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Abstract

The microtubule (MT) associated protein Tau is instrumental for the regulation of MT assem-

bly and dynamic instability, orchestrating MT-dependent cellular processes. Aberration in

Tau post-translational modifications ratio deviation of spliced Tau isoforms 3 or 4 MT binding

repeats (3R/4R) have been implicated in neurodegenerative tauopathies. Activity-depen-

dent neuroprotective protein (ADNP) is vital for brain formation and cognitive function.

ADNP deficiency in mice causes pathological Tau hyperphosphorylation and aggregation,

correlated with impaired cognitive functions. It has been previously shown that the ADNP-

derived peptide NAP protects against ADNP deficiency, exhibiting neuroprotection, MT

interaction and memory protection. NAP prevents MT degradation by recruitment of Tau

and end-binding proteins to MTs and expression of these proteins is required for NAP activ-

ity. Clinically, NAP (davunetide, CP201) exhibited efficacy in prodromal Alzheimer’s disease

patients (Tau3R/4R tauopathy) but not in progressive supranuclear palsy (increased Tau4R

tauopathy). Here, we examined the potential preferential interaction of NAP with 3R vs. 4R

Tau, toward personalized treatment of tauopathies. Affinity-chromatography showed that

NAP preferentially interacted with Tau3R protein from rat brain extracts and fluorescence

recovery after photobleaching assay indicated that NAP induced increased recruitment of

human Tau3R to MTs under zinc intoxication, in comparison to Tau4R. Furthermore, we

showed that NAP interaction with tubulin (MTs) was inhibited by obstruction of Tau-binding

sites on MTs, confirming the requirement of Tau-MT interaction for NAP activity. The prefer-

ential interaction of NAP with Tau3R may explain clinical efficacy in mixed vs. Tau4R pathol-

ogies, and suggest effectiveness in Tau3R neurodevelopmental disorders.

Introduction

Microtubules (MTs) are the major component of the neuronal cytoskeleton, and MT stability

and organization play a critical regulatory role during axonal transport and synaptic
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transmission [1]. The MT-associated protein Tau is widely expressed in neurons and serves as

a primary protein marker for axons [2, 3]. Tau promotes MT assembly and regulates MT

dynamic instability, which is essential for establishing neuronal polarity, axonal elongation,

and neural outgrowth [4]. Neurodegenerative disorders with Tau involvement are referred to

as tauopathies [5]. The Tau protein consists of an N-terminus region projecting outward from

the MTs and a C-terminus part directly interacting with the MTs through MT-binding

domains [6]. Tau3R and 4R (containing either three or four MT-tubulin—binding repeats,

respectively) are produced by alternative splicing around exon 10 of the Tau transcript [7].

The healthy human brain exhibits a 1/1 ratio of Tau3R/4R and deviation from this ratio are

the pathological feature of several tauopathies [8]. Phosphorylation of Tau protein controls its

binding to MT and is associated with Tau aggregation in neurodegenerative diseases [5, 9]. In

general, Tau3R has been linked to neurodevelopment [7], while Tau4R with aging [10].

We have previously shown that the expression of activity-dependent neuroprotective pro-

tein (ADNP), a protein vital for brain formation [11, 12], is correlated with Tau3R expression

[13] and Adnp+/- mice exhibit tauopathy features—significant increase in phosphorylated

Tau, prevented by treatment of ADNP-derived peptide NAP (NAPVSIPQ) [14] as well as tan-

gle-like structures. Our cell culture results have indicated that NAP enhances Tau-MT interac-

tion in the face of zinc intoxication [15] and NAP protective activity requires Tau expression

[16]. We have further revealed that NAP-Tau association is mediated by direct interaction of

NAP and Tau with MT end-binding proteins (EBs) [15, 17].

Clinical trials identified the potential efficacy of NAP (davunetide, CP201) in enhancing

short-term memory in amnestic mild cognitive impairment patients [18]. However, it was not

found to be an effective (though, well tolerated) treatment for progressive supranuclear palsy

(PSP) patients [19]. Because abnormal aggregation of Tau4R is a hallmark of PSP pathophysi-

ology [20], the current study aimed to determine whether NAP had a different activity on

either Tau3R or 4R. Our results now showed that NAP preferentially interacted with Tau3R

protein from Sprague-Dawley rat brains and induced increased recruitment of human Tau3R

to MTs under zinc toxic condition in comparison to Tau4R. Furthermore, we showed that

NAP interaction with tubulin was inhibited by paclitaxel obstruction of Tau-binding sites on

MTs, confirming the requirement of Tau-MT interaction for NAP activity.

Results

Tau from 60-day-old rat brain does not associate with NAP under

conditions that Tau from newborn rat brain does

Different tubulin and Tau isotypes are expressed in the course of a rat brain development [10,

21]. Newborn-rats predominantly express the Tau3R isoform while adults predominantly

express the Tau4R isoform [22]. Here, newborn and 60-day-old rat cerebral cortex extracts

were analyzed by immunoblotting, and prevailing expression of Tau3R or 4R was observed in

the newborn or 60-day-old cortex protein lysate, respectively, as expected (Fig 1A). However,

some Tau3R immunoreactivity was observed in the 60-day-old rat cortex sample, but at a

much lower intensity in comparison to Tau3R of the newborn brain protein extracts (Fig 1A,

panel 1). This finding confirms the previously published data [23, 24] that detected trace

amounts of Tau3R in the murine mature brain tissues. The 60-day-old Tau3R (in comparison

to newborn Tau3R) exhibited lower molecular weight, which could represent different splice

isoforms of the N-terminus of Tau3R. Notably, the number and intensity of the observed

bands detecting Tau3R/4R and total-Tau cannot always be precisely compared because differ-

ent antibodies exhibit different sensitivities and affinities to the various splice variants. Regard-

less, band intensity corresponding to a given protein within the panels (obtained from the
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Fig 1. NAP preferentially associates with 3R-tau. (A) Western blot analysis of equal amounts of protein extracts from newborn

(NB) rat brain cortex and 60-day-old (60d) rat brain cortex. Significantly larger amount of Tau3R was detected in the one-day-old

cortical extract compared to the 60-day cortical extract, and Tau4R was recognized in the 60-day cortical extract only. (B) Bio-

SafeTM Coomassie protein staining of the different fractions (F–flow-through, W—first wash, Wl—last wash, E1/2/3 –elution

fractions by order) of the NAP affinity column fractions (left panel). Western blot analysis of elution fractions (E1) obtained by
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same blot and probed with the same antibody, Fig 1A, panel 1 –Tau3R, panel 2 –Tau4R, panel

3 –total Tau, panel 4 –tubulin) could be compared. Thus, panel 1 revealed that the level of

Tau3R in a mature rat cortex was indeed very low compared to the newborn brain (as detailed

above). Panel 2 essentially did not detect Tau4R in the newborn rat cortex. However, panel 3

revealed that the levels of total-Tau in the newborn and mature rat cortex were similar, indicat-

ing that newborn Tau was mostly Tau3R, while 60-day-old Tau mostly consisted of Tau4R.

In a follow up experiment, newborn and 60-day-old rat cortex protein lysates were exposed

to NAP affinity chromatography, and eluted proteins were separated by polyacrylamide gel

electrophoresis (Commassie staining, Fig 1B, left panel) and analyzed by immunoblotting with

Tau3R and 4R, total-Tau (identifying all Tau isoforms), tubulin Tub2.1 (identifying neuronal-

enriched tubulin [25]) and TubβIII (identifying neuronal-specific tubulin [26]) antibodies.

Immunoreactivity for all tested antibodies was detected in the acid eluted fraction from new-

born rat brain extract (Fig 1B). However, no significant Tau or tubulin-like bands were

observed in the eluted fractions from the mature rat extract under the current experimental

conditions (Fig 1B). Notably, the absence of immunoreactivity in the mature rat brain extract

eluates was corroborated by the absence of significant protein staining in the elution fractions

(E1, E2), contrasting the protein staining and immune-detection in the newborn rat extracts

(Fig 1B).

NAP induces increased recruitment of human Tau3R to MTs under zinc

toxic condition in comparison to Tau4R

In order to test the effect of NAP on the interactions of different Tau isoforms with MTs, fluo-

rescent recovery after photobleaching (FRAP) assay was performed (Fig 2). mCherry-tagged

human Tau3R and 4R proteins (S2 Fig) were over-expressed in differentiated neuroblastoma

N1E-115 cells and extracellular zinc (400μM, 1 hour) was used as a MT disruptor, inducer of

Tau release from MTs [15]. In general, after photobleaching of the region of interest (ROI), the

unrecovered portion of initial fluorescence intensity within a bleached area is referred to the

immobile fraction of bleached mCherry-Tau proteins because it does not release binding sites

on MTs for the entry of un-bleached mCherry-Tau molecules and thus does not allow fluores-

cence recovery. Therefore, the immobile mCherry-Tau fraction represents MT-bound Tau

and reflects the MT-Tau interaction. Here, we observed that treatment with extracellular zinc

increased fluorescence recovery 87sec after photobleaching of both mCherry-Tau3R and 4R

molecules (Fig 2A). Analysis with one-phase exponential association showed a significant

decrease of Tau3R and 4R immobile fractions (Fig 2B and 2C). NAP added together with zinc

decreased fluorescence recovery (Fig 2A) and thus significantly enhanced the immobile frac-

tion of Tau3R and 4R compared to treatment with zinc alone (Fig 2B and 2C). However, while

the Tau4R immobile fraction was restored to untreated control level, the immobile fraction of

Tau3R was further increased in comparison to control values and the difference between

Tau3R and 4R immobile fractions was found statistically significant (Fig 2C). It should be

noted that the rate constant (K-value) of mCherry-Tau fluorescence recovery (Fig 2D)

although apparently different, was not significantly changed following different treatments.

Regardless, quantitatively, NAP treatment produced a more potent impact on 3R-, rather than

on 4R-Tau association with MTs.

NAP-affinity chromatography with the same protein extracts of rat brain cortex (right panel). Tau3R, total-Tau, and tubulin were

identified in the NAP-binding fraction of the newborn rat cortical brain extract, but essentially neither Tau nor tubulin was

identified in the elution fraction of the 60-day-old cortical brain extract (three independent experiments). Please see S1 Fig for

loading controls.

https://doi.org/10.1371/journal.pone.0213666.g001
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Fig 2. NAP induces increased recruitment of human Tau3R to MTs under zinc toxic condition in comparison to Tau4R. (A)

Representative images of photo-bleaching and fluorescence recovery of mCherry-tagged Tau3R and 4R in differentiated N1E-115 cells

treated with extracellular zinc (400μM, 2hrs) with or without NAP treatment (10-12M, 2hrs). N1E-115 cells expressing m-Cherry-

Tau3R/4R without any treatment represented the control. (B) FRAP recovery curves of normalized data (see “Materials and Methods”).

(C) The graph represents percentages (±SEM) of the fitted data (from three independent experiments) of immobile fractions relative to
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Tau interaction with MTs is required for NAP activity

Further, we aimed to test requirement of Tau-MT association for NAP interaction with tubu-

lin/MTs. Because paclitaxel obstructs Tau-binding sites on tubulin [27] we incubated NAP-

affinity columns with newborn cerebral cortical extracts in the presence of paclitaxel dissolved

in DMSO or in the presence of DMSO alone (used as a control). Paclitaxel markedly decreased

tubulin immunoreactivity in the acid-eluted fractions compared to the control (Fig 3A and

3B). Immunoreactivity of Tau3R appeared in both fractions–with and without paclitaxel expo-

sure (Fig 3C). Careful assessment of the blots revealed several forms of Tau3R (please see dis-

cussion). As tubulin was washed away in the presence of paclitaxel, whereas Tau3R remained

bound to the NAP column, we suggest that NAP interaction with tubulin required mediation

of Tau (Fig 3D). To ascertain the specificity of NAP binding, an affinity control column with

eight-amino-acids inactive peptide (VLGGGSALL) was prepared, as well. The peptide

VLGGGSALL has previously shown no MT-related neuroprotective activity [28]. Affinity

chromatography with the control peptide showed Tau3R presence in the loaded material, col-

umn flow-through, and column wash, but did not detect Tau3R in the acid elution fractions of

both columns, neither in the absence nor in the presence of paclitaxel (S3 Fig). Also, tubulin

was associated with VLGGGSALL regardless of paclitaxel presence, demonstrating nonspecific

interaction (S3 Fig). The binding of tubulin (the major protein in brain extracts) included

some non-specific association, as it also appeared in the control columns (S3 Fig.). Regardless,

our further experiments with Tau3R (e.g. S3 Fig) showed specificity.

Then, we assessed the protective activity of NAP against increased concentrations of pacli-

taxel. For this purpose, differentiated N1E-115 cells were exposed to paclitaxel (5, 6 and 7 μM)

with or without NAP (10−15, 10−12, 10-9M) for 4hrs. Cell viability, measured by mitochondrial

activity, was significantly reduced following the 4hr-incubation period with paclitaxel. How-

ever, co-treatment with NAP (10−12 and 10-9M, but not 10-15M) protected against the lowest

tested concentration of paclitaxel—5μM (Fig 4), but not against increased concentrations of

paclitaxel– 6 and 7μM. These results suggest a requirement of direct Tau-MT interaction for

NAP activity, confirming our previously published data that showed requirement of Tau

expression for NAP protective capabilities [16].

Phosphorylation patterns of human Tau4R affect NAP activity

NAP associates with Tau through its direct interaction with EB proteins [16, 17] and Tau-EB

interaction may be affected by different phosphorylation states of Tau [29]. We now aimed to

reveal the differences in the phosphorylation between human Tau3R and human Tau4R in the

presence of NAP. ELM site prediction analysis [30] was performed to search the functional

domains of Tau4R (MAPT) exon 10 (S1 Table and Fig 5, a sequence marked by red color),

which is excised by alternative splicing leading to the production of Tau3R. The ELM predic-

tion identified a cyclin A docking motif on the MAPT exon 10 coding region (S1 Table and

Table 1) that recruits cyclin-dependent kinases (CDKs)–the well-known kinases stimulating

Tau protein phosphorylation [31]. Additional ELM analysis of the whole Tau4R protein

sequence revealed a CDK-binding motif and phosphorylation sites (Thr231/Ser235; Table 1,

Fig 5) and multiple phosphorylation sites of the cyclin-dependent kinase subunit 1 (Cks1;

Table 1, Fig 5), enhancing the specificity for CDK activity [32].

control– 100% (data were collected on 87 sec after photobleaching). Normalized FRAP data were fitted with one-exponential functions

(GraphPad Prism 6), and statistical analysis was performed by Two Way ANOVA (SigmaPlot 11). Statistical significance is presented by
�P<0.05, ��P<0.01, ��� P<0.001. Tau3R: Control n = 58, zinc n = 85, zinc + NAP n = 58; Tau4R: Control n = 56, zinc n = 47, zinc

+ NAP n = 60.

https://doi.org/10.1371/journal.pone.0213666.g002
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Fig 3. NAP interaction with tubulin, but not with Tau, is inhibited by paclitaxel. (A) Bio-SafeTM Coomassie

protein staining of the different fractions (F–flow-through, W—first wash, Wl—last wash, E1/2/3 –elution fractions by

order) obtained from NAP-affinity column loaded with protein extracts of newborn rat cerebral cortex with 4 mg

paclitaxel, dissolved in 80μl DMSO, or equal volume of DMSO, alone. Almost no tubulin is evident in the elution

fractions in the paclitaxel column, in contrast to the control one. (B, C) Western analysis of elution fractions obtained

similarly as in panel (A). (B) Tubulin is not detected in the elution fractions of the pre-incubated paclitaxel column in

comparison to the control column. (C) Tau3R is observed in the elution fractions of both the pre-incubated paclitaxel

column and the control column. (D) Graphic depiction of the hypothesis that NAP, bound to an affinity column,

interacts with tubulin throughout mediation of Tau.

https://doi.org/10.1371/journal.pone.0213666.g003
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Additionally, we aimed to test the ELM-predicted different phosphorylation profiles of

Tau3R and 4R, and the effect of these on tubulin and EB interactions in the absence or pres-

ence of NAP. For this purpose, GFP-conjugated human Tau3R and 4R were over-expressed in

differentiated human neuroblastoma SH-SY5Y cells and separately precipitated with GFP anti-

bodies (Fig 6, IB: GFP panels). Further immunoblotting analysis with appropriate antibodies

suggested increased phosphorylation on the Tau threonine 231 residue (Fig 6B, IB: ph-Thr231

panel) of Tau4R compared to Tau3R, in the absence of NAP addition. Incubation with NAP

did not seem to robustly affect the ph-Thr231 of both Tau3R and 4R, in comparison to

GFP-Tau ratios (Fig 5B, IB: GFP panel). Importantly, Tau-EB1 interaction was only observed

in the presence of NAP, with an apparent increase EB1 association with Tau3R in comparison

with Tau4R (Fig 6B, IB: EB1 panel). Notably, EB1 in the presence of Tau4R also showed some

Fig 4. NAP protective activity is inhibited by paclitaxel. Cell viability test performed by the MTS assay (measures mitochondrial activity, see “Materials and

Methods”). Differentiated N1E-115 cells are exposed to different concentrations of NAP (10-15M, 10-12M, 10-9M) and paclitaxel (5, 6 and 7 μM) for 2 hrs.

Average of mitochondrial activity results (MTS reduction) are displayed in relation to the control (non-treated cell) value– 0.1411±0.02989. Statistical analysis

of the data was performed using one-way ANOVA with Tukey post hoc test, n = 5. Statistical significance is presented relative to control as �P<0.05, ��P<0.01,
��� P<0.001; to “w/o NAP” (cells treated with paclitaxel, alone) as #P<0.05, ##P<0.01, ###P<0.001.

https://doi.org/10.1371/journal.pone.0213666.g004

NAP preferential interactions explain neuroprotective mechanisms

PLOS ONE | https://doi.org/10.1371/journal.pone.0213666 March 13, 2019 8 / 20

https://doi.org/10.1371/journal.pone.0213666.g004
https://doi.org/10.1371/journal.pone.0213666


low molecular weight bands. Together, it is suggested that ph-Thr231 affects NAP-EB-Tau

interactions.

Precipitated Tau4R in the absence of NAP showed increased interaction with tubulin in

comparison to Tau3R (Fig 6B, IB: α-Tubulin panel), perhaps due to additional MT tubulin

binding domain of Tau4R. Most importantly, NAP incubation strongly increased Tau3R-

tubulin interaction, but only a minor increase in Tau4R-tubulin interaction was observed fol-

lowing NAP treatment (Fig 6B, IB: α-Tubulin panel, S5 Fig, overexposure). This confirmed

Fig 5. Amino-acid sequence of the Tau isoform 2 (NP_005901, 441aa) (Tau4R). The translated protein sequence of exon 10, which is spliced in Tau3R, is

marked by red. Functional motifs, predicted by ELM analysis [30] (S1 Table and Table 1) are indicated.

https://doi.org/10.1371/journal.pone.0213666.g005

Table 1. ELM protein analysis. ELM predicted analysis [30] of Tau4R identified cyclin A docking motif, CDK-binding and phosphorylation site at threonine 231 and ser-

ine 235, and multiple phosphorylation sites of Cks1.

ELM Name Matched

Sequence

Position ELM Description Probability

DOC_CYCLIN_RxL_1 IINKKLDLS 277–285 [A]

(the part of exon

10)

The classical cyclin docking motif pattern is mainly derived from peptides bound to

Cyclin A

4.211e-03

MOD_CDK_SPxK_1 VVRTPPKS 228–235 [A] Canonical version of the cyclin-dependent kinases (CDK) phosphorylation site 1.929e-03

DOC_CKS1_1 LQTPTE

IATPRG

PKTPPS

PGTPGS

LPTPPT

VRTPPK

48–53 [A]

151–156 [A]

179–184 [A]

203–208 [A]

215–220 [A]

229–234 [A]

Phospho-dependent motif that mediates docking of CDK substrates and regulators to

cyclin-CDK-bound Cks1

1.991e-03

https://doi.org/10.1371/journal.pone.0213666.t001
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the results above suggesting the preferential interaction of NAP with Tau3R in comparison

with Tau4R. The use of human Tau species in human cells suggest applicability to the human

conditions.

Discussion

As dynamic tracks for motor proteins, MTs are involved in axonal transport and synaptic

transmission. We have previously shown that NAP provides neuroprotection [28, 33] and neu-

rotrophic activities [34] through interaction with MTs [15], rescues impaired axonal transport

[35–37], regulates dendritic spines and enhances memory [38]. NAP also protects against the

accumulation of pathologically modified, hyperphosphorylated Tau [14, 39–41]. We have pre-

viously suggested that the mechanism of NAP protective activity on MT-mediated cellular pro-

cesses is through the involvement of Tau and MT end-binding proteins (EBs) [16, 35].

Specifically, NAP contains an ADNP association site (SIP) a signature motif for direct interac-

tion with the EB1 and the EB3 proteins [35], which in turn bind to MTs [42] and Tau [17].

Furthermore, Tau has been identified as a regulator of EB’s action, and localization on MTs in

developing neuronal cells [17] and NAP increases Tau-EB1/3 association [16]. Tau is impor-

tant for the establishment of MT dynamic instability and axonal transport, while EB1 is more

prevalent in neuronal axons [43] and EB3 in dendritic spines [44]. Formerly, it has been

shown that expression of Tau and EB1/3 proteins are required for NAP-dependent neuronal

survival [16, 35]. Here, we added details to the understanding of the molecular mechanism

underlying the MT-related activity of NAP. Our current experiments showed that NAP prefer-

entially interacted with rodent Tau3R (affinity chromatography) and induced enhanced

recruitment of human Tau3R to MTs under zinc toxic condition in comparison to Tau4R

(FRAP). Furthermore, we demonstrated that paclitaxel-disturbed Tau-tubulin interaction pre-

vented NAP association with tubulin/MTs and inhibited NAP protective activity, suggesting

the requirement of not only the expression of Tau, but also Tau-tubulin direct association for

sufficient action of NAP.

NAP affinity chromatography with paclitaxel increased NAP-Tau interaction that resulted

in an additional Tau immunoreactive band appearance in comparison to treatment conditions

without paclitaxel (Fig 3C). A trivial explanation to the additional faint tau band in the eluate

of the affinity column could be related to the increased protein content eluted in the presence

of paclitaxel. However, the detection of an additional splice variant affecting the N-terminal of

the protein, or a different phosphorylation state could not be ruled out. The only difference

between the two Tau isoforms (3R and 4R) is the presence of the exon 10 coding sequence

comprising an extra MT-binding repeat in Tau4R (Fig 5, red sequence) which is excluded dur-

ing alternative splicing in Tau3R [45]. ELM prediction analysis [30] of the whole Tau sequence

identified cyclin A-docking motif within the translated sequence of exon 10 (Fig 5, S1 Table).

Whereas cyclin-dependent kinase (Cdk) 5 is activated by non-cyclin proteins, Cdk1/2 requires

direct association with cyclin A imposing an active conformation on the kinase [31]. Further-

more, six docking/phosphorylation sites of the cyclin-dependent kinase subunit 1 (Cks1) were

identified by ELM prediction on Tau (Fig 5, Table 1). Cks1 association with the Cdk-cyclin

complex increases the specificity and efficiency of Cdk substrate phosphorylation [32]. It has

been reported that Cdk2 and Cdk5 provide different Tau phosphorylation profiles [46]. It was

further reported that region-specific Tau phosphorylation might attenuate Tau-EB association

[29]. Because NAP interacts with Tau through EB proteins, and Tau3R and 4R may present

differences in the phosphorylation profiles, we speculated that observed attenuation of NAP--

Tau4R interaction occurs due to some phosphate incorporation on Tau and ensuing decrease

of EB protein association, as now shown for Thr231 in Figs 6 and 7. Furthermore, we have
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Fig 6. Increased phosphorylation of Tau4R reduces NAP effect on Tau-EB-tubulin interaction. Differentiated human neuroblastoma

SH-SY5Y cells were transfected with expression plasmids encoding GFP-Tau3R or GFP-Tau4R. Cells expressing GFP only were used as negative

controls. Immunoprecipitation (IP) was performed using GFP antibodies with and without NAP (see “Materials and Methods”). (A) Flow-

through (F), first and third washes (W1 and W3) fractions were collected and analyzed by immunoblot with GFP antibody (IB: GFP). (B)

Elution fractions (E) were collected and analyzed by immunoblotting (IB) with the appropriate antibodies, as listed on the figure.

https://doi.org/10.1371/journal.pone.0213666.g006
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previously reported that NAP reduces Tau phosphorylation at Ser262 [36], Ser202/Thr205,

and Thr231 [47] residues, but does not exhibit a significant impact on Tau phosphorylation

level at Thr181 [19]. Intriguingly, Thr181 is on one of the predicted Tau binding/phosphoryla-

tion motifs of Cks1 modulating the activity of Cdk (Fig 5, Table 1).

As opposed to rodents, Tau3R is abundant alongside with Tau4R in the human adult brain.

The ratio of Tau 3R:4R proteins is important, and changes in the ratio are observed in tauopa-

thies [48]. NAP does not interact with MT proteins from various cancer cell lines or fibroblasts

[33], which may not express any MT-associated proteins with properties that are similar to

Tau3R, and NAP does not affect cell division [49]. Furthermore, NAP does not protect cells

from fibroblast origin unless those cells are transfected with Tau3R-expressing plasmid [16].

However, NAP protects MT organization in mature neurons and glia [28, 33, 50]. We have

Fig 7. Suggested explanation for the preference of NAP binding to Tau3R over Tau4R. Graphic depiction of our hypothesis suggesting the preference of

NAP to interact with Tau3R based on the findings of the ELM prediction analysis and experimental results presented in Fig 6. The second MT-binding repeat

of Tau4R (spliced in Tau3R) includes cyclin A-docking motif and thus may enable Tau binding to cyclin A, essential for the activation of Cdk1/2 [31]. Cks1

may also associate with Cdk and cyclin A to form more efficient cyclin A-Cdk-Csk1 phosphorylation complex. Tau4R phosphorylation by Cdk1/2 differs from

Cdk5 (a conventional Tau kinase) [46] and may disturb/attenuate Tau-EB interaction, which has been previously indicated as a crucial for NAP interaction

with MTs [16, 35]. The EB dimer structure was constructed according to a published review [42].

https://doi.org/10.1371/journal.pone.0213666.g007
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previously shown that by promoting the interactions of Tau and EBs with MTs, NAP protects

MTs against degradation and concurrently enhances MT dynamics [16]. In vivo, chronic NAP

treatment reduces excess Tau accumulation and pathological hyperphosphorylation [14, 40,

47]. Our studies explain, in part, the efficacy of NAP (davuntide, CP201) in enhancing cogni-

tive functions in mild cognitive impairment patients [18], while showing no efficacy (although

high safety) in the 4R tauopathy progressive supranuclear palsy (PSP) [19]. Since tauopathy

underlies a verity of neurodegenerative conditions, our current findings may pave the path for

treatment by peptide drugs that have an impact on tubulin-Tau interaction and specific neuro-

fibrillary tangle populations [51]. As neurodevelopment has been linked to Tau3R [7, 10], our

results pave the path to the development of NAP (davunetide, CP201) for ADNP deficiencies

associated with neurodevelopment, for example, the autism-like ADNP syndrome, resulting

from de novo truncating mutations in ADNP (32).

Materials and methods

Ethical statement

Animal studies were approved by the Institutional Animal Care and Use Committee (IACUC)

of Tel Aviv University. Approval number: M-06-008. Animals were anesthetized by Ketamine

(20mg per 10gr of animal weight)/Xylazine (0.2mg per 10gr of animal weight) injection and

brains were extracted following dislocation.

Brain extract preparation

Protein lysate was prepared from either one- or sixty-day-old Sprague-Dawley rat cerebral cor-

tex in a lysis buffer containing: 150 mM NaCl, 1 mM EDTA, 50 mM Tris-HCl, pH 4.5 (or 7.5

as indicated), 0.1% Triton X-100, 1% Nonidet P-40, and a protease inhibitor cocktail (Roche

Diagnostics, Mannheim, Germany). DNA was fragmented by sonication. Cell debris was dis-

carded following 20 minutes of centrifugation at 30,000g at 4˚C, as described previously [28].

NAP affinity chromatography

Affinity columns contained extended NAP (CKKKGGNAPVSIPQ, the linker peptide is in

bold). Peptides were purchased from Genemed Synthesis, Inc., San Antonio, TX, USA or syn-

thesized as before [52]. Columns and peptide binding were prepared using Sulfolink coupling

gel (Pierce, Rockford, IL, USA) according to the manufacturer’s instructions as before [28]. 2

ml Sulfolink coupling gel was loaded onto Poly-Prep Chromatography Columns (Bio-Rad,

Hercules, CA, USA) and coupled with 2mg/ml peptide. Coupling was ascertained by free pep-

tide measurements.

In order to determine the binding specificity of Tau and tubulin to NAP, multiple experi-

ments were performed under stringent comparable experimental conditions as follows:

1] Proteins from either newborn or sixty-day-old rat cerebral cortical extracts (2mg pro-

tein/ml, total volume 2 ml) were loaded onto the NAP-affinity columns at pH 7.5 and incu-

bated for 16 hours at 4˚C, columns were washed with phosphate buffered saline (PBS, 20–25

ml) until all unbound protein had eluted as confirmed by the Bradford protein assay (Brad-

ford, BioRad, Hercules, CA, USA). The bound protein was then eluted with 0.1 M glycine pH

2.6.

2] Proteins from one-day-old rat (expressing Tau3R, solely) cerebral cortical extracts were

loaded onto the NAP column with 4 mg paclitaxel (Haorui Pharma-Chem Inc., New-Jersey,

USA) dissolved in 80μl dimethyl sulfoxide (DMSO, Sigma, Rehovot, Israel). A control NAP
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column was treated similarly with 80μl DMSO but without paclitaxel. The columns were incu-

bated with brain extract, washed as described above, and eluted with glycine 0.1 M pH 2.6.

3] The control column contained an inactive peptide CKKKGGVLGGGSALL (the linker

peptide is in bold) described in supplemental materials and methods (S1 File and S3 Fig).

SDS-PAGE and western blot analysis

The flow-through, wash fractions and elution fractions were separated by 10% or 12% SDS

polyacrylamide gel electrophoresis (SDS-PAGE) followed by protein staining using Bio-

SafeTM Coomassie (Bio-Rad, Hercules, CA, USA) according to manufacturer’s instructions or

transferred to nitrocellulose membranes (Schleicher and Schull, Dassel, Germany) for western

blot analysis. In comparative experiments, run in parallel, the same amounts were loaded on

the gels, for each parallel fraction. Non-specific sites on the nitrocellulose membranes used for

western analysis were blocked in a blocking solution (10 mM Tris pH 8, 150 mM NaCl, and

0.05% Tween 20 [TBST]) supplemented with 5% non-fat dried milk (1 hour, at room tempera-

ture). The Protein complexes were visualized by SuperSignal West Pico Chemiluminescent

Substrate (Pierce, Rockford, IL, USA).and exposed on Fuji Film Medical X-ray film (Fuji Cor-

poration, Tokyo, Japan).

Antibodies

Total-Tau—mouse monoclonal antibody Tau5 (antibody recognizing all Tau forms) was

obtained from MBL International Corporation (Woburn, MA, USA). Tau3R and Tau4R -

mouse monoclonal anti-Tau RD3 (3-repeat isoform) and mouse monoclonal anti-Tau RD4

(4-repeat isoform) were obtained from Millipore Corporation (Billerica, MA, USA). Tub2.1

and Tub2.5—mouse monoclonal tubulin antibodies maintained and kindly provided by Pro-

fessor Colin J. Barnstable, and were used as before [25]. TubβIII—mouse monoclonal antibody

β tubulin isotype III was obtained from Sigma-Aldrich (St. Louis, MO, USA). α-Tubulin—

monoclonal anti-α-Tubulin (mouse IgG1 isotype) (T6199, Sigma, Rehovot, Israel) recognizes

an epitope located at the C-terminal end of the α-tubulin isoform. Ph-Thr231—mouse mono-

clonal anti-phospho-Tau at threonine 231 residue (dilution 1:500; clone AT180, Thermo

Fisher Scientific, Inc., Waltham, MA, USA). EB1 –rat monoclonal anti-MAPRE1 (clone KT51,

Abcam, Berlin, Germany). GFP–mouse monoclonal anti-GFP antibody (dilution 1:2000; sc-

9996, Santa Cruz Biotechnology, Inc.; Dallas, Texas, USA). Secondary antibodies were goat

anti-mouse-horseradish peroxidase—HRP (Jackson ImmunoResearch, West Grove, PA,

USA). All antibodies were used at the dilution of 1:1000, except when otherwise indicated.

Plasmid construction

DNA inserts carrying Tau3R and 4R were obtained from human Tau3R and 4R cDNA con-

taining plasmids (a kind gift of Professor M. Goedert, MRC Laboratory of Molecular Biology,

Cambridge, UK) and then cloned into the backbone of pEGFP-C1 or the newly constructed

pmCherry-C1 plasmid. For more details, see supplemental materials and methods (S1 File and

S1 Fig).

Cell culture and treatments

Mouse neuroblastoma N1E-115 cells (ATCC, Bethesda, MD; passage numbers from 10 to 13)

were maintained in Dulbecco’s modified Eagle’s medium (DMEM), 10% fetal bovine serum

(FBS), 2 mM glutamine and 100 U/ml penicillin, 100 mg/ml streptomycin (Biological Indus-

tries, Beit Haemek, Israel). Human neuroblastoma SH-SYS5 cells (ECACC, Public Health

NAP preferential interactions explain neuroprotective mechanisms

PLOS ONE | https://doi.org/10.1371/journal.pone.0213666 March 13, 2019 14 / 20

https://doi.org/10.1371/journal.pone.0213666


England, Porton Down, Salisbury, UK; passage numbers from 14 to 16) were maintained in

Ham’s F12: minimum essential media (MEM) Eagle (1:1), 2mM Glutamine, 1% non-essential

amino acids, 15% fetal bovine serum (FBS) and 100 U/ml penicillin, 100 mg/ml streptomycin

(Biological Industries, Beit Haemek, Israel). The cells were incubated in 95% air/5% CO2 in a

humidified incubator at 37˚C. N1E-115 cells were plated on 35mm dishes (81156, 60 μ-Dish,

Ibidi, Martinsried, Germany) at a concentration of 25�104 cells/dish and then were differenti-

ated with reduced FBS (2%) and DMSO (1.25%) containing medium during five days before

transfection and seven days before the experiment. On the day of the experiment, differenti-

ated N1E-115 cells were treated for 1 hrs with zinc chloride (ZnCl2; final concentration,

400 μM, Sigma, Rehovot, Israel) with or without NAP (10−12M). Cultured SH-SY5Y cells were

plated in 10cm dishes at a concentration of 0.5�106/dish and differentiated with retinoic acid

at a concentration of 10 μM during seven days.

Transfection of over-expression plasmids and Fluorescence recovery after

photobleaching (FRAP)

5-day differentiated N1E-115 cells were transfected with a 1μg pm Cherry-C1-Tau3R/4R plas-

mid. 48 hrs after transfection, cultured N1E-115 cells were incubated at 37˚C with a 5% CO2/

95% air mixture in a thermostatic chamber placed on the stage of a Leica TCS SP5 confocal

microscope [objective 100x (PL Apo) oil immersion, NA 1.4]. An ROI (region of interest) for

photo-bleaching was drawn in the proximal cell branches. mCherry-Tau3R/4R was bleached

with a 587nm argon laser, and fluorescence recovery was at 610-650nm. Immediately after

bleaching, 80 images were collected every 0.74s. Fluorescence signals were quantified with

ImageJ (NIH), obtained data were normalized with easyFRAP43, and FRAP recovery curves

were fitted by a one-phase exponential association function using GraphPad Prism 6 (Graph-

Pad Software, Inc., La Jolla, CA). Samples with R2<0.9 were excluded.

Cell viability assay

7-day differentiated N1E-115 cells were treated with different concentrations of NAP (10-15M,

10-12M and 10-9M) and paclitaxel (5, 6 and 7μM diluted in DMSO) for 2 hours. Treatments

with 5, 6 and 7μM of DMSO alone were used as controls. Cell viability was measured using the

MTS assay (CellTiter 96 AQueous Non-Radioactive Cell Proliferation Assay; Promega,

Madison, WI, USA), which was performed according to the manufacturer’s instructions and

read in an ELISA plate reader at 490nm.

Transfection plasmids and immunoprecipitation assay (IP)

Differentiated SH-SY5Y cells were transfected with 8μg GFP-C1-Tau3R/4R plasmid or control

GFP plasmid. 48 hrs after transfection, proteins were extracted with lysis buffer (Pierce, Rock-

ford, IL) with added protease inhibitor (11255500, Roche, Mannheim, Germany). Immuno-

precipitation (IP) was performed with GFP-Trap A beads according to the provided protocol

(ChromoTek Inc., Planegg-Martinsried, Germany). 2.3μg of NAP, diluted into lysis buffer

(NAP 2.3μg/sample), or the equal volume of lysis buffer w/o NAP were added to lysates of the

transfected SH-SY5Y cells. Protein lysate with or without NAP was added to equilibrated

GFP-Trap A beads and incubated 2 hrs at +4˚C under constant mixing. Flow-through, wash 1

and 3, and elution fractions were collected and analyzed by immunoblotting with the appro-

priate antibodies.
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Statistical analysis

Data are presented as the mean ± SEM from 3 independent experiments. Statistical analysis of

the data was performed by using one-way ANOVA test (followed by the Tukey post hoc test)

by the IBM SPSS Statistics software version 23. Two-way ANOVA was implemented when

needed. � P<0.05, �� P<0.01, ��� P<0.001.

Supporting information

S1 File. Supplemental materials and methods. Plasmid construction and Affinity chromatog-

raphy with eight-amino-acids inactive peptide (VLGGGSALL).

(DOCX)

S1 Fig. Column loading controls. Coomassie staining. M–protein ladder; 1, 2 –Total rat brain

extract loading controls.

(PDF)

S2 Fig. Plasmid maps. pmCherry-C1 and pEGFP-C1 vectors (A), human Tau3R (B) and 4R

(C) expressing plasmids based on pmCherry-C1 and and pEGFP-C1 vectors. The plasmid

maps were constructed with Benchling platform (www.benchling.com).

(PDF)

S3 Fig. VLGGGSALL does not interact with Tau3R. The gel lanes contain the protein loaded

(load) flow-through (FT) PBS wash, pH7.5 (W1-30) and acid elutes (E1-E4) from the columns

linked to eight-amino-acid inactive peptide VLGGGCALL P (has previously shown no micro-

tubule-related neuroprotective activity [28]) that were incubated with brain extracts and

DMSO in the absence and presence of paclitaxel. Western blotting analysis with anti Tau RD3

detected Tau3R presence in the loaded material, column flow-through and column wash, but

did not detect Tau3R in the acid elution fractions of both the columns. In contrast, tubulin

antibodies—Tub2.5 identified tubulin-like bands also in the elution fractions with no apparent

influence of paclitaxel treatment.

(PDF)

S4 Fig. Two-way ANOVA statistical analysis. Examination of the effect of the two factors

(Paclitaxel and NAP) showed that NAP had a significant effect only for the lower paclitaxel

dose (D = 5). The indicated p-value is based on one-way ANOVA for this group; figure was

generated using R.

P-values of two-way ANOVA: paclitacel—0.00257; NAP—0.01093; paclitaxel:NAP interaction

—3.58e-10.

(PDF)

S5 Fig. Immunoblotting with tubulin antibody–overexposed cellulose membrane pre-

sented in the Fig 6B, panel IB. α-Tubulin. Differentiated human neuroblastoma SH-SY5Y

cells were over-expressed with GFP-Tau3R or GFP-Tau4R. Cells with GFP expression were

used as negative control. Immunoprecipitation (IP) of GFP, GFP-Tau3R and GFP-Tau4R in

the presence and absence of NAP was done with GFP antibody. Elution fractions (E) analyzed

by immunoblotting (IB) with tubulin antibody.

(PDF)

S1 Table. ELM prediction analysis of Tau (NP_005901) exon 10 translation sequence. ELM

analysis [30] predicted functional motifs of the translation sequence of spliced exon 10

(VQIINKKLDLSNVQSKCGSKDNIKHVPGGGS) of Tau isoform 2 (NP_005901).
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