performed following the National Institutes of Health 

guidelines, and we tried to relieve their pain as much as 

possible. Animals had adequate food and water and 

maintained in separate cages at room temperature under 

a regular light/dark cycle. 

 

BM-MSCs isolation and identification 

 

BM-MSCs were separated from Sprague Dawley rats 

(Jiesijie) weighing 200 - 230 g as previously described 

[44]. Briefly, remove the muscle and ligament attached 

to the separated femurs and tibias as far as possible, and 

then wash the tibia and femoral bone marrow cavity 

with phosphate buffered saline (PBS) to obtain BM-

MCSs [45]. Pure passages from 2 to 5 were applied for 

the following experiments. And flow cytometric 

analysis of cell surface markers was used to identify 

BM-MSCs as described previously. After trypsinized 

into single cell suspension, stained by first antibodies 

(anti-rat CD34, CD45, CD29, and CD90) for 30min, 

then incubated with corresponding secondary FITC 

antibody under the manufacturer's instructions (Cyagen 

Biosciences Inc., Guangzhou, China) for another 30min, 

BM-MSCs were eventually suspended in 300μl PBS for 

identification by flow cytometry (BD Biosciences, 

Mississauga, ON). 

 

ICH models in vivo and BM-MSCs labeling and 

transplantation 
 

ICH models were successfully established by injecting 

collagenase IV (Sigma-Aldrich, MO, USA) with 

0.075U/ 0.4μL PBS into the right basal ganglia in mice 

as previously reported, briefly, 0.5 mm anterior, 3.5mm 

ventral, and 2.2mm lateral to the bregma with a rate of 

0.1μl/min, as shown in Supplementary Figure 2B. The 

needle was slowly removed to avoid reflux 5min later. 

The burr hole was sealed with bone wax, and the 

incision was sutured. Sham-operated mice underwent 

the same procedures without the injection of 

collagenase IV.  

 

PKH26 red fluorescent cell linker mini kit (PKH26, 

Sigma) was applied for tracking after transplantation. 

BM-MSCs were trypsinized and resuspended with 2 μM 

PKH26 dye at room temperature (RT) for 5 min 

according to the manufacturer’s instructions. Mice were 
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divided into two groups at 24 h after ICH. For the ICH + 

BM-MSCs treated group, 2×106 BM-MSCs/ 2μl PBS 

were stereotactically injected into the ipsilateral lesion 

area with a rate of 0.1μl/min and placed for another 5 min 

thereafter. For the ICH + PBS treated group, an equal 

volume of PBS was administrated to the same position. 

 

ICH models in vitro and BM-MSCs coculture 
 

The primary astrocytes were prepared from the pallium of 

fetal C57BL/6 mice (embryonic days 16-18) (Jiesijie). 

The isolation and culture of primary astrocytes performed 

as previously described [4]. Pure passages from 2 to 5 

were applied for the following experiments. Astrocytes 

were incubated into 6/12/24/96-well plates, cocultured 

with BM-MSCs in the transwell system, exposed to 30μM 

hemin for 24h to imitating the ICH model in vitro for 

further experiments and detections. 

 

Experimental design 

 

Mice were random divided into three groups: (1) group 

1, sham (n = 45), (2) group 2, ICH + PBS treated (n = 

50), and (3) group 3, ICH + BM-MSCs treated (n = 50) 

group. At 1, 3, 7, 14d following BM-MSCs 

transplantation, neurological score and behavioral 

experiments were carried out before mice were 

sacrificed. Brain samples were collected for further 

experiments. The experimental schematic diagram in 
vivo is shown in Supplementary Figure 2A. 

 

In the experiments in vitro, we explored the underlying 

mechanism of the role of MST1 and YAP in vitro. 

Primary cultured astrocytes were seeded on 6/12/24/96-

well plates, with or without BM-MSCs coculture via a 

transwell system (3.0μm Pore Size, Corning, USA), 

under 30μM hemin exposure for 24 h, as shown in 

Figure 2C. The physiological changes of astrocytes 

were analyzed according to the proportion of 1: 10 for 

24 h of BM-MSCs coculture. 

 

Brain hematoma volume 
 

Hematoma volume was measured using Cresyl Violet 

acetate (Sigma) staining. Sections (20μm) were 

obtained from all brain tissue including the hematoma 

area. The hematoma area of each section was depicted 

by image and measured by ImageJ software (National 

Institutes of Health, Bethesda, MD) as previously 

described [46]. Then, sum all cerebral hematoma 

volume of lesion areas by slice thickness. 

 

Neurobehavioral Evaluation 
 

Behavioral assessments were examined by the modified 

Neurological Severity Scores (mNSS) and the corner 

test, performed at 1, 3, 7, 14d after BM-MSCs 

transplantation, which was performed by two partners 

who did not know the treatment conditions. The mNSS 

ranging from 0 to 14 score, consists of response absence 

(0 - 2), raising mice by the tails (0 - 3), walking on the 

floor (0 - 3), and beam balance tests (0 - 6). According 

to the scoring criteria [46], the higher the score, the 

more serious the injury. For the corner turn test, the 

mouse was allowed to walk down a corridor into a 30° 

corner. Mice would turn right or left to exit the corner. 

The number of right and left turns out of 10 total 

attempts was recorded. The laterality index (LI) and 

normalized LI were calculated as previously proposed 

[47]. The LI was calculated for each mouse, following 

the formula: LI = (number of right turns - number of left 

turns)/ (total number of turns). The LI for the day before 

surgery (LIBS) and each of the post-surgery days was 

calculated, and normalized by the formula: Normalized 

LI = (LI + 2)/(LIBS + 2). 

 

siRNA transfection 
 

Hemin (Aladdin, China) was dissolved in absolute ethyl 

alcohol and diluted with PBS. Astrocytes were transfected 

with small interfering YAP RNA (si-YAP); Cy3-labeled 

specific small interfering MST1 RNA (si-MST1) and 

negative control siRNA (si-NC) (GenePharma, China) by 

Lipofectamine® 3000 reagent (Invitrogen, USA) under 

the manufacturer's instructions. The sequences are listed 

as followed (sense/antisense, 5’-3’), si-YAP: CAGGUG 

AUACUAUCAACCAAATT/ UUUGGUUGAUAGUA 

UCACCUGTT; si-MST1: GAGAUAUCAAGGCGGG 

AAATT/ UUUCCCGCCUUGAUAUCUCTT; si-NC: 

UUCUCCGAACGUGUCACGUTT/ 

ACGUGACACGUUCGGAGAATT. 

 

Cell viability assay and lactate dehydrogenase 

(LDH) assay 

 

Cell viability and LDH was determined with Cell 

Counting Kit-8 (CCK-8, Beyotime, China) and LDH 

cytotoxicity kit (Beyotime) under the manufacturer's 

instructions. Astrocytes were plated into 96/24-well plate, 

with or without BM-MSCs coculture, treated with hemin 

for another 24 h. The absorbance at 450 nm and 490 nm 

was read with the microplate reader (BioTek, USA).  

 

Total RNA extraction and quantitative real-time 

PCR (RT-PCR) analysis of cytokines 
 

Total RNA was extracted from primary astrocytes with 

Trizol reagent (Invitrogen, USA). Taq DNA polymerase 

and reverse transcriptase (Yeasen BiotechCo., Ltd., 

China) were used to reverse transcribed and amplified 

the total RNA. The expression level of all transcripts 

was normalized to mRNA of glyceraldehyde 3-
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phosphate dehydrogenase (GAPDH). The mRNA 

relative expressions were ultimately normalized to 

control groups. The primers used to amplify target 

genes were presented as follows (sense/antisense, 5’-

3’): IL-6: TGGGACTGATGCTGGTGACA/ ACAGGT 

CTGTTGGGAGTGGT; IL-10: CTGCTATGCTGCCT 

GCTCTTACTG/ ATGTGGCTCTGGCCGACTGG; 

TNFα: TGATCGGTCCCAACAAGGA/ TGCTTGGTG 

GTTTGCTACGA; TEAD2: AGGTGGCGGTGGCTT 

CTATGG/ GTAGGCAGTACACAGCAGCAGTTC; 

GAPDH: GATGGTGAAGGTCGGTGTGA/ TGAAC 

TTGCCGTGGGTAGAG. 

 

Cell proliferation assessment  
 

Astrocytes were seeded onto coverslips with or without 

BM-MSCs coculture and treated with 30μM hemin for 

24 h. In additional experiments, additional si-YAP and 

si-NC was administered with BM-MSCs and 30 μM 

hemin for 24 h. Cells were fixed by 4% PFA for 10 min 

and then subjected to Ki67 (1:500, Abcam) 

immunofluorescence staining. Fluorescence images 

were captured by a confocal laser-scanning microscope 

(Leica, Solms, Germany). Five random fields from each 

sample were selected to calculate the average 

percentage of Ki67 positive cells. 

 

Immunofluorescent staining 

 

Brain cryosections and astrocytes coverslips were 

immunostained with following primary antibodies: 

rabbit anti-YAP polyclonal antibody (1:100, Santa Cruz 

Biotechnology, USA), rabbit anti-Ki67 polyclonal 

antibody (1:500, Abcam), rabbit anti-GFAP polyclonal 

antibody (1:1000, Servicebio, China), mouse anti-VIM 

monoclonal antibody (1:500, Servicebio), mouse anti-

GFAP monoclonal antibody (1:500, Servicebio). 

Secondary antibodies used included Alexa Fluor 488 

goat anti-mouse IgG, Alexa Fluor 488 goat anti-rabbit 

IgG, Alexa Fluor 555 donkey anti-rabbit IgG, Alexa 

Fluor 555 donkey anti-mouse IgG and, and Alexa Flour 

647 goat anti-mouse IgG (1:500, Beyotime). Nuclei 

were stained with DAPI (1:3000, Beyotime). The 

fluorescence images were observed and analyzed by 

confocal laser-scanning microscope (Leica). 

 

Western blot analysis 
 

Brain tissues and astrocytes were treated according to 

experiment design. The following primary antibodies 

were applied in western blot: rabbit anti-YAP 

polyclonal antibody (1:500, Santa Cruz Biotechnology), 

rabbit anti-Phospho-YAP polyclonal antibody (1:500, 

Santa Cruz Biotechnology), rabbit anti-MST1 

polyclonal antibody (1:1000, CST), rabbit anti-

Phospho-MST1 polyclonal antibody (1:1000, CST), 

rabbit anti-GFAP polyclonal antibody (1:1000, 

Servicebio), mouse anti-VIM monoclonal antibody 

(1:1000, Servicebio), rabbit anti-ALDH1L1 polyclonal 

antibody (1:1000, Servicebio), rabbit anti-EAAT1 

polyclonal antibody (1:1000, CST), rabbit anti-histone-

H3 monoclonal antibody (1:1000, Servicebio), and 

mouse anti-GAPDH monoclonal antibody (1:2000, 

Servicebio). Enhanced chemiluminescence solution 

(Thermo Fisher Scientific) and Tanon Image (Shanghai, 

China) were applied to detect the chemiluminescence 

signal. The relative intensity of the bands was measured 

by ImageJ software. 

 

Statistical analysis 
 

Data were presented as mean ± standard deviation (SD) 

of at least 3 independent experiments (n). GraphPad 

Prism 6.0 software (GraphPad, USA) was used for 

statistical charts and analysis. Statistical comparison 

was compared by one-way analysis of variance 

(ANOVA) tests or Student's t-test. A p-value less than 

0.05 was considered statistical significance. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. BM-MSCs’ identification. (A, B) Morphology of MSCs in cell culture. Cultured cells (passage 0 and passage 3) 
showed typically spindle-shaped morphology under phase-contrast microscopy. Bar = 50μm. (C) Flow cytometry analysis of BM-MSCs at 
passage 3 depicted that cultured cells were negative for CD34 and CD45, and positive for CD29 and CD90 (n = 4). (D) Schematic diagram of 
BM-MSCs (green) stereotactically injected into the lesion area (red). (E) Red fluorescent (PKH26 dye) cells were located in the lesion area 
after 3 days of injection. Bar = 50μm. 
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Supplementary Figure 2. Diagram outlining the potential mechanism of BM-MSCs enhancing astrocytes proliferation via 
MAT1/YAP/Hippo signal pathway. (A) The experimental schematic diagram in vivo. (B) ICH model in vivo and BM-MSCs transplantation. 
(C) ICH model in vitro. Primary cultured astrocytes were cocultured with or without BM-MSCs via a transwell system. (D) Mechanism of BM 
MSCs inhibiting phosphorylation of MST1 and promoting YAP nuclear translocation. 


