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An ultrasensitive DNA electrochemical biosensor based on the carbon paste electrode

(CPE) amplified with ZIF-8 and 1-butyl-3-methylimidazolium methanesulfonate (BMIMS)

was fabricated in this research. The DNA/BMIMS/ZIF-8/CPE was used for the selective

determination of a mitoxantrone anticancer drug in aqueous solution, resulting in a good

catalytic effect and a powerful ability for determining mitoxantrone. Also, the interaction of

the mitoxantrone anticancer drug with guanine bases of ds-DNA was used as a powerful

strategy in the suggested biosensor, which was confirmed with docking investigation.

Docking study of mitoxantrone into the ds-DNA sequence showed the intercalative

binding mode of mitoxantrone into the nitrogenous-based pairs of ds-DNA. The effective

factors such as ds-DNA concentration, temperature, buffer types, and incubation time

were also optimized for the fabricated mitoxantrone biosensor. The results showed

that, under optimum conditions (T = 25◦C; incubation time=12min; pH= 4.8 acetate

buffer solution and [DNA] = 50 mg/L), the DNA/BMIMS/ZIF-8/CPE could be used in

mitoxantrone assay in a concentration ranging from 8.0 nM to 110µM with a detection

limit of 3.0 nM. In addition, recovery data between 99.18 and 102.08% were obtained for

the determination of mitoxantrone in the injection samples using DNA/ZIF-8/BMIMF/CPE

as powerful biosensors.

Keywords: mitoxantrone, ZIF-8, 1-butyl-3-methylimidazolium methanesulfonate, modified electrode, ds-DNA

biosensor, drug analysis

INTRODUCTION

Mitoxantrone (developed in the 1980’s) is one of the famous anthracycline anti-cancer agents with
a wide range of applications in the treatment of breast cancer, acute myelogenous leukemia, and
Non-Hodgkin’s lymphoma (Lenk et al., 1987; Vollmer et al., 2010). This drug stays in the body
for a long time (elimination t1/2 = 75 h) and has various side effects such as low blood counts,
nausea, vomiting, weakness, low blood pressure, and hair loss (Scott and Figgitt, 2004). Moreover,
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the highest concentrations of mitoxantrone were detected in the
heart, liver, and thyroid (Fox, 2004). Assay of anticancer drugs
in biological samples such as blood is one of the most important
strategies available to monitor the harmful effects of such drugs
on the body (Bolanowska et al., 1983; Baghayeri et al., 2014, 2017,
2018a; Beitollahi et al., 2014; Veisi et al., 2015; Fouladgar, 2018).
From the methods reported for measuring the pharmaceutical
and biological compounds, electrochemical methods with more
advantages such as simplicity of analysis method, low cost, and
fast analysis are considered to be more important compared to
the other methods (Yuan et al., 2013, 2017; Mozaffari et al.,
2014; Eren et al., 2015; Movaghgharnezhad and Mirabi, 2019).
Intercalative binding between DNA and mitoxantrone has been
proven by the Li group (Li et al., 2005). Accordingly, this makes
it possible to design the DNA-based electrochemical biosensors
for selective analysis of the drug (Tiwari and Sharma, 2020).

Moreover, the DNA-based biosensors have been reported
as powerful tools with a high selectivity for the analytical
determination of many compounds, especially for anticancer
drugs (Brett et al., 1998; Gooding, 2002; Ozsoz et al., 2003;
Ensafi et al., 2011). In this regard, the specific interaction
of anticancer drugs with adenine and guanine bases in the
complex structure of DNA has been used as an appropriate
analytical factor to design new biosensors in the analysis of
anticancer drugs (Karimi-Maleh et al., 2018; Khodadadi et al.,
2019; Yin et al., 2019). In addition, the sensitivity of the DNA-
based biosensors is very low at surface of bare electrodes due
to the presence of low-conductivity ds-DNA on the sensor
surface (Li et al., 2017, 2020). Correspondingly, this point was
introduced as one of the most important problems caused by
the conventional DNA-based biosensors (Karimi-Maleh et al.,
2020c). To overcome this problem, the DNA-based biosensors
are typically amplified using the high-conductivity modifiers
such as conductor polymers, organic and inorganic compounds,
ionic liquids, and nanomaterials (Cheraghi et al., 2017; Sanati
and Faridbod, 2017; Baghayeri et al., 2019; Faridbod and Sanati,
2019).

Nanomaterials such as nanoparticles, nanotubes, and nano
porous compounds showed many advantages in different fields
and also created a new approach to science (Rahmanian et al.,
2015; Xu et al., 2018; Yuan et al., 2019, 2020; Karimi-Maleh
et al., 2020a). Accordingly, Nano porous materials like zeolitic
imidazolate frameworks (ZIF) are a new type of nanomaterials
with a high surface area and metal ion in center and imidazolate
linkers (Quang Khieu et al., 2018). Recently, many researchers
focused on the usage of ZIF and especially ZIF-8 for the
electrochemical applications (Wang et al., 2015). ZIF-8 is very
stable in water and other aqueous solutions and could be used
as mediator for the fabrication of electrochemical sensors for
analysis of electroactive compound in water solution (Banerjee
et al., 2008). Although the high surface area of ZIF compounds
makes creating a more active surface area for electrochemical
sensors possible, its low electrical conductivity is one of the
most important problems of its high use in electrochemical
sensors (Lu et al., 2020). Therefore, to eliminate this problem, the
simultaneous usage of these materials with compounds that have
a high electrical conductivity such as conductive polymers and

ionic liquids, is recommended (Baghayeri et al., 2018b; Jin et al.,
2018; Chen et al., 2019).

Ionic liquids are highly conductive and are a green type of
organic compound with a wide range application in different
scientific fields (Marr and Marr, 2016; Osada et al., 2016; Atta
et al., 2019; Tahernejad-Javazmi et al., 2019; Arabali et al., 2020).
Moreover, due to the high conductivity and wide electrochemical
range windows, ionic liquids were used as amplifiers with a
high quality in the fabrication of electrochemical sensors (Bijad
et al., 2013; Beytur et al., 2018; Li et al., 2019; Hojjati-Najafabadi
et al., 2020). There are many published scientific papers for the
application of ionic liquid coupled with other nanomaterials to
create a high quality electrochemical sensor in the environmental
and biological compounds analyses (Karimi-Maleh et al., 2020b).

Based on the scientific information reported in previous
studies, this study developed a high-sensitivity electrochemical
biosensor in terms of the use of DNA as a recognition element
for analyzing the mitoxantrone anti-cancer drug. To improve the
sensitivity of the DNA-based biosensor, the electrode surface was
amplified with ZIF-8 and BMIMF as the conductive modifiers
with a high surface. The results showed a good selectivity for the
analysis of mitoxantrone anti-cancer drug in drugs samples. The
docking investigation confirmed the intercalation interaction
between the guanine base and mitoxantrone anti-cancer drugs.

EXPERIMENTAL

Instrument and Materials
Electrochemical investigation was performed by electrochemical
workstation model Ivium-Vertex connected to an
electrochemical Cell (Azar electrode Company, Iran). Moreover,
the I-V signals were displayed based on the Ag/AgCl/KClsat
reference electrode’s potential. Mitoxantrone hydrochloride,
ZIF-8, BMIMF, and DNA (Calf Thymus) were purchased
from Sigma-Aldrich. Also, carbon powder and paraffin oil
were obtained from Merck Company. In addition, phosphoric
acid, boric acid, acetic acid, and Tris hydrochloride were
purchased from Across Company. Notably, the stock solution
of mitoxantrone hydrochloride (0.001M) was prepared by
dissolving 0.517 g mitoxantrone hydrochloride in 100mL
distillated water under the stirring conditions.

Preparation of BMIMS/ZIF-8/CPE
The BMIMS/ZIF-8/CPE was prepared by mixing ZIF-8 with
carbon powder as the powder components in the ratio 5:95
(w/w), and paraffin oil and BMIMS as the liquid binders in the
ratio 8:2 (v/v). Accordingly, these ratios of powder and binder
components were optimized by recording voltammograms of
solution containing 1.0mM [Fe(CN)6]3−,4− at the surface of
electrodes with different ratios of the components. Also, the
stability of ZIF-8 as aqueous solution helps for a repeatable
electrochemical response in electroanalytical systems.

Preparation of DNA/BMIMS/ZIF-8/CPE
DNA/BMIMS/ZIF-8/CPE was perpetrated by the addition of
10 µL of ds-DNA solution (50 mg/L) prepared into acetate
buffer (0.5M, pH 4.8) using a dropwise strategy. Notably, this
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value was optimized by recording ds-DNA at the surface of
DNA/BMIMS/ZIF-8/CPE in the concentration ranged between
10 and 60 mg/L.

Intercalation Investigation
To study the intercalation of mitoxantrone hydrochloride with
ds-DNA at the surface of DNA/BMIMS/ZIF-8/CPE, the electrode
was immersed into a solution containing Tris-HCL buffer
solution (pH = 7.4) with mitoxantrone hydrochloride and then
remained for 12min under the stringing condition. Afterward,
the electrode was washed with the acetate buffer solution and the
differential pulse voltammograms of electrode was then recorded
in acetate solution (0.5M, pH 4.8).

Molecular Docking Study
In this work, the molecular docking study is performed to
evaluate the affinity of mitoxantrone drug in the active site of
DNA hexamer d(CGATCG)2 containing an intercalation gap
(PDB ID:1Z3F). For a comprehensive investigation of the binding
orientation analysis, the best conformer with the lowest root
mean square deviation (RMSD) value of 0 Å and the highest
binding energy value is selected. The docking of mitoxantrone
into the DNA sequence suggests the intercalation of the aromatic
rings of mitoxantrone drug between cytosine and guanine base
pairs of DNAwith a binding energy of−6.7 kcal/mol as shown in
Figure 1, curve a. The docked model reveals that the hydrogen
and oxygen atoms of mitoxantrone drug have participated as
the donor and acceptor to form four intermolecular hydrogen
bonds (HBs) with base pairs of DNA (see Figure 1, curve b).
It is found that the interaction of oxygen (O5) atoms of drug
molecule with H22 atom of deoxyguanosine (DG6 of chain B)
of DNA leads to O5. . .H22-N2 conventional HB with distance of

FIGURE 1 | Cyclic voltammograms of solution 1.0mM [Fe(CN)6]
3−/4− in the

presence of KCl 1.0M at surface of (a) CPE, (b) ZIF-8/CPE, (c) BMIMS/CPE

and (d) BMIMS/ZIF-8/CPE.

2.6 Å. Also, the H36 atom of drug as the proton donor interacts
with O4′ atom of deoxyribose sugar moiety linked to guanine
(DG6 of chain B) as a proton acceptor with a distance of 2.3
Å. Furthermore, the hydrogen atom of the hydroxyl terminal
group of drug molecule is bonded to the second and forth oxygen
atoms of deoxycytosine (DC5 of chain B) of hexamer of DNA,
i.e., O2. . .H60-O6 and O4′. . .H60-O6 with the O. . .H distances
of 2.4 and 2.2 Å, respectively. The hydrogen bond angles are
109.5◦, 110.5◦, 134.5◦, and 163.6◦ for O5. . .H22-N2, O2. . .H60-
O6, O4′. . .H60-O6 and O4′. . .H36-N8, respectively. In addition,
the intermolecular interactions between carbonyl groups of
mitoxantrone drug and oxygen atoms of DNA sequence, i.e.,
O2 atom of DC5 chain B, O4′ atom of DG6 chain B and O4′

atom of DG2 chain A with the respective O. . .O bond lengths
of 3.3, 3.5 and 3.4 Å are observed. The docking study approves
the interaction between mitoxantrone drug and guanine residues
of DNA contributes in the formation of the stable mitoxantrone-
DNA complex.

Real Sample Analysis
Mitoxantrone (12.5 mg/12.5mL) was purchased from a
local pharmacy and then used as a real sample with no
pretreatment. The standard addition method was used for
analyzing the mitoxantrone concentration in the injection
sample using DNA/BMIMS/ZIF-8/CPE.

FIGURE 2 | Differential pulse voltammograms of DNA/BMIMS/ZIF-8/CPE in

the absence (a) and in the presence of 35.0 µM (b) and 80.0 µM (c)

mitoxantrone, respectively.
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RESULTS AND DISCUSSION

Modification Process Investigation
The modification of the CPE surface with BMIMS and ZIF-8
was investigated by recording the cyclic voltammograms of the
solution containing 1.0mM [Fe(CN)6]3−,4−. By moving CPE
(Figure 1, curve a) to ZIF-8/CPE (Figure 1, curve b), a little
improvement was obtained in the oxidation signal of [Fe(CN)
6]3−,4− redox solution, which can be related to the creation of
a high surface area of ZIF-8 at surface of CPE. After the addition
of BMIMS and at a surface of BMIMS/CPE (Figure 1, curve c),
the oxidation current of CPE was increase from 14.65 to 24.4 µA
that is relative to high conductivity of IL.

After modification of CPE with ZIF-8 and BMIMS, a sharp
redox signal with an oxidation current 34.8 µA was observed
relative to [Fe(CN)6]3−/4− that can be associated with the
synergic effects of BMIMS and ZIF-8 at surface of CPE. This
amplification can be created under a high sensitivity condition
to determine mitoxantrone at surface of DNA/BMIMS/ZIF-
8/CPE. In addition, active surface area of CPE, ZIF-8/CPE,
BMIMS/CPE and BMIMS/ZIF-8/CPE were calculated about
0.121, 0.163, 0.184, and 0.22 cm2 by solution containing 1.0mM
[Fe(CN)6]3−/4− and results confirmed that mediators could be
increased active surface area of CPE.

Intercalation Investigation of Mitoxantrone at Surface

of DNA/BMIMS/ZIF-8/CPE
Figure 2 displays the ds-DNA signal of DNA/BMIMS/ZIF-8/CPE
in the absence (curve a) and in the presence of 35.0 and 80.0µM
mitoxantrone (curves b & c), respectively. According to the data
reported, the oxidation signal of ds-DNA decreased from 6.2
to 3.87 µA and 2.02 µA in the presence of 35.0 and 80.0µM
mitoxantrone, respectively. Furthermore, the peak potential
related to the guanine base shifted from 816 to 825mV and
845mV along with the increase of mitoxantrone concentration

FIGURE 3 | Plot of the oxidation current of ds-DNA compared to its

concentration at surface of BMIMS/ZIF-8/CPE (n = 4). Inset) Relative

differential pulse voltammograms of ds-DNA at surface of BMIMS/ZIF-8/CPE.

confirming the intercalation interaction between mitoxantrone
and guanine base in ds-DNA structure.

As can be seen, along with increasing of the mitoxantrone
concentration, the oxidation current of ds-DNA decreased.
Accordingly, this point can be selected as an analytical factor for
the determination of mitoxantrone concentration in the solution.

Optimization of ds-DNA Biosensor for Mitoxantrone

Detection
In order to create the best analytical conditions, it is important
to optimize the significant factors in the analytical behavior
of the biosensor. Therefore, the initial concentration of
dsDNA, temperature, buffer types, and incubation time should
be optimized.

Figure 3 displays the oxidation current of ds-DNA
compared to the initial concentration of ds-DNA during
the modification process.

As can be seen, along with the increase of the
initial concentration of ds-DNA, the oxidation signal of
DNA/BMIMS/ZIF-8/CPE increased to a concentration of

FIGURE 4 | (A) Plot of oxidation current of ds-DNA compared to changing in

temperature (n = 4). Inset) Differential pulse voltammograms of

ds-DNA/BMIMS/ZIF-8/CPE recorded at (a) 15◦C, (b) 25◦C, and (c) 35◦C. (B)

Diagram of oxidation current of ds-DNA compared to the type of buffer

recorded under the optimum conditions.
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FIGURE 5 | Effect of the incubation time of 80.0µM mitoxantrone with DNA/BMIMS/ZIF-8/CPE on the guanine oxidation signal (n = 4). Inset Relative DPVs in

incubation time investigation.

50 mg/L, which then remained constant. Correspondingly,
this point confirms that, in the solution containing 50 mg/L,
the electrode surface of BMIMS/ZIF-8/CPE was saturated by
ds-DNA, and also the maximum signal can be observed.

Temperature is known as one of the important factors in the
fabrication of a DNA biosensor. In this regard, the changes in the
ambient temperature of the test can affect the stability of the DNA
at the electrode surface. Therefore, in this research, this factor
was optimized. As can be seen in Figure 4A, by increasing the
ambient temperature from 15 to 25◦C, the ds-DNA signal has
increased, and then, along with increasing the temperature up
to 35◦C, this signal has decreased. This point confirms that, in
high temperatures, the electrode surface cannot keep ds-DNA at
surface of BMIMS/ZIF-8/CPE.

Accordingly, the decreased viscosity of binders in the carbon
paste matrix could be considered as one of the main reasons
for this point. In addition, in low temperatures, the activity of
ds-DNA was low and DNA/BMIMS/ZIF-8/CPE showed a low
oxidation signal.

In addition, the type of buffer is one of the main factors
in the deposition of ds-DNA at surface of BMIMS/ZIF-8/CPE.
Therefore, the effect of acetate buffer, Britton–Robinson buffer,
and phosphate buffer solutions on the deposition step of ds-
DNA were investigated. As can be seen in Figure 4B, the best
oxidation signal relative to ds-DNA can be detected in the
solution containing acetate buffer solution and this buffer was
selected as the best condition in the next step of the experiment.
Moreover, the interference between the phosphate groups of
phosphate buffers or Britton–Robinson buffer can be considered

FIGURE 6 | Differential pulse voltammogram of four DNA/ZIF-8/BMIMF/CPE

prepared under the same condition.

as the most important factor in the creation of a weak ds-DNA
signal in these buffers.

Notably, incubation time is an important factor in the final
step of ds-DNA biosensor application in determining anticancer
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FIGURE 7 | (A) The intercalation of MTX drug (red color) into the guanine and cytosine base pairs of DNA receptor (deoxcytosine DC and deoxyguanosine DG in

yellow and blue light colors, respectively), and (B) The intermolecular hydrogen bond interactions between MTX drug and DNA hexamer d(CGATCG)2 with the

numbering atoms discussed earlier in the text.

FIGURE 8 | Plot of net current vs. mitoxantrone concentration (n = 4). Inset) DP voltammograms of DNA/BMIMS/ZIF-8/CPE in the presence of (a) 0.0; (b) 0.008; (c)

1.0; (d) 8.0; (e) 20.0; (f) 30.0; (g) 35.0; (h) 50.0; (i) 60.0; (j) 70.0; (k) 80.0; (l) 90.0; (m) 95; (n) 100, and (o) 110µM mitoxantrone.

drugs. Also, the low time of the intercalation step does not allow
the biosensor to have a proper interaction between the guanine
base and the anticancer drugs. Also, in the long term, it is possible
to release the ds-DNA-drug into solution and saturation guanine
sites in ds-DNA by anticancer drugs. In this regard, the recorded
data showed that 12min is a suitable incubation time for this
study (Figure 5).

Repeatability Sensor Construction
To investigate the repeatability of the DNA biosensor, four
different DNA/BMIMS/ZIF-8/CPE which were fabricated by
the same procedure and oxidation signal of guanine were
also recorded at the surface of fabricated electrodes (Figure 6).
The obtained results showed the relative standard deviation of

about 2.7 and 3.1% in the current and potential of guanine
signal for four electrodes that are acceptable values for a
novel DNA-biosensor.

Molecular Docking Study
In this research, the molecular docking study was performed
to evaluate the affinity of Mitoxantrone (MTX) drug in
the active site of DNA hexamer d (CGATCG) 2 containing
an intercalation gap (PDB ID: 1Z3F). For conducting a
comprehensive investigation on the binding orientation analysis,
the best conformer with the lowest root mean square deviation
(RMSD) value of 0 Å and also with the highest binding energy
value, was selected. Docking of MTX into DNA sequence
suggests the intercalation of the aromatic rings of Mitoxantrone
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FIGURE 9 | The plot of Log [1I/(1Imax - 1I)] vs. log ([mitoxantrone]/M) (n = 4).

drug between the cytosine and guanine base pairs of DNA with
a binding energy of −6.7 kcal/mol, as shown in Figure 7A. The
docked model revealed that, the hydrogen and oxygen atoms
of MTX drug are participating as the donor and acceptor, to
form four intermolecular hydrogen bonds (HBs) with base pairs
of DNA, respectively (see Figure 7B). It was found that the
interaction of oxygen (O5) atoms of the drug molecule with H22
atoms of deoxyguanosine (DG6 of chain B) of DNA leads to
O5. . .H22-N2 conventional HB with a distance of 2.6 Å. Also,
the H36 atom of the drug, as the proton donor, interacts with
O4′ atom of deoxyribose sugar moiety linked to guanine (DG6
of chain B), as a proton acceptor with a distance of 2.3 Å.
Furthermore, the hydrogen atom of the hydroxyl terminal group
of drug molecule is bonded to the second and forth oxygen atoms
of deoxycytosine (DC5 of chain B) of hexamer of DNA, i.e.,
O2. . .H60-O6 and O4′. . .H60-O6 with the O. . .H distances of 2.4
and 2.2 Å, respectively. Moreover, the hydrogen bond angles are
109.5◦, 110.5◦, 134.5◦, and 163.6◦ for O5. . .H22-N2, O2. . .H60-
O6, O4′. . .H60-O6, and O4′. . .H36-N8, respectively. In addition,
the intermolecular interactions between carbonyl groups of MTX
drug and oxygen atoms of DNA sequence, such as O2 atom of
DC5 chain B, O4′ atom of DG6 chain B, and O4′ atom of DG2
chain A with the respective O. . .O bond lengths of 3.3, 3.5, and
3.4 Å were observed. The docking study approves the interaction
between mitoxantrone drug and guanine residues of DNA that
contributes in the formation of the stable MTX-DNA complex.

Analytical Approach
Using a decreasing trend in DNA signals and its relationship
with the concentration of mitoxantrone, a linear dynamic range
from 8.0 nM to 110µM with the equation of 1Ipa = 0.052
Cmitoxantrone + 0.589 (R2 = 0.991) and a detection limit of

TABLE 1 | The results related to real sample analysis of mitoxantrone by

DNA/BMIMS/ZIF-8/CPE (n = 4).

Sample Added (µM) Expected (µM) Founded (µM) Recovery%

Injection (1) — — 1.97 ± 0.21 —

After dilution

10.00 11.97 12.22 ± 0.43 102.08

Injection (2) — — 2.05 ± 0.28 —

After dilution

20.00 22.05 21.87 ± 0.87 99.18

3.0 nM was calculated to determine mitoxantrone at surface of
DNA/BMIMS/ZIF-8/CPE (Figure 8).

Kinetic Investigation
Binding energy between guanine and mitoxantrone can be
determined by equation 1 as follows:

Log[1I/(1Imax − 1I)] = m log(Ka/M)+m log([mitoxantrone]/M) (1)

Where m is the binding number and Ka is the association
equilibrium constant. Using the slope of recording plot in
Figure 9 and equation 1, the values ofm and Ka were determined
to be 0.334 and 1.737× 103 M−1, respectively.

Real Sample Analysis and Selectivity Investigation
The selectivity of DNA/BMIMS/ZIF-8/CPE, as a new
biosensor, was investigated in the presence some usual
organic and inorganic interference with an acceptable
error of 5% in current and potential. The obtained results
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showed 1,000-fold of ions such as Na+, Li+, Br−, and
NO−

3 , 500-fold of methionine, alanine, and phenylalanine,
and also 400-fold of vitamin C and vitamin B2 had no
interference in determination of 20µM mitoxantrone using the
suggested biosensor.

In addition, the ability of DNA/BMIMS/ZIF-8/CPE was
checked as a new biosensor for determination of mitoxantrone
in the injection samples using the standard addition method.
The results are presented in Table 1 and recovery data between
99.18 and 102.08% confirmed the high performance ability of
DNA/BMIMS/ZIF-8/CPE for determination of mitoxantrone in
real samples.

CONCLUSION

In this study, a high performance DNA biosensor amplified with
ZIF-8 and 1-butyl-3-methylimidazolium methanesulfonate was
made-up as a new analytical tool to determine mitoxantrone
anticancer drug. The presence of ZIF-8 helps in high loading
of ds-DNA and also in improving the quality of the sensor in
optimum conditions (T = 25◦C; incubation time = 12min; pH
= 4.8 acetate buffer solution and [DNA]= 50 mg/L). In addition,

the BMIMS helped as a conductive binder for improving the
sensitivity of sensor for trace level analysis of mitoxantrone
anticancer drug. Moreover, the DNA/BMIMS/ZIF-8/CPE was
successfully used for nano-molar determination of mitoxantrone
(LOD = 3.0 nM). In addition, recovery data 99.18–102.08%
confirmed the high performance ability of DNA/BMIMS/ZIF-
8/CPE as a new biosensor to determine mitoxantrone in the
injection samples.
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