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Abstract: This study evaluated the effects of vitamin C on osteogenic differentiation and osteoclast
formation, and the effects of vitamin C concentration on bone microstructure in ovariectomized
(OVX) Wistar rats. Micro-computed tomography analysis revealed the recovery of bone mineral
density and bone separation in OVX rats treated with vitamin C. Histomorphometrical analysis
revealed improvements in the number of osteoblasts, osteoclasts, and osteocytes; the osteoblast and
osteoclast surface per bone surface; and bone volume in vitamin C-treated OVX rats. The vitamin
C-treated group additionally displayed an increase in the expression of osteoblast differentiation
genes, including bone morphogenetic protein-2, small mothers against decapentaplegic 1/5/8,
runt-related transcription factor 2, osteocalcin, and type I collagen. Vitamin C reduced the expression
of osteoclast differentiation genes, such as receptor activator of nuclear factor kappa-B, receptor
activator of nuclear factor kappa-B ligand, tartrate-resistant acid phosphatase, and cathepsin K.
This study is the first to show that vitamin C can inhibit osteoporosis by promoting osteoblast
formation and blocking osteoclastogenesis through the activation of wingless-type MMTV integration
site family/β-catenin/activating transcription factor 4 signaling, which is achieved through the
serine/threonine kinase and mitogen-activated protein kinase signaling pathways. Therefore,
our results suggest that vitamin C improves bone regeneration.
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1. Introduction

Osteoporosis is a common skeletal disease characterized by low bone mineral density (BMD) and
poor bone quality, which decrease bone strength and increase the risk of fractures [1]. It is the most
common multifactorial metabolic bone disorder worldwide and a major public health concern in the
elderly and in postmenopausal women [2]. Asians reportedly have the lowest BMD when compared
to individuals of African descent, Hispanics, and individuals of European descent [3,4]. According to
the Fourth Korea National Health and Nutrition Examination Survey 2008–2009, the prevalence of
osteoporosis in Korean adults over 50 years of age was 35.5% in women and 7.5% in men [4]. The more
recent 2008–2011 survey reported that the prevalence of osteoporosis in Korea had increased to 38.0%
in females aged 50 years and older [5].
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Increased osteoclast function, decreased osteoblast activity, imbalanced calcium ion (Ca2+)
metabolism, and the estrogen deficiency-mediated induction of inflammatory diseases may all be
involved in the pathology of osteoporosis [6,7]. Dietary and nutritional factors have been identified
as having a role in the incidence of osteoporosis and bone fractures. These factors include calcium,
vitamin D, phosphorus, caffeine, sodium, dietary protein, and vitamin C [8,9]. Among the nutrients
associated with bone formation, vitamin C is known to affect BMD [9]. However, the effects of vitamin
C on osteoblastogenesis and osteoclastogenesis in osteoporosis are unclear.

Vitamin C is well-documented as a potent scavenger of free radicals and reactive oxygen species
through the provision of hydrogen ions and electrons [10,11]. Additionally, vitamin C is an essential
cofactor of prolyl and lysyl hydroxylases, which are key enzymes in collagen biosynthesis [12–14].
The potentially beneficial role of vitamin C in preventing low BMD has previously been described [15].
Humans cannot synthesize vitamin C and, therefore, require it as a nutritional supplement [16].
Vitamin C supplementation is especially important in postmenopausal women. Several studies have
shown that addition of vitamin C to cultured osteoblast-like cells stimulates the initial deposition of a
collagenous extracellular matrix [17,18], followed by the induction of specific genes associated with
the osteoblast phenotype, such as alkaline phosphatase (ALP) [18,19] and osteocalcin [18,20], as well
as osteopontin, osteonectin, and RUNX2 from undifferentiated mononuclear cells [21,22]. Generally,
the ovariectomized (OVX) rat is thought to be a useful animal model for studying the effects of different
osteoporosis treatments on the skeletal system [6,7]. Additionally, in OVX mice, vitamin C can prevent
the loss of osteoblast differentiation markers (osteocalcin, RUNX2, and bone morphogenetic protein-2
[BMP-2]), attenuate bone loss, and stimulate bone formation [16]. Moreover, vitamin C-deficient mice
supplemented with vitamin C display reduced expression of RANKL [23].

Recently, the Wnt/β-catenin pathway has been reported to be involved in the differentiation of
both osteoblasts and osteoclasts [24,25]. Furthermore, activating transcription factor 4 (ATF4) promotes
osteoblast-specific osteocalcin gene expression [26,27]. ATF4 also has a direct and important role
in regulating multiple steps of osteoclast differentiation [28]. However, the role of vitamin C in the
Wnt/β-catenin/ATF4 pathway has not yet been elucidated.

In the present study, we examined the influence of various doses of vitamin C on bone
microstructure and the potential underlying mechanisms by which vitamin C affects bone metabolism
in OVX rats. We further investigated the BMP-2/SMAD1/5/8/RUNX2 signaling pathways in
osteoblasts and RANK/RANKL and tartrate-resistant acid phosphatase (TRAP) signaling in osteoclasts,
which are regulated by Wnt family member 3A (Wnt3a)/β-catenin and mitogen-activated protein
kinase (MAPK) signaling pathways. These results provide the first reported evidence that vitamin C
regulates both osteoblastogenesis and osteoclastogenesis via the Wnt3a/β-catenin/ATF4 pathways
in osteoporosis.

2. Materials and Methods

2.1. Animals and Diet

All animal experiments were approved by the Institutional Animal Care and Use Committee of
Konkuk University (IACUC approval number: KU 17059). Ten-week-old female Wistar rats, purchased
from Doo Yeol Biotech (Seoul, Korea), were housed in a room maintained at 22 ◦C, with alternating
12-h light–dark cycles. Following a 1-week adaptation period, rats were divided into six groups (n
= 10 per group) and either ovariectomized (OVX; five groups) or sham-operated (sham; one group,
sham surgery, normal diet [TD.97191, Doo Yeol Biotech, Seoul, KR], and 1 mL of distilled water [DW]).
Ovariectomy was performed via ligation and excision of the ovaries. Sham surgery involved exposure
of the ovaries without excision. After a 1-week acclimatization period, the initial mean rat body weight
was 228.78 ± 4.69 g (Table 1). Vitamin C was administered by gavage to relevant groups of rats,
once per day. The remaining four OVX groups were fed the following diets: (1) Negative control (OVX,
vitamin C-free diet, and 1 mL of DW); (2) positive control (OVX, normal diet, and 1 mL of DW); (3) 200
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mg vitamin C (OVX, vitamin C-free diet, and 3 mg/kg vitamin C in 1 mL of DW); (4) 500 mg vitamin
C (OVX, vitamin C-free diet, and 7.5 mg/kg vitamin C in 1 mL of DW); and (5) 1000 mg vitamin C
(OVX, vitamin C-free diet, and 15 mg/kg vitamin C in 1 mL of DW) (Table 2, Figure 1). Food intake
was recorded every day and body weight was measured weekly. At the end of the 12-week feeding
period, the rats were sacrificed.

Table 1. Body weight gain and food intake by experimental group.

OVX

Normal Control Vitamin C

Sham * Negative ** Positive * 200 mg ** 500 mg ** 1000 mg **

Food intake (g/day) 25.48 ± 3.13 a 23.47 ± 3.04 a 26.36 ± 4.43 a 22.14 ± 4.93 a 24.05 ± 2.44 a 25.28 ± 4.68 a

Initial body weight (g) 229.48 ± 14.28 a 223.34 ± 13.27 a 234.54 ± 14.46 a 224.47 ± 14.63 a 233.81 ± 15.35 a 227.05 ± 11.48 a

Final body weight (g) 302.58 ± 24.61 a 311.99 ± 22.91 a 314.09 ± 20.88 a 336.39 ± 30.46 a 328.96 ± 34.36 a 327.12 ± 20.18 a

Body weight gain (g/week) 6.09 ± 7.15 a 7.38 ± 2.29 a 6.62 ± 1.66 a 9.18 ± 2.39 a 7.92 ± 2.96 a 8.33 ± 1.36 a

FER a 0.039 ± 0.016 a 0.049 ± 0.015 a 0.039 ± 0.009 a 0.053 ± 0.014 a 0.051 ± 0.019 a 0.053 ± 0.008 a

OVX: ovariectomized, * Sham, Positive Control = normal diet, ** Negative Control, Vitamin C groups = vitamin
C-free diet, a FER: Food efficiency ratio = body weight gain (g/week)/food intake (g/week).

For each animal, tibial bones were dissected and stored at −20 ◦C. Blood samples were collected
from the heart under light anesthesia. Serum was obtained by centrifugation and was stored at −80 ◦C
prior to biochemical assays.

Table 2. Composition of experimental diets.

Composition

OVX

Normal Control Vitamin C

Sham * Negative ** Positive * 200 mg ** 500 mg ** 1000 mg **

Casein (g/kg) 200.0 200.0 200.0 200.0 200.0 200.0
L-Cystine (g/kg) 3.0 3.0 3.0 3.0 3.0 3.0
Sucrose (g/kg) 334.288 334.288 334.288 334.288 334.288 334.288

Corn Starch (g/kg) 313.0 313.0 313.0 313.0 313.0 313.0
Soybean Oil (g/kg) 60.0 60.0 60.0 60.0 60.0 60.0

Cellulose (g/kg) 40.0 40.0 40.0 40.0 40.0 40.0
Mineral Mix (g/kg) a 13.37 13.37 13.37 13.37 13.37 13.37
Potassium Phosphate,

Monobasic (g/kg) 11.43 11.43 11.43 11.43 11.43 11.43

Calcium Carbonate (g/kg) 0.6 0.6 0.6 0.6 0.6 0.6

Vitamin Mix (g/kg) b 10.0 10.0
vitamin C - free 10.0 10.0

vitamin C - free
10.0

vitamin C - free
10.0

vitamin C - free
Ethoxyquin, Antioxidant 0.012 0.012 0.012 0.012 0.012 0.012

* Sham Control, Positive Control = normal diet, ** Vitamin C groups = vitamin C-free diet and vitamin C by gavage;
Vitamin C 200 mg, 3 mg/kg/day; Vitamin C 500 mg, 7.5 mg/kg/day; Vitamin C 1000 mg, 15 mg/kg/day. a Mineral
Mix (g/kg) - NaCl: 193.7325, C6H7K3O8: 575.9615, K2SO4: 136.1363, MgO: 62.8322, MnCO3: 9.163, C6H5FeO7:
15.708, ZnCO3: 4.1888, CuCO3: 0.7854, KIO3: 0.0262, Na2SeO3·5H2O: 0.0262, CrK(SO4)2·12H2O: 1.4399. b Vitamin
Mix (g/kg) - p-Aminobenzoic Acid: 11.0132, Vitamin C, ascorbic acid, coated (97.5%): 101.6604, Biotin: 0.0441,
Vitamin B12 (0.1% in mannitol): 2.9736, Calcium Pantothenate: 6.6079, Choline Dihydrogen Citrate: 349.6916, Folic
Acid: 0.1982, Inositol: 11.0132, Vitamin K3, menadione: 4.9559, Niacin: 9.9119, Pyridoxine HCl: 2.2026, Riboflavin:
2.2026, Thiamin (81%): 2.2026, Vitamin A Palmitate (500,000 IU/g): 3.9648, Vitamin D3, cholecalciferol (500,000
IU/g): 0.4405, Vitamin E, DL-alpha tocopheryl acetate (500 IU/g): 24.2291, Corn Starch: 466.6878.

2.2. Tibia Bone Ca2+ Content

Tibial Ca2+ was quantified using a microwave digestion system (Multiwave 3000; Anton Paar,
Graz, Austria) and inductively-coupled plasma mass spectrometry (HP-4500; Hewlett-Packard,
Avondale, PA, USA). All tests were performed following the procedures of the Association of Official
Analytical Chemists.

2.3. Determination of Tibial Bone Strength

The breaking force of the tibia was determined using a three-point bending rheometer (A/WEG
wedge fracture probe; Stable Micro Systems, Godalming, UK). The wedge was fractured by the
downward motion (3 mm/s) of a 30 mm-wide steel blade. The maximum force (N) applied to break
the wedge was used to quantify bone firmness.
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2.4. Micro-Computed Tomography (Micro-CT) Analysis

Tibial morphometric parameters were determined in the distal tibia using an Inveon PET
high-resolution, cone-beam micro-CT system (Siemens Medical Solutions, Knoxville, TN, USA).
Trabecular BMD, cortical BMD, bone surface area/bone volume (BSA/BV), bone volume/total volume
(BV/TV), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), and trabecular number (Tb.N)
were determined three-dimensionally by measuring the trabecular bone mass and its distribution.
Cortical wall thickness (Ct.Th) was determined three-dimensionally by measuring cortical bone mass
and its distribution according to standard procedures. Scans were performed using an applied
voltage of 80 kV, with a 1-mm aluminum filter. All cross-sections contained 512 × 512 pixels, with an
isotropic voxel size of 9.31 µm. Data were analyzed using the Inveon acquisition workplace software
(Siemens). Results were reported according to the published guidelines for the assessment of rodent
bone microarchitecture using micro-CT [29].

2.5. Histological and Histomorphometrical Analyses of Tibia

Tibias were fixed in 10% neutral-buffered formalin for 2 days at 40 ◦C. The fixed tibias were
decalcified using 10% ethylenediaminetetraacetic acid (pH 7.4), which was replaced daily for 20 days,
at room temperature (25 ◦C). They were then embedded in paraffin blocks and sectioned into 4
µm-thick sections. Some sections were stained with hematoxylin and eosin (H&E), while their
adjacent sections were stained for TRAP activity in osteoclasts, using a Leukocyte Acid Phosphatase
Assay Kit (Sigma-Aldrich, St. Louis, MO, USA) according to the manufacturer’s instructions.
The number of osteoblasts/bone perimeter (N.Ob/B.Pm), osteoblast surface/bone surface (Ob.S/BS),
number of osteoclasts/bone perimeter (N.Oc/B.Pm), osteoclast surface/bone surface (Oc.S/BS),
number of osteocytes/bone perimeter (N.Ot/B.Pm), and BV/TV were calculated using a bone
histomorphometrical analysis program (OSTEOMEASURE™; OsteoMetrics, Decatur, GA, USA).
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2.6. Reverse Transcription-Polymerase Chain Reaction (RT-PCR) Assay

Tibial RNA was isolated using TRIzol reagent (Thermo Fisher Scientific, Inc., Waltham, MA, USA).
Aliquots (1 µg) of total RNA were reverse-transcribed using SuperScript III Reverse Transcriptase
(Invitrogen, Carlsbad, CA, USA). The resulting cDNA was used to determine the tibial mRNA levels
of BMP-2, RUNX2, osteocalcin, COL-1, RANK, RANKL, TRAP, and cathepsin K by PCR amplification
using Taq DNA polymerase (KAPA Biosystems, Wilmington, MA, USA). Glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) was used as an internal control. Primer sequences were as follows: GAPDH:
5’-AACTC CCATTCCACCTT-3’, 5’-GAGGGCCTCTCTCTTGCTCT-3’; BMP-2: 5’- AAGGCACCCTTT
GTATGTGGACT-3’, 5’-CATGCCTTAGGGATTTTGGA-3’; RUNX2: 5’-TCCAGCCACCTTCACTTACA
C-3’, 5’-GCGTCAACACCATCATTCTG-3’; osteocalcin: 5’-AGCTCAACCCCAATTGTGAC-3’, 5’-AG
CTGTGCCGTCCATACTTT-3’; COL-1: 5’-TTGACCCTAACCAAGGATGC-3’, 5’-CACCCCTTCTGCG
TTGTATT-3’; RANK: 5’-GTGACTCTCCAGGTCACTCC-3’, 5’-GGCAGACACACACTGTCG-3’; RANK
L: 5’-ACGCAGATTTGCAGGACTCGAC-3’, 5’-TTCGTGCTCCCTCCTTTCATC-3’; TRAP: 5’-CGCCA
GAACCGTG CAGA-3’, 5’-TCAGGCTGCTGGCTGAC-3’. PCR products were analyzed by 1.2%
agarose/ethidium bromide gel electrophoresis and were then photographed.

2.7. Western Blotting Analysis

Tibias were dissected free of connective tissue and muscles and homogenized in lysis buffer
containing a protease inhibitor (Roche, Mannheim, Germany) and were then centrifuged at 10,000 × g
for 10 min at 4 ◦C. Total protein levels were determined using a protein assay kit (Bio-Rad Laboratories,
Hercules, CA, USA). Proteins were subjected to electrophoresis and then transferred onto immobilon-P
transfer membranes (Millipore, Burlington, MA, USA). Membranes were blocked with 5% bovine
serum albumin prior to incubation with specific primary antibodies against BMP-2, RUNX2, Wnt3a,
osteocalcin, COL-1 (Abcam, Cambridge, UK), SMAD1/5/8 (Santa Cruz Biotechnology, Dallas, TX, USA),
ATF4 (Boster, Pleasanton, CA, USA), osteoprotegerin (OPG), RANK, RANKL (Bioss Antibodies, Woburn,
MA, USA), TRAP, cathepsin K (GeneTex, Irvine, CA, USA), β-catenin, phosphorylated serine/threonine
kinase (p-AKT), phosphorylated extracellular signal-regulated kinase (p-ERK), p-p38, phosphorylated
c-Jun N-terminal kinase (p-JNK), and β-actin (Cell Signaling Technology, Danvers, MA, USA). The
membranes were incubated with either horseradish peroxidase-conjugated goat anti-rabbit IgG (H+L)
or goat anti-mouse IgG (H+L) secondary antibodies (Abcam, Cambridge, UK). The antigen–antibody
complexes were visualized by enhanced chemiluminescence. Densitometric analysis of the resulting
signals was performed using a C-DiGit Blot Scanner (Li-COR, Lincoln, NE, USA).

2.8. Statistical Analysis

Data are presented as the mean ± standard deviation of triplicate experiments. Statistical analyses
were performed using SPSS version 18.0 software (SPSS, Inc., Chicago, IL, USA). Comparisons between
different groups were carried out by one-way analysis of variance, followed by Duncan’s multiple
range post-hoc test. P-values < 0.05 were considered statistically significant.

3. Results

3.1. Food Efficiency Ratio

Food intake, body weight gain, and food efficiency ratio (FER) did not differ significantly among
the experimental groups (Table 1).

3.2. Ca2+ Content and Tibial Bone Strength are Increased in OVX Rats Treated with Vitamin C

Tibial Ca2+ levels in rats orally treated with vitamin C were all significantly higher than those
in negative control tibias. Additionally, the tibial Ca2+ content increased with increasing vitamin
C concentration (Figure 2). OVX treatment reduced the Ca2+ content by 12.1% compared to the
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sham-operated normal group. Groups treated with 200, 500, and 1000 mg of vitamin C showed significant
recovery of Ca2+ content by 6.29%, 8.16%, and 9.83%, respectively, compared to the negative control group
(Figure 2). Thus, vitamin C recovered the Ca2+ content of the tibia in this animal model of osteoporosis.

We tested the effects of vitamin C on the breaking force of the tibial bone using a texture analyzer.
Bone strength of the negative control group was significantly lower than that of the sham group and
the vitamin C-treated groups (Figure 2). In particular, the breaking energy of the 500 mg vitamin C
group was approximately 95% of the breaking energy of the sham group. Additionally, Figure 2B
shows that the 200 and 1000 mg vitamin C-treated groups had greater tibial strength than that of the
negative control group. These results indicated that vitamin C enhanced the Ca2+ content and breaking
force of the tibia in OVX rats.
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rat tibias: (A) Calcium content of rat tibias; (B) breaking force of rat tibias. Values represent the mean
± standard deviation. Values with different letters were significantly different according to Duncan’s
multiple range test (P < 0.05).

3.3. Vitamin C Improves Bone Microarchitecture and Bone Formation Parameters, and Suppresses Bone
Resorption Parameters

To assess the effect of vitamin C intake on bone metabolism in OVX rats, histological changes
in the trabecular structure of the tibia were investigated by micro-CT (Figure 3). There was a large
space in the tibial bone because of the decrease in trabecular number, reduced trabecular thickness,
and increased trabecular separation in the negative control group (Figure 3). In contrast, in the vitamin
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C-treated groups, trabecular bone had replaced the empty space in the tibia at 12 weeks (Figure 3).
However, there was no significant difference in these parameters according to vitamin C dose.Nutrients 2018, 10, x FOR PEER REVIEW  8 of 21 
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Figure 3. Micro-computed tomography (micro-CT) analysis of the effects of OVX and vitamin C
treatment on tibial bone structure: (A) Representative image of tibial longitudinal section, cross section,
and space of the tibia trabeculae; (B) trabecular bone mineral density (BMD); (C) cortical BMD; (D–I)
quantitative analyses of bone volume per total volume (BV/TV), trabecular thickness (Tb.Th), bone
surface area per bone volume (BSA/BV), trabecular separation (Tb.Sp), trabecular number (Tb.N),
and cortical wall thickness (Ct.Th) of vitamin C-treated tibias. n = 10 per group. Values represent
the mean ± standard deviation. Values with different letters were significantly different according to
Duncan’s multiple range test (P < 0.05).
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The values of BMD, BV/TV, and Tb.Th were significantly lower in OVX rats than in sham-operated
rats (Figure 3). The trabecular BMD and cortical BMD were increased 3.44- and 3.13-fold, respectively,
in the 500 mg vitamin C group compared to the negative control group (Figure 3). Additionally, in the
1000 mg vitamin C group, BV/TV and Tb.Th were nearly 2.5-fold higher than in the negative control
group (Figure 3). Furthermore, the BSA/BV and Tb.Sp values in the vitamin C groups were similar
to those in the sham group (Figure 3). The Tb.Sp value decreased by 71% in the 1000 mg vitamin C
group compared to the negative control group (Figure 3). There were no significant differences in Tb.N
among all groups (Figure 3). Ct.Th values in the vitamin C-treated groups were comparable to the
value in the negative control group (Figure 3).

3.4. Vitamin C Enhances Bone Formation Parameters and Suppresses Bone Resorption Parameters

Histomorphometrical analysis of the trabecular bone region in the distal tibia was performed
in all experimental groups. H&E staining revealed decreased trabecular bone surface area in the
negative control group compared to the sham group (Figure 4). The N.Ob/B.Pm and Ob.S/BS
values in the negative control group were significantly lower than in the sham group (Figure 4).
Additionally, the negative control group showed increased values for bone resorption parameters,
including N.Oc/B.Pm and Oc.S/BS (Figure 4).
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Figure 4. Effect of vitamin C on histomorphometrical analysis in OVX rat tibias: (A) Hematoxylin
and eosin (H&E) and tartrate-resistant acid phosphatase (TRAP) staining image of the trabecular
bone; Dynamic histomorphometrical analyses were performed in this same region to determine (B)
the number of osteoblasts per bone perimeter (N.Ob/B.Pm), (C) osteoblast surface per bone surface
(Ob.S/BS), (D) the number of osteoclasts per bone perimeter (N.Oc/B.Pm), (E) osteoclast surface per
bone surface (Oc.S/BS), (F) the number of osteocytes per bone perimeter (N.Ot/B.Pm), and (G) bone
volume per total volume (BV/TV). Data represent the mean ± standard deviation. Values with different
letters were significantly different according to Duncan’s multiple range test (P < 0.05).
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According to histomorphometrical analysis, vitamin C treatment caused significant increases
in N.Ob/B.Pm and Ob.S/BS values and significant decreases in N.Oc/B.Pm and Oc.S/BS values
compared to the values in negative control rats (Figure 4). The group treated with 1000 mg of vitamin
C displayed numbers of osteoblasts nearly 4.3-fold higher than the numbers in the negative control
group (Figure 4). Furthermore, the Ob.S/BS value of the 500 mg vitamin C group was 6.9-fold higher
than the value in negative control rats (Figure 4). In contrast, the Oc.S/BS value in the group treated
with 1000 mg of vitamin C was 81.2% lower than the level in the negative control group (Figure 4).
In agreement with the micro-CT results, the tibia BV/TV values were significantly higher in the vitamin
C groups compared to the negative control group (Figures 3 and 4). No significant differences were
observed in the N.Ot/B.Pm values between the OVX groups (Figure 4). These data confirmed that
ovariectomy can cause tibial bone loss and that vitamin C can improve the bone microarchitecture of
the tibia.

3.5. Vitamin C Promotes Expression of Osteoblastogenesis-Related Factors, Including Those in the
BMP-2/SMAD1/5/8/RUNX2 Signaling Pathways

We examined the impact of vitamin C on bone metabolism indicators, including BMP-2, SMAD
1/5/8, RUNX2, osteocalcin, and COL-1, by RT-PCR and western blot analysis. Expression levels were
calculated relative to GAPDH and β-actin expression. Vitamin C treatment significantly increased
the mRNA expression of osteogenesis-related genes in OVX rats (Figure 5). The mRNA expression
levels of BMP-2 (1.49-fold), RUNX2 (2.9-fold), and osteocalcin (1.31-fold) in OVX rats treated with
1000 mg of vitamin C were significantly higher than their expression levels in the negative control
group (Figure 5). Additionally, the mRNA expression of COL-1 was 1.35-fold higher in the groups
treated with 500 mg of vitamin C than in the negative control group (Figure 5).
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Figure 5. Effect of vitamin C on osteoblast-related gene and protein expression in the tibias of OVX rats.
(A) Reverse transcriptase-polymerase chain reaction (RT-PCR) products of osteoblastogenesis-related
genes. Quantitative assay of mRNA expression levels of BMP-2, RUNX2, osteocalcin and COL-1
in vitamin C-treated OVX rats. (B) Western blot image of osteoblastogenesis-related proteins and
quantitative assay of BMP-2, SMAD 1/5/8, RUNX2, osteocalcin, and COL-1 protein expression in
vitamin C-treated rat tibias. Expression was quantified using ImageJ software relative to that of
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and β-actin. Values represent the mean ±
standard deviation. Values with different letters were significantly different according to Duncan’s
multiple range test (P < 0.05).

Western blotting analysis showed that ovariectomy significantly decreased the expression of
osteogenesis-related proteins, compared to the sham operation (Figure 5). In addition, the vitamin
C-treated groups showed increased expression of osteogenesis-related proteins compared to the
negative control group (Figure 5). BMP-2 protein expression was increased in OVX rats treated
with vitamin C, when compared to rats in the negative control group, but there were no significant
differences between groups treated with different doses of vitamin C (Figure 5). The protein expression
levels of SMAD 1/5/8 and RUNX2 were higher in the 500 mg vitamin C-treated groups (3.69- and
9.9-fold, respectively) than in the negative control group (Figure 5). The level of osteocalcin protein
was dramatically upregulated by treatment with 1000 mg of vitamin C (4.47-fold) compared to
the level in the negative control group (Figure 5). Moreover, the protein expression levels of
COL-1 in the 200, 500, and 1000 mg vitamin C-treated groups increased by 10-, 15.4-, and 15.4-fold,
respectively (Figure 5). These results suggested that oral intake of vitamin C increased the expression
of osteoblastogenesis-related genes and proteins in vivo.

3.6. Vitamin C Inhibits Expression of Osteoclastogenesis-Related Factors, Including RANK and TRAP

Oral intake of vitamin C in rats decreased RANK, RANKL, and TRAP gene expression compared
to the levels in the negative control (Figure 6). As shown in Figure 6A, RANK mRNA levels in the
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negative control group were 3.0-fold higher than in the sham group. Meanwhile, RANK mRNA levels
were 2.3-, 2.8-, and 3.8-fold lower in the 200, 500, and 1000 mg vitamin C-treated groups, respectively,
than in the negative control group. Additionally, RANKL mRNA was upregulated in the negative
control group, while treatment with vitamin C (200, 500, and 1000 mg) inhibited this upregulation
(2.8-, 2.9-, and 3.2-fold, respectively) in a dose-dependent manner (Figure 6). These results suggested
that vitamin C had a greater attenuating effect than the positive control (Figure 6). TRAP mRNA
levels in the negative control group were higher than those in all other groups (Figure 6). However,
the upregulation of TRAP mRNA seen in the negative control group was reversed by vitamin C
treatment, showing the maximum effect at a dose of 500 mg.
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Figure 6. The effect of vitamin C on the expression of osteoclast differentiation-specific genes and
proteins in the tibia. (A) RT-PCR products of osteoclastogenesis-related genes. Quantitative assay of
mRNA expression levels of RANK, RANKL, and TRAP in vitamin C-treated rat tibias. (B) Western
blot image of osteoclastogenesis-related proteins and the quantitative assay of OPG, RANK, RANKL,
TRAP, and cathepsin K protein expression in vitamin C-treated rat tibias. Expression was quantified
using ImageJ software relative to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and β-actin
expression. Values represent the mean ± standard deviation. Values with different letters were
significantly different according to Duncan’s multiple range test (P < 0.05).
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Figure 6B shows the expression levels of several proteins in vitamin C-treated rat tibias. OPG
protein expression was increased by 6.7- and 3.2-fold in the 500 and 1000 mg vitamin C-treated
groups, respectively, compared to the levels in the negative control group (Figure 6). Expression of the
osteoclast protein, RANK, was significantly increased in the negative control group, but this increase
was markedly reversed by 2.4-fold in the 1000 mg vitamin C-treated group (Figure 6). The protein
expression level of RANKL was significantly higher (5.78-fold) in the negative control group than in
the sham group (Figure 6). However, RANKL protein expression in the vitamin C-treated groups was
markedly downregulated (1.8-, 2.3-, and 3.5-fold lower, respectively) compared to its expression in the
negative control group (Figure 6). TRAP protein expression increased in the negative control group,
but this was significantly reversed by treatment with 200, 500, and 1000 mg of vitamin C (by 1.9- 2.4-,
and 4.1-fold, respectively; Figure 6). Furthermore, the negative control showed a significant increase in
cathepsin K expression, which was decreased by vitamin C treatment, in a dose-dependent manner
(Figure 6). Taking the mRNA and protein expression results together, these data indicated that vitamin
C ameliorated the osteoclastic response in osteoporosis.

3.7. Vitamin C Regulates Wnt3a/β-catenin, AKT, and MAPK Signaling

To investigate the mechanism of the effects of vitamin C on osteoblasts and osteoclasts,
we performed western blotting analysis of proteins in the Wnt3a/β-catenin signaling pathway
(Figure 7). Wnt3a protein expression was not significantly changed by treatment with 200, 500,
or 1000 mg of vitamin C (3.51-, 3.49-, and 3.46-fold increases, respectively; Figure 7). The protein
expression levels of β-catenin were higher in the 1000 mg vitamin C-treated group (2.98-fold) than in
the negative control group (Figure 7). Moreover, the protein expression levels of ATF4 increased at all
vitamin C concentrations in a dose-dependent manner (Figure 7).
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Figure 7. Expression of both osteoblast- and osteoclast-regulated proteins in vitamin C-treated rat tibias.
(A) Western blot image of Wnt3a, β-catenin, and ATF4 and quantitative assay of Wnt3a, β-catenin, and
ATF4 protein expression in vitamin C-treated rat tibias. (B) Western blot image of p-AKT, p-ERK, p-p38,
and p-JNK and quantitative assay of p-AKT, p-ERK, p-p38, and p-JNK protein expression in vitamin
C-treated rat tibias. Expression was quantified using ImageJ software relative to that of β-actin. Values
represent the mean ± standard deviation. Values with different letters were significantly different
according to Duncan’s multiple range test (P < 0.05).

The expression levels of p-AKT, p-ERK, p-p38, and p-JNK were lower in the negative control
group compared to the sham group (Figure 7). However, the decrease in p-AKT protein expression
was recovered at all doses of vitamin C treatment (Figure 7). Furthermore, the protein expression levels
of p-ERK and p-JNK in the 1000 mg vitamin C-treated group (1.94- and 3.56-fold, respectively)
were higher than those in the negative control group (Figure 7). The protein levels of p-38
increased in a dose-dependent manner after treatment with 200, 500, and 1000 mg of vitamin C
(Figure 7). These results suggested that vitamin C treatment activated the p-AKT, p-ERK, p-p-38, and
p-JNK pathways.

4. Discussion

The current therapy for osteoporosis involves the use of antiresorptive agents (bisphosphonates,
raloxifene, and denosumab); anabolic agents (teriparatide, abaloparatide, and romosozumab);
and nutritional factors, such as protein, calcium, and vitamin D [30]. Our results suggested that
vitamin C may also have an important role in osteoporosis therapy. Vitamin C has been shown to be a
pivotal modulator of osteoblastogenesis and osteoclastogenesis in osteoporosis models. In this study,
vitamin C prevented bone loss and increased the Ca2+ content and BMD in the tibias of OVX rats. This
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is the first study to examine the effects of vitamin C on osteoblastogenesis and osteoclastogenesis,
which are regulated by the Wnt3a/β-catenin/ATF4 pathway through MAPK signaling pathways, in
an OVX rat model.

Generally, OVX rats show decreased calcium absorption and enhanced bone loss [31]. However,
bone is not lost at a uniform rate at all skeletal sites after estrogen depletion in humans [32] and rats [33].
Previous studies have shown that low vitamin C intake negatively affects calcium metabolism [34,35].
Calcium levels in the bone depend on the progression and severity of menopause (estrogen deficiency)
and are regulated by several factors, including parathyroid hormone (PTH), calcitriol, and vitamin
D [36]. Vitamin D is a particularly effective regulator of calcium levels and it strongly suppresses
PTH levels [36,37]. In addition, when serum calcium levels drop, PTH promotes calcium release from
bones [38]. Interestingly, vitamin C supplementation is a possible modality to reduce PTH levels,
with few side effects [37]. When serum levels of vitamin C are low, calcium-sensing receptors can
become resistant to the effects of PTH [37]. Our results for tibial Ca2+ levels are consistent with those
of previous studies. In the present study, the oral intake of vitamin C restored OVX surgery-induced
calcium loss (Figure 2). Additionally, antioxidant vitamins may decrease the risk of osteoporotic
fracture by scavenging free radicals and, in turn, reducing oxidative stress in humans and animals [39].
This also supports our result which shows that vitamin C improved bone strength in the OVX rat tibia
(Figure 2). Therefore, vitamin C intake may improve tibial Ca2+ content and breaking force.

We examined bone structure by micro-CT analysis, which has advantages, because it is a
high-resolution, non-destructive, simple, and rapid technique (Figure 3) [40]. Zhu and Cao [16]
reported that treatment with 10,000 mg of vitamin C for 8 weeks stimulated the recovery of BV/TV
and Tb.N, with no significant effects on BMD and Tb.Sp. These results are similar to our results.
However, in the present study, vitamin C enhanced trabecular and cortical BMD and decreased Tb.Sp
(Figure 3). Therefore, our results suggested that the administration period is more important for bone
regeneration than the dose of vitamin C, above a certain vitamin C concentration, in OVX rats.

In addition, to better understand the cellular mechanisms responsible for bone recovery in
OVX rats, we performed histomorphometrical analysis of trabecular bone in the tibia (Figure 4).
A previous study has shown that ovariectomy increases the number of osteoclasts and the osteoclast
surface per bone surface [41]. Our histomorphometry results were similar. Thus, both micro-CT and
histomorphometrical analyses revealed an increase in BV/TV. Interestingly, our histomorphometrical
analysis showed that vitamin C also increased the number of osteoblasts and the osteoblast surface
per bone surface, but decreased the number of osteoclasts and the osteoclast surface per bone surface,
compared to the negative control group (Figure 4). In addition, consistent with previous results,
we observed that more osteoclasts were present in the OVX rat bones [42]. However, vitamin C
significantly reduced the number of TRAP-positive cells in the tibia (Figure 4). Therefore, the results of
our micro-CT and histomorphometrical analyses suggested that the increased bone mass in vitamin
C-treated rats resulted from a dramatic increase in the number of osteoblasts and a decrease in the
number of osteoclasts.

Previous reports have demonstrated that BMP-2 induces or promotes the expression of RUNX2
and that these transcription factors are essential for osteoblast differentiation and bone formation [43–46].
In addition, markers of osteoblast differentiation, such as ALP, COL-1, and osteocalcin, are essential
for these processes [47–49]. Generally, BMP-2 regulates osteoblast differentiation by stimulating
osteoblast-related transcription factors, such as RUNX2 [47] and SMAD1, and the closely-related
protein, SMAD5, specifically mediates the responses to BMP-2 [50]. Thus, our results showed that
vitamin C treatment can upregulate BMP-2, SMAD1/5/8, RUNX2, osteocalcin, and COL-1 gene
expression in OVX rats (Figure 5). These results agree with those of previous studies. For example,
Valenti et al. observed increased BMP-2 and RUNX2 protein expression in ascorbic acid-treated
cells [51]. Therefore, vitamin C does not only promote osteoblast differentiation, but also induces
the BMP-2/SMADs/RUNX2/osteocalcin/COL-1 signaling pathway (Figure 5).
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Moreover, the differentiation of osteoclasts is regulated by RANKL and OPG, a decoy receptor
of RANKL, both of which are secreted from osteoblast-lineage cells, including osteoblasts and
osteocytes [52]. Furthermore, cathepsin K is abundant in osteoclasts, where it plays a pivotal role
in bone remodeling and resorption [53]. Therefore, our results are consistent with those of previous
studies showing that a diet supplemented with 1% calcium [54] or Lycii Radicis Cortex extract [55]
reduces TRAP, cathepsin K, and RANK expression in OVX rats. Our results demonstrated that vitamin
C suppressed osteoclasts via the RANK/TRAP/cathepsin K signaling pathway (Figure 6).

Wnt/β-catenin and ATF4 are able to modulate bone resorption by regulating the activity of
both osteoclasts and osteoblasts [24,25]. Additionally, the Wnt/β-catenin pathway plays a role in
regulating bone mass and bone cell function and is involved in cellular responses, such as BMP,
strain, and oxygen-related stress [56]. Expression of RANKL contributes to the Wnt/β-catenin
pathway-mediated regulation of osteoclastogenesis in bone tissue [57]. Interestingly, ATF4 promotes
osteoblast differentiation and osteoblast-specific osteocalcin gene expression [26,27]. Furthermore,
previous studies have demonstrated that ATF4 has a direct and important role in regulating multiple
steps of osteoclast differentiation [28]. In the present study, the expression of Wnt3a, β-catenin,
and AFT4 were increased in OVX rats (Figure 7). Du et al. reported that Polygonatum sibiricum
polysaccharides could effectively promote the osteogenic differentiation of mouse bone mesenchymal
stem cells and suppress osteoclastogenesis through the Wnt/β-catenin signaling pathway [24].
Our results demonstrated that vitamin C inhibited osteoporosis by promoting osteoblast formation and
blocking osteoclastogenesis through the Wnt/β-catenin signaling pathway. These results suggested
that the Wnt/β-catenin/ATF4 pathway had a more critical role during osteogenesis in the vitamin
C-treated groups, through the regulation of BMP-2, RUNX2, SMAD1/5/8, COL-1, and osteocalcin.

Activation of the BMP receptor serine/threonine kinase stimulates the PI3 kinase/Akt
pathway and acts as a signaling pathway in BMP-specific Smad functions during osteoblast
differentiation [58]. In addition, BMP-2 activates non-canonical MAPK signaling pathways to promote
the expression of RUNX2 [59,60]. Calcium supplements derived from Gallus gallus domesticus have
been shown to promote osteoblast differentiation and mineralization in OVX rats, by regulating
BMP-2/RUNX2/SMAD5 via the MAPK signaling pathway [54]. Moreover, many previous studies
have suggested the possibility of cross-talk between major signaling pathways, including the MAPK
pathway and the Wnt/β-catenin signaling pathway [61–65]. The MAPK signaling pathway may
regulate the canonical Wnt/β-catenin pathway by the inactivation of glycogen synthase kinase [65,66].
Caverzasio et al. have also demonstrated that Wnt3a induces the temporary activation of ERK and
p38, which regulate ALP activity, suggesting a major role for the MAPKs in the differentiation of
mesenchymal cells from osteoprogenitors [62]. Moreover, MAPKs are activated downstream of
RANK and mediate the cellular response to RANK stimulation [67]. For example, during osteoclast
differentiation, RANKL binds to RANK in osteoclast precursors and differentiating osteoclast cells,
resulting in the activation of various intracellular signaling pathways involving ERK and JNK [68].
Moreover, a previous report showed that sesamin can induce osteoblast differentiation by activating the
MAPK signaling pathway and can indirectly regulate osteoclast development, through the expression
of OPG and RANKL [54,67]. In this study, we showed that vitamin C regulated osteoblasts and
osteoclasts through the activation of AKT and MAPK signaling pathways.

5. Conclusions

In conclusion, our data demonstrated that vitamin C enhanced osteoblastogenesis and
simultaneously suppressed osteoclastogenesis in vivo. Our results showed that ovariectomy resulted
in a failure of normal bone acquisition in rats, via severe deficits in calcium and BMD, which were
rapidly recovered by the oral administration of vitamin C in OVX rats, which increased the number of
osteoblasts and decreased the number of osteoclasts. The present study also demonstrated that vitamin
C enhanced the expression of the osteoblast-specific genes, BMP-2, SMAD1/5/8, RUNX2, osteocalcin,
and COL-1, in an in vivo model of osteoporosis. Vitamin C also decreased the expression of the
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osteoclast-specific genes, RANK, RANKL, TRAP, and cathepsin K. Furthermore, vitamin C induced
these effects on osteoblasts and osteoclasts via not only MAPK signaling pathways, but also via the
Wnt3a/β-catenin signaling pathway (Figure 8). Future studies will investigate the anti-osteoporosis
effects of vitamin C, combined with vitamin D or calcium supplementation.Nutrients 2018, 10, x FOR PEER REVIEW  17 of 21 
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