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Aims: To study if machine learning methodology can be used to detect persons with increased type 2 diabetes or
prediabetes risk among people without known abnormal glucose regulation.

Methods: Machine learning and interpretable machine learning models were applied on research data from
Stockholm Diabetes Preventive Program, including more than 8000 people initially with normal glucose tolerance
or prediabetes to determine high and low risk features for further impairment in glucose tolerance at follow-up 10
and 20 years later.

Results: The features with the highest importance on the outcome were body mass index, waist-hip ratio, age,
systolic and diastolic blood pressure, and diabetes heredity. High values of these features as well as diabetes
heredity conferred increased risk of type 2 diabetes. . The machine learning model was used to generate indi-
vidual, comprehensible risk profiles, where the diabetes risk was obtained for each person in the data set. Features
with the largest increasing or decreasing effects on the risk were determined.

Conclusions: The primary application of this machine learning model is to predict individual type 2 diabetes risk in
people without diagnosed diabetes, and to which features the risk relates. However, since most features affecting
diabetes risk also play a role for metabolic control in diabetes, e.g. body mass index, diet composition, tobacco
use, and stress, the tool can possibly also be used in diabetes care to develop more individualized, easily accessible
health care plans to be utilized when encountering the patients.

1. Introduction personalized interactive healthcare plan with individually tailored ac-

tivities, where the patient's measurements and activities are reported.

1.1. Personalized healthcare

The health care sector needs better opportunities for individualized
support for both the patient and the healthcare staff. Program 4D
developed during 2012-2017 as a project focusing on type 2 diabetes
(T2D) as a collaboration between Karolinska Institutet and Stockholm
County Council that is in charge of most health care within the county. It
included a process of screening for T2D, a standardized care process to
support the healthcare staff, and a specific digital support for patients and
healthcare professionals were developed. The functions specified in this
project are now standard routine in e-health solutions and are imple-
mented in commercially available solutions. In this and similar e-health
solutions, healthcare professionals and the patient jointly set up a
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The overarching aim of this project was to analyze factors influencing
individuals to develop T2D and, if possible, to create supporting tools for
health care personnel to aid the development of individual health care
plans.

1.2. Type 2 diabetes

Diabetes mellitus is a chronic disease characterized by elevated blood
glucose levels. Elevated blood glucose can contribute to metabolic
problems and subsequent tissue damage in the body. T2D is in most
people caused by a decreased insulin sensitivity on a background of an
impaired insulin secretion, which in turn contributes to increased blood
glucose levels [1].
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In Sweden, about 400 000 people live with diagnosed diabetes [2],
and with consequential complications resulting in a negatively affected
quality of life. Most patients have T2D and it is estimated that at least an
additional 200 000 adult persons have not yet diagnosed T2D and an
equal number of adults have prediabetes [2]. Prediabetes is a condition,
including both impaired glucose tolerance and impaired fasting glucose,
with a high risk of developing T2D.

Diabetes care in Sweden needs a stronger collaboration between pa-
tients and different parts of the care and more resource-efficient prag-
matic clinical research on new treatment alternatives. By combining the
development of innovative, agile, and digital tools with internal and
cross-professional networks we want to stimulate conversations, and
facilitate recruitment of investigators and patients to clinical trials of
diabetes. In addition, this may enable resource-efficient, pragmatic
studies and follow up on care, prevention and research on diabetes. Thus,
diabetes care can be made more individual, value and evidence based.
Diabetes is a pilot area for developing both digital solutions and working
methods for networks and collaboration between them. The digital tools
and working methods can then be used in any other chronic disease
therapy area.

2. Data source

2.1. The clinical sub-sample of the Stockholm Diabetes Preventive
Program, SDPP

The people included in the baseline study were selected by a two step
procedure [3, 4]. First, all men and women in the age range 35-54 years,
living in five municipalities of the greater Stockholm area, Region
Stockholm, were selected with mail addresses and telephone numbers by
the national population register. About 11,000 persons, received a letter
asking if they were willing to participate in the study with the primary
aim to find factors that can increase or decrease the risk of developing
type 2 diabetes. According to the approval by the Karolinska Hospital
Ethics Committee, all selected men and women received a letter asking if
they were willing to participate in the study with the primary aim to find
factors that can increase or decrease the risk of developing type 2 dia-
betes. Those who wanted to take part in the study responded by signing a
letter, and thereby also giving their written consent to participate. About
ten thousand persons then received a first simple questionnaire focusing
on family history of diabetes (FHD). The first question was if the
respondent self has got diabetes. If so, this person was not included in
further studies. Questions were also which biological relatives had a
known diabetes, preferably diagnosed as T2D (or diagnosed at an age
above 40 years). FHD was defined as having at least two 1! degree rel-
atives (parents or siblings) with diabetes, or at least three more distal
relatives with diabetes. As many as 24% of all persons had FHD. These
and persons without known FHD, about 8000 persons, were then asked to
attend the clinical baseline study at a study center in their own munici-
pality. Eventually, a group of about 4000 men and 4000 women with
FHD and an equally sized group without FHD were involved in the
further investigations. All those studies consisted of a detailed ques-
tionnaire about lifestyle, socioeconomic and psychosocial matters, along
with measurements of plasma glucose and insulin in an oral glucose
tolerance test (OGTT), glycosylated haemoglobin (HbAlc), blood pres-
sure, weight, height and hip circumference. In the baseline study, T2D
was diagnosed in 51 women and 66 men, and prediabetes in 219 women
and 259 men (Table 1).

A 1% follow-up study was carried out 8-10 years later, and a ond
follow-up about 20 years later, with at least 70% participation (Table 1).
At the 1% follow-up, we found 102 women and 171 men with T2D, and
399 women and 522 men with prediabetes, and at the 2™ follow-up 230
women and 326 men with T2D and 615 women and 522 men with
prediabetes. Those with diagnosed T2D at the baseline and the 1°* follow-
up were not called to follow-up later, but received a letter asking them to
fill in the questionnaire and also inform if any new relatives had been
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Table 1. Participants of the epidemiological study.

Women Men Total
Baseline (1992-1998)
All investigated 4821 3128 7949
NGT 4551 2803 7354
IFG 124 143 267
IGT 70 76 146
IFG + IGT 25 40 65
Prediabetes (all) 219 259 478
T2D (new) 51 66 117
Follow-up #1 (2002-2006)
All investigated 3318 2360 5678
NGT 2817 1660 4477
IFG 237 331 568
IGT 94 100 194
IFG + IGT 68 98 166
Prediabetes (all) 399 529 928
T2D (new) 54 87 141
T2D (incident) 48 84 132
T2D (all) 102 171 273
Follow-up #2 (2014-2017)
All investigated 2019 1323 3342
NGT 1308 712 2020
IFG 394 336 730
IGT 83 76 159
IFG + IGT 138 110 248
Prediabetes (all) 615 522 1137
T2D (new) 96 89 185
T2D (earlier) 153 237 285
T2D (all) 230 326 556

The table summarizes the number (n) of individuals participating in the three
investigations with a mean of 8-12 years apart and how they were diagnosed
according to glucose tolerance.

NGT, normal glucose tolerance, IFG, impaired fasting glucose, IGT, impaired
glucose tolerance, Prediabetes, sum of those with IFG, IGT and IFG + IGT, T2D
new, diagnosed at the investigation and T2D incident, reported and ascertained
diagnosed during interval between two investigations, e.g. the baseline and the
Follow-up #1.

diagnosed with diabetes. Thereby, questionnaire responses were vali-
dated by comparing how the same questions were answered at three
times. With time, i.e. from basline from the 2™ follow-up, the percentage
of persons with FHD increased from 50 to 57%, most likely due to ageing
of relatives and increasing opportunities for everyone of diagnosis of
diabetes in the primary care.

2.2. Data transformation

SDPP data from the baseline and the 10-year follow-up was used to
predict a diabetes diagnosis in the investigations following 10 years later
[3, 4]. The target variable to be predicted in the ML algorithm - consisting
of WHO 1999 classification of diabetes [5] - was set to 1 if the person
developed prediabetes or T2D during the follow-up and set to
0 otherwise.

The SDPP data containing the result from measurements and ques-
tionnaire answers were restricted to socioeconomic and psychosocial
stress factors, physical and blood measurements along with self-
estimated physical activity, dietary information and tobacco use. Fac-
tors or features, i.e. input variables to the ML algorithm, with a high
amount of missing values were excluded from the dataset. The dietary
features were set to categories with values in an increasing order from 1
to 8 depending on consumption frequency. Features with few missing
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Table 2. Factors included in analysis.

Factors increasing diabetes risk

Heredity i.e. family history of diabetes

High age

High waist-hip ratio

High BMI

Systolic blood pressure increased
Diastolic blood pressure increased
Low physical activity

Male gender

Factors decreasing diabetes risk

Exercise
Higher socioeconomic strata

Lower age

Factors not influencing diabetes risk in this study

Tobacco use, cigarettes
Snus, oral moist tobacco
Chest pain, angina
General health
Psychologic distress:
Depression
Nervousness

Fatigue

Lethargy

Insomnia

Coffee

values were not excluded, instead the missing values were replaced with
the features median. The features included are listed in Table 2.

Since the machine learning algorithm only takes numerical values,
features as gender was set to 0 for men and 1 for women. The feature for
heredity (FHD) was set to 0 and 1 for persons without and with T2D in
the family, respectively.

The dataset was split in training, test, and validation sets. The vali-
dation set was used to optimize the model hyperparameters using grid
search and cross validation. The training and the test sets were used to
train and evaluate the final model.

3. Method

In this section, the method and model evaluation are described. A
Random Forest classifier [6] was trained to predict whether an individual
develops prediabetes or T2D after 10 years of the measurement using
binary classification. An interpretable machine learning model, SHAP
TreeExplainer, was used to interpret the predictions of the Random
Forest classifier. An ensemble of ML models was used to increase the
robustness of the predictions and interpretations. A new measure is
introduced for assessing the hyperparameter optimization of the model
according to the robustness and accuracy of the model.

3.1. Model selection

The choice of ML classifier was made regarding the choice of possible
interpretable ML models. There are interpretation models that can
interpret any model, such as SHAP-KernelExplainer [7, 8] and LIME [9].
These types of models generally make the requirement to provide
reference data. This is also the case with the method Integrated Gradients
- which can only be used on neural networks [10]. Since it is desirable to
minimize our impact on the model outcome, we want to avoid providing
the interpretation model with reference data. We therefore avoid using
this type of interpretation models.

Methods that do not require reference data are SHAP-TreeExplainer,
expected gradients [7, 11, 12] and linear regression. Linear regression
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was excluded for several reasons; the model is sensitive to correlation
between features and not complex enough to represent non-linear data.
Expected gradients are applied to neural networks and TreeExplainer to
tree models. Since the amount of data in SDPP is limited to about 8000
people, and with limited computing power, neural networks were
excluded. That leaves us with SHAP-TreeExplainer, which can be applied
to tree-based models.

In SHAP-TreeExplainer, SHAP values are calculated on leaf-level in
the tree models. Estimating SHAP values, as proposed by Lundberg and
Lee, is a unified measure of feature importance across various methods
(11). It is however difficult to compare SHAP values between different
tree models on leaf-level that do not use the same calculation methods.
For instance, the SHAP values differ between models that use logarithmic
odds instead of values between 0 and 1. This is the case for the gradient
boosted decision trees; XGBoost [13], LightGBM [14], and CatBoost [15],
that calculate SHAP using logarithmic values. These are difficult to
transform into a 0-1 scale, due to that the relationship between the at-
tributes is difficult to maintain without changing the source code in the
SHAP library. This limits us to tree models that do not use logarithmic
odds, such as Random Forest [6].

3.2. Model optimization

To optimize the hyperparameters of the ML model, grid search and
cross validation were used [16]. The cross validation was done with 5
splits of the data in the grid search. The optimal hyperparameters were
evaluated using “Area Under the Receiver Operating Characteristic
Curve”, AUC [17], combined with a measure of robustness of the
SHAP-values. To equally weight their influence, a measure, S, was pro-
posed in the equation below.

To calculate the robustness, a measure X{jkl is firstly defined in the
equation below, where lejkl is a tensor of SHAP values per person i,
feature j, cross validation split k, and parameter set L

The tensor Xy is standardized to zero-mean unit-variance according
to following equation

X Xiga — 1 (Xija)
ST
6 (Xiju)

where p is the mean and o is the standard deviation.
The standardized tensor, leﬂd, is used to calculate the robustness, ©,

for each tested parameter set [ defined according to the following
equation

1 = (0 (X))

where O is a vector with one value per parameter set L.
The combined measure, S, of robustness and AUC per parameter set is
defined according to the equation

SI=AUC-(1-6))
4. Results

4.1. Optimization of model parameters

To find the optimal hyperparameters for the Random Forest classifier,
a grid search was performed with different values of the hyper-
parameters; n_estimators, min_samples_leaf, max_depth and number -
of models. The models with the different hyperparameters are visualized
in Figure 1A with regards to the score, S, and AUC on validation data,
defined as the mean of the AUC scores from the cross validation. Each dot
in the scatterplot represents a model with the different hyperparameters
tested in the grid search. The best performing model according to S is
marked with a cross in the figure. The color scheme in the figure show the
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Figure 1. (A). The figure shows the score, S, vs. AUC" (Area Under the Curve on Validation Set). (B) The feature importance shown as a split violin plot with the

SHAPt values for feature values above (red) and below (blue) the mean values.

different values of max depth ranging from 2 to 6. The grid search and
cross validation resulted in the most optimal model parameters as follows
below

n_estimators: 120; min_samples_leaf 125; max_depth 4; number -
of_models 30

4.2. SHAP summary plot

The feature importance with the 6 features that have the largest effect
on the model output is shown in a SHAP summary plot in Figure 1B. The
split violin plot illustrates the difference in SHAP values for feature
values larger (red) and smaller (blue) than the mean for the feature. In
general, feature values above the mean for the 6 features have larger
SHAP values and thus indicate an increased probability for developing
diabetes.

4.3. SHAP dependence plot

A SHAP dependence plot illustrates the SHAP values for different
values of a feature and in addition the difference in SHAP values split on
large and small values of another feature for each feature value. Figure 2
shows the feature dependence for different values of BMI with and
without heredity as a split violin plot for each feature value. The figure
indicates that individuals with a BMI >26 have a higher risk of devel-
oping prediabetes or T2D. In addition, the figure indicates that a com-
bination of high BMI and heredity results in a markedly increased risk as
compared to high BMI alone.
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4.4. Individual risk profiles

The SHAP force plot was used to illustrate risk profiles for individuals.
The output value indicates a person's risk to develop prediabetes or dia-
betes in 10 years. The base value shows the mean risk for the dataset. The
force plot shows the features that has the largest impact on the patients
predicted risk. Figure 3 shows the values for a person predicted to
develop T2D. The red part of the graph illustrates the features that in-
crease the risk and the blue part shows the features that decrease the risk
of developing T2D.

To show features not visible in the SHAP force plot a circular bar plot
was created to visualize the features, their size, and their SHAP values. The
height of the bars illustrates the relative size of the feature value for each
person from low to high. The color of the bars shows the SHAP values from
dark red that includes the highest risk features to dark blue with the lowest
risk features. The grey bars show features with minimal effect on the
model outcome. Figure 4 shows the circular bar plot for the person dis-
played in Figure 3. The features, or factors, with putative impact on T2D
risk included in the machine learning analysis are listed in Table 2.

5. Discussion
5.1. Personalized healthcare
The presented results of applying the interpretable ML models can be

useful to healthcare providers for planning, operating and following up
the care unit strategies and improvement programs by

MGARIE

4
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 50 53 57

BMI

Figure 2. The difference in SHAP values for different BMI (body mass index, expressed as kg/m?) in relation to diabetes heredity. Feature values larger or smaller than

the mean of the feature are depicted in red or blue color, respectively.
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Figure 3. A SHAP force plot for a person in the data set with a higher risk than average to develop type II diabetes. Features depicted in red color represent higher risk,

while features in blue color lower risk of diabetes.

1. Analyzing the patient population, or its subgroups, with respect to
risk factors for developing T2D;

2. Developing treatment programs for the patient population, address-
ing current risk factors;

3. Following up on how well the care program work by re-training the
ML model and extracting the figures on a regular basis;

4. Operating improvement work in applied health care programs and
competence development within the care unit that addresses
patients'current needs.

Since most of the factors affecting diabetes risk also impact the
metabolic control in diabetes, the individual risk profiles can be used in
the dialogue with the individual patient to develop individual care
plans, and follow up and improve them based on the individual's needs
and conditions. We believe that this would increase the patients'
motivation to be engaged in their own care to reach the health care
goals. As the analyzed research data are largely similar to those in real
medical records in Sweden, it is likely that the data extracted from
medical records would generate similar results. However, the time
perspective on the risk of developing type 2 diabetes could be set to a
shorter time that 10 years.

5.2. Model optimization

By optimizing the model towards the combined measure, S, instead of
optimizing towards AUC we sacrifice some of the accuracy of the model.
If the explanations of a ML model with high accuracy are not robust, the
model generates inaccurate predictions. It is thus only ML models with
robust interpretations that are reliable for our applications.
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Figure 4. The circular bar plot shows the feature values for a person in the data
set with higher than average diabetes risk. The features are colorized according
to SHAP values, i.e. red indicates increased, blue decreased and grey non-
significant effect on the risk.

The ML model should find the same explanatory pattern time after
time when training. Patterns that the model repeatedly finds are more
accurate than those found only a few times. Our definition of robustness
is a measure of how often the interpretation model finds the same pat-
terns by measuring the standard deviation of the explanations with
repeated training of the same model with somewhat different data. The
risk of wrong patterns repeating themselves is lower with a larger amount
of data.

Studies have been done in the past to predict the risk of developing
T2D using different machine learning (ML) methods. Simple classifica-
tion models (Naive Bayes, Logistic Regression) [18, 19] have been uti-
lized on a US dataset found on UCI's ML portal [20]. That data set
contained data from 768 women older than 21 years, including the
number of pregnancies of each women. Another study from China was
performed on a larger amount of data using neural networks but without
the use of an interpretation model [21]. In the study by Hathaway et al.,
the interpretable ML model SHAP was implemented to explain models
predicting diabetes [22]. The major difference is that in our study we
have a data set containing more than 8000 persons, while in the latter
investigation data from 50 patients were studied.

The rather wellknown Findrisk questionnaire was constructed to
evaluate risk of T2D and prediabetes in Finland [23]. Similar to our in-
strument, Findrisk evaluates the 10-year risk of illness and is also based
on information on most of the features, but not all that we are using.
Thus, Findrisk includes the following features: age, BMI, waist circum-
ference, exercise, intake of vegetables and fruit, ever had drugs for hy-
pertension treatment, ever told by physician that blood glucose was too
high, family history of diabetes. Our study includes all these features, and
in addition we register actual values of systolic and diastolic blood
pressure and tobacco use that are well known as diabetes risk factors. We
also looked at features indicating psychological distress, i.e. insomnia,
depression, nervousness and fatigue, all factors that have been linked to
diabetes risk in several epidemiological studies [4]. However, as shown
in Figure 4, these self-reported stress factors were not of great importance
in relation to the more wellknown risk factors.

6. Conclusions

The results from the machine learning and the interpretable model on
SDPP data generated the features with the largest effects on predicting a
prediabetes or T2D diagnosis 10 years after the data collection. The
features with the largest effect on the outcome were BMI, waist-hip ratio,
age, systolic and diastolic blood pressure, and heredity (i.e. family history
of T2D). High values of the features resulted in an increased risk for
developing T2D. A considerable risk for a combination of two features
was shown for high BMI and heredity as compared to high BMI only.

Individual risk profiles were produced to show the risk of developing
T2D for each person and visualize comprehensibly the features and
values with the largest influence. For each person we could show the
features and values that increase and decrease the risk compared to the
mean risk in the dataset. The size of the risk of each feature can be seen in
the individual risk profile. In addition, a circular bar plot was created to
show the features, values, and their influence on the risk for a larger
number of features.
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Since most features affecting diabetes risk also play a role for meta-
bolic control in diabetes, e.g. factors like BMI, diet, tobacco use, psy-
chosocial factors, stress, we propose that the tool can also be used in
diabetes care to develop and follow-up more individualized health care
plans. Hence, we have initiated a clinical investigation with T2D patients
in the primary health care, using the machine learning algorithm on data
available in the medical records, to see if the results can be of value in
attempts to improving diabetes care, especially when focusing on life-
style issues.
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