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ABSTRACT
The tumor-suppressor gene tumor protein p53 (TP53) is one of the most commonly mutated genes in
human lung cancer, and TP53mutations are associated with a worsened prognosis and causes resistance to
cancer therapy. RNA sequencing and TP53 mutation data were downloaded to determine specific TP53-
associated signature based on differentially expressed genes between patients with lung squamous cell
carcinoma (LUSC) with wild type (TP53WT) andmutated (TP53MUT) TP53. We investigated the predictive value
of this signature on the immune microenvironment, tumor mutational burden (TMB), and likelihood of
response to immunotherapy and chemotherapy. In total, 1,556 differentially expressed geneswere identified
based on TP53 mutation status. Three genes (KLK6, MUC22 and CSN1S1) identified by univariate and
multivariate Cox regression analyses, comprised the prognostic signature which was an independent and
specific prognostic marker of overall survival in patients with LUSC. A nomogram was also established to
validate this signature for clinical use. Moreover, the high-risk group was characterized by increased
infiltration of monocytes and macrophages M1, and decreased T cells CD8 and T cells follicular helper. High-
risk group exhibited a higher TMB, and was much more sensitive to immunotherapy and chemotherapy.
KLK6 and CSN1S1 expression and the prognostic prediction values were further validated in clinical samples.
The derived TP53-associated signature is a specific and independent prognostic biomarker for LUSC patients,
and could provide potential prognostic biomarker or therapeutic targets for the development of novel
immunotherapies and chemotherapies.
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Introduction

Lung cancer is one of the common human malignancies and
is the leading cause of cancer-associated deaths world-wide.1

There are three different subtypes of non-small cell lung
cancer (NSCLC): (1) lung adenocarcinoma (LUAD); (2)
lung squamous cell carcinoma (LUSC); and (3) large cell
lung carcinoma (LCLC). LUSC constitutes approximately
30% of all lung cancer cases and globally, results in approxi-
mately 400,000 deaths per year.2,3 Though great progress has
been made toward its prevention, diagnosis and targeted
treatment, the clinical outcome of lung cancer remains unsa-
tisfactory. Growing evidence indicates that the malignant
phenotypes of cancers are influenced by the tumor
microenvironment.4–6 Lung cancer, an immune-sensitive
malignancy, is infiltrated by numerous immune cells, includ-
ing macrophages, eosinophils, neutrophils, dendritic cells,
mast cells, natural killer cells, B cells, and T cells. However,
few studies have systematically explored the relationship
between the immune phenotype of the lung cancer micro-
environment and its prognosis.

Tumor protein p53 (TP53), located on chromosome 17p13.1,
encodes the tumor suppressor protein p53.7 It is the most com-
monlymutated gene in humans withmore than 50% of all human
cancers indicating alterations in p53 signaling.8 Functionally, p53
binds directly to chromatin, and plays important roles in the
regulation of the cell cycle, apoptosis, autophagy, and DNA repair
in response to damaging agents.9 However, when mutated, loss of
these functions results in abnormal cell proliferation and promotes
cancer.10TP53mutations, mainlymissensemutations, are also the
most common mutations in NSCLC, and are more prevalent in
LUSC than in LUAD.11–13 Epidemiological studies have reported
that TP53mutations are closely related to smoking, and it occur-
ring more frequently in patients with tobacco-associated lung
cancer than in never-smokers.14,15 An increasing body of literature
suggests that TP53 mutations in lung cancer are associated with
increased resistance to cancer therapies and poorer survival
prognosis.16–18 In addition, TP53 mutations are associated with
higher vascular endothelial growth factor (VEGF) synthesis and
angiogenesis.19 Recently, TP53 mutation status was associated
with cancer-related microenvironment.20,21 We hypothesized
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that the overall survival of patients with LUSC harboring TP53
mutations might be particularly influenced by the lung cancer
microenvironment. Therefore, we identified genes affected by
TP53mutation status, and established a three-gene gene signature
that is a robust prognostic biomarker and predictive factor that can
be used in the clinic.

Materials and methods

Data sources

VarScan 2-based somatic mutation data from patients with
LUSC and LUAD, combined with gene expression data and
corresponding clinical features, were accessed from the
Cancer Genome Atlas (TCGA) website. This study meets
TCGA’s publication guidelines. All LUSC gene expression,
clinical, and somatic mutation data were downloaded through
the Data Coordinating Center. We also downloaded somatic
mutation data from the International Cancer Genome
Consortium (ICGC) to estimate the somatic mutations of
patients with LUSC.

Screening of differentially expressed genes (DEGs)

First, the raw counts of gene expression data from TCGA
were normalized using a weighted trimmed mean of log
ratios-based method.22 To obtain DEGs between patients
with (n = 388) and without (n = 100) TP53 mutations in
the TCGA LUSC cohort, the R package “edgeR” was used in
the standard comparison mode.23 The DEG threshold was set
at a |log2 fold change| ≥ 1 and a false discovery rate < 0.05.

Gene set enrichment analysis (GSEA)

To identify potential differences in biological functions
between LUSC patients with and without TP53 mutations,
GSEA annotation was performed using the R package
“clusterProfiler”.24,25 The GSEA threshold for significantly
enriched functional annotations was set at a p-value < 0.05
and an enrichment score > 1.0.

Identification of TP53-related prognostic signature

Univariate Cox regression analysis was performed using the
R package “survival” to evaluate correlations between the DEG
expression levels and the overall survival of patients with
LUSC. DEGs with p-value < 0.05 by univariate Cox regression
analysis were identified as prognostic. Multivariate Cox regres-
sion analysis was then used to determine the prognostic values
of specific gene signatures. A three-gene-based prognosis risk
score was calculated to assess each patient’s risk was calculated
according to the following formula:

Risk score ¼
XN

i¼1

Expi �Ci
� �

in which N represents the number of prognostic genes, Expi
represents the expression of genei profile and Ci represents the
estimated regression coefficient of genei determined by

multivariable Cox regression analysis.26–28 Patients with LUSC
with available survival data were separated into high- and low-risk
groups using the median score as a cutoff. Survival analysis was
performed using the Kaplan-Meier method and the log-rank test
was applied to evaluate the statistical significance of the
differences.

Estimation of tumor-infiltrating immune cells

We uploaded normalized gene expression data with standard
annotation files to the Cell type Identification by Estimating
Relative Subsets of RNA Transcripts (CIBERSORT) web por-
tal, and the fractions of 22 immune cell types using 1,000 per-
mutations and the LM22 gene signature as previously
described.29 The R package “Genefilter” was used to screen
each sample, and the threshold was set at p-value < 0.05. The
final CIBERSORT output was subsequently analyzed.

Immunotherapeutic and chemotherapeutic response
prediction

The programmed cell death 1 (PCDC1, also known as PD-1)/
CD274 molecule (CD274, also known as PD-L1) and cytotoxic
T-lymphocyte associated protein 4 (CTLA-4) pathways in are
implicated in tumor immune evasion, and therefore, immune
checkpoint inhibitors targeting PD-1 and CTLA-4 thereby
enhance antitumor immunity.30 We used the Tumor Immune
Dysfunction and Exclusion (TIDE) algorithm and subclass map-
ping to predict clinical responses to immune checkpoint inhibi-
tors as previously described.31,32 As chemotherapy is commonly
used to treat NSCLC, we used the R package “pRRophetic” to
estimate the chemotherapeutic response determined by the half
maximal inhibitory concentration (IC50) of each LUSC patient
on the Genomics of Drug Sensitivity in Cancer (GDSC) website.33

Estimation of tumor mutational burden (TMB)

The TMB (in mutations per megabase), is an emerging therapeu-
tic measure of sensitivity to immunotherapy. The TMB score of
each patient with LUSC was calculated as previously described.34

Independence of the gene-related prognostic signature
from other clinical features

To determine whether the predictions of the prognostic sig-
nature were independent of the clinical characteristics
(including age, gender, tumor/node/metastasis (TNM) stage,
T stage, N stage, and M stage) of patients with LUSC, uni-
variate and multivariate Cox regression analyses were per-
formed, and nomograms were constructed to assess the
probability of 1-, 3-, and 5-year overall survival for LUSC
patients based on the signature.

Immunohistochemistry

Tissue microarray chips containing 90 samples of LUSC and 90
samples of paired normal lung tissue were purchased from
Outdo Biotech (Shanghai, China). Immunohistochemistry
(IHC) staining was performed as previously described.35,36
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Microarray chips were stained with PD-L1 (Gene Tech), KLK6
(R&D) and CSN1S1 (Bioss). Quantitative analysis of the staining
was independently assessed based on the percentage of positive
cells and staining density by two experienced pathologists.37 The
final score was determined by adding the staining intensity score
and the average proportion of positive cells score.

Statistical analysis

All statistical analyses were performed using R version
3.6.1, and the data from different groups were compared
by Mann-Whitney-Wilcoxon Test. Pearson’s chi-square
test was performed to measure the level of significance
for association amongst variables. All reported P values
were two-tailed, and p < .05 was considered statistically
significant.

Results

Mutations in LUSC and LUAD

Traditionally, lung cancer treatment decisions have been based
on histological considerations. In the last few years, novel
insights in tumor biology and the opportunity to identify
genetic alterations have rapidly changed the process of thera-
peutic selection. We initially sought to identify somatic muta-
tions in patients with LUSC and LUAD. According to TCGA,
TP53 mutations were the most frequent, and were more pre-
valent in LUSC than LUAD (77% vs. 47%; Figure 1). We also
identified LUSC mutations in the ICGA database. Consistently,
TP53 was also the most frequently mutated gene
(ranked second), which was consistent with its high frequency
in the TCGA database (Supplemental Figure 1).

Figure 1. Mutations in LUSC and LUAD samples (a) Overview of somatic mutations in all samples in the (A) LUSC and (b) LUAD TCGA cohorts.
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Identification of DEGs between LUSC patients with and
without TP53 mutations

The high rate of TP53 mutations indicated that TP53 status
was closely linked to LUSC. TP53 mutation status is a well-
known clinically relevant molecular marker in lung
cancer.38 Therefore, we separated LUSC patients into
TP53 mutated and wild-type groups and explored DEGs
between them. In total, 773 upregulated genes and 783
downregulated genes were identified (Figure 2(a,b)). To
gain insight into DEG functions, we performed gene ontol-
ogy (GO) enrichment analysis based on GSEA analysis. As
a result, TP53 mutation status genes were clustered most
enriched for terms related to immune functions, such as
major histocompatibility complex (MHC) class II protein
complex, establishment of T cell polarity, immunoglobulin
complex, and circulating and immunoglobulin complex
indicating that genes related by TP53 mutation status
mainly probably played an important roles in immune-
related processes in LUSC.

Construction of the DEG-based prognostic signature

To identify DEGs that correlated with the overall survival
patients with LUSC, univariate Cox regression analysis was
performed. At p < .05, 75 genes were identified as prognostic
of overall survival in patients with LUSC (Supplemental
Figure 2). Multivariate Cox regression analysis was then

applied to inspect the interrelated relationship among genes
with overall survival, and only three genes showed significant
prognostic signatures for LUSC, containing kallikrein related
peptidase 6 (KLK6), mucin 22 (MUC22), and casein alpha s1
(CSN1S1; Figure 3(a)). A risk score to predicting prognostic
value was calculated, and patients with LUSC were separated
into low- or high-risk groups (Figure 3(b–d)). Kaplan-Meier
analysis indicated that high-risk patients had significantly
worse overall survival than low-risk patients (p < .0001;
Figure 3(e)).

Kaplan-Meier analyses of overall survival according to
TP53 mutation status

Consistent with the prognostic capacity of the three-gene
signature, TP53 mutation status was also significantly
correlated with the prognosis of patients with LUSC
(Figure 4(a)). To investigate whether the three-gene sig-
nature was independent of TP53 mutation status, patients
with LUSC were divided into high- and low-risk groups
based on TP53 mutation status. Kaplan-Meier overall
survival curves of the two groups based on the three-
gene signature were significantly different in the
TP53 WT and TP53MUT LUSC cohorts (Figure 4(b,c)).
Different types of TP53 mutations can occur and we
found that the TP53 mutation type affects the prognosis
of LUSC patients (Figure 4(d)). To explore whether the

Figure 2. Identification of DEGs in patients with LUSC with and without TP53 mutations (a) Heatmap and (b) volcano plot of identified DEGs. (c) GSEA analysis of
samples with and without TP53 mutations.
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Figure 3. Construction of the DEG-based prognostic signature (a) Prognostic values of DEGs by multivariate Cox regression analysis. (b) The distribution of the three-
gene-based risk score. (c) Vital statuses of patients in the high- and low-risk groups. (C) Heatmap of three-gene expression profiles in the high- and low-risk groups;
(d) Kaplan-Meier survival curves of the relative overall survival of high- and low-risk patients.

Figure 4. Kaplan-Meier analysis of overall survival according to TP53 mutation status Kaplan-Meier survival by TP53 status (a); in the TP53 mutation subgroup (b); in
the TP53 wild-type subgroup (c); with different types of TP53 mutations (d); and in the TP53 missense mutation subgroup (e).
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three-gene signature was independent of TP53 mutation
type, we performed prognostic analysis of the largest
subgroup, which contained TP53 missense mutations.
Interestingly, the three-gene signature played a negative
role, with high expression of these genes shortening the
overall survival of patients with LUSC (Figure 4(e)).

Immune cell infiltration landscapes of high- and low-risk
patients with LUSC

We next investigated differences in immune infiltration
between high- and low-risk patients with LUSC. As shown
in Figure 5(a,b) the proportions of 22 tumor-immune cell
types were significantly different between high- and low-risk
patients with LUSC. Moreover, immune cell proportions were
weakly to moderately correlated (Figure 5(c)). High-risk
patients with LUSC had significantly higher proportions of
monocytes and macrophages M1 and lower proportions of
T cells CD8 and T cells follicular helper. We also calculated
TMB scores based on TGCA somatic mutation data. The
TMB was significantly higher in patients with LUSC
(Supplemental Figure 3). The heterogeneity of immune infil-
tration observed in LUSC may provide prognostic indicators
and targets for immunotherapy and could have significant
clinical implications.

Immunotherapeutic and chemotherapeutic responses of
high- and low-risk patients with LUSC

Immune checkpoint blockade using immunotherapies, target-
ing CTLA-4 and PD-1, has emerged as a promising strategy to
treat a variety of malignancies.30 Thus, we estimated the

clinical response to immune checkpoint blockade (targeting
CTLA-4 and PD-1 in high- and low-risk patients with LUSC).
Interestingly, high-risk patients with LUSC showed more
promise in response to anti-PD-1 therapy (Bonferroni-
corrected p = .005; Figure 6(a)). We also investigated the
response to chemotherapy in high- and low-risk patients
with LUSC, and found that 29 chemotherapeutic drugs dis-
played significant differences in estimated IC50 between high-
and low-risk patients with LUSC, and that high-risk patients
with LUSC showed increased sensitivity to all 29 chemothera-
pies (Figure 6(b)).

Correlations between the three-gene signature and
clinical characteristics

We next investigated whether the three-gene signature-
derived risk score was an independent biomarker with regards
with conventional clinical information. Univariate Cox regres-
sion analysis indicated that the TNM stage, T stage, and risk
score were correlated with poorer survival in patients with
LUSC, and multivariate Cox regression analysis indicated

that the risk score could be used as a specific prognostic
indicator in LUSC (p < .001; Figure 7(a,b)). A prognostic
nomogram was established according to the factors in the
multivariate analysis. Compared with the TNM stage and
T stage, the risk score displayed superior predictive perfor-
mance (Figure 7(c)).

Validation of the gene signature in clinical tissue samples

To confirm the reliability of the identified gene signature,
we examined KLK6 and CSN1S1 expression levels by

Figure 5. Immune cell infiltration landscapes in high- and low-risk patients with LUSC (a) Relative proportions of immune cell infiltration in high- and low-risk patients. (b)
Correlation matrix and (c) heatmap of the 22 immune cell proportions. (d) Differences in immune cell infiltration abundances between high- and low-risk patients.
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Figure 6. Immunotherapeutic and chemotherapeutic responses in high- and low-risk patients with LUSC (a) Immunotherapeutic responses to anti-CTLA-4 and -PD-1
treatments in high- and low-risk patients. (b) Differential chemotherapeutic responses in high- and low-risk patients.

Figure 7. Correlation between the three-gene signature and clinical characteristics (a, b) Univariate and multivariate Cox regression analyses of correlations between
the three-gene signature and clinical characteristics with overall survival. (c) Nomogram for predicting the 1-, 3-, and 5-year overall survival of patients with LUSC.
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immunohistochemistry using a tissue microarray contain-
ing 90 pairs of LUSC tissues and adjacent normal tissues.
The results showed that KLK6 and CSN1S1 proteins were
significantly overexpressed in tumor tissues when com-
pared with those in normal tissues (Figure 8(a,b)).
Moreover, to determine whether KLK6 and CSN1S1
could be prognostic biomarkers for patients with LUSC,
survival analysis was performed, and the results showed
that KLK6 and CSN1S1 expression levels were critically
associated with overall survival in patients with LUSC
(Figure 8(c)). We also assessed the correlations between
the expression of gene signature (KLK6 and CSN1S1) and
PD-L1, and found that KLK6 and CSN1S1 were signifi-
cantly related to the expression of PD-L1 (Figure 8(d)).

Discussion

Lung cancer is the most common cause global cancer
mortality,39 and TP53 mutated lung cancer displays an
increased mutational burden, increased expression of immune
checkpoint proteins, increased T cell infiltration, and PD-L1
amplification and derives remarkable clinical benefit from
PD-1 inhibitors.21 However, the mechanisms by which TP53

mutation affects the microenvironment and lung cancer prog-
nosis. Therefore, it is vital to further elucidate the immune-
related effects of TP53 mutation status.

For the first time, this study has identified immune-related
genes affected by TP53 mutation status, providing novel prog-
nostic biomarkers and therapeutic targets for LUSC.
Generally, patients in the TP53 mutation group had worse
clinical outcomes. Genes modulated according to TP53 status
were specifically enriched for GO terms related to immune
response. We established a three-gene signature to predict
LUSC prognosis, and separated patients with LUSC into two
groups based on a related risk score. High-risk patients had
worse overall survival.

According to the tumor immunoediting hypothesis, less
immunogenic cancer cells are selected for during tumor devel-
opment in immune-competent hosts, to evade antitumor
immune responses.40 This may result in increased immunosup-
pressive cells (e.g., regulatory T cells and tumor-associated
macrophages), decreased immunoreactive cells (e.g., T cells fol-
licular helper), and increased expression of immunosuppressive
molecules (e.g., CTLA-4 and PD-1) in the tumor.41 PD-1 is
a central regulator of T cells CD8 exhaustion and blockade of
this inhibitory pathway enhances T cell immunity in several

Figure 8. Validation of the gene signature in clinical tissue samples (a) Representative images of IHC staining for CSN1S1 and KLK6 expression in LUSC tissues and
adjacent non-tumor tissues. (b) Protein expression scores in LUSC tissues and normal lung tissues. (c) Kaplan–Meier analysis of overall survival according to CSN1S1
and KLK6 expression levels. (d) Correlation of PD-L1 expression with KLK6 and CSN1S1 expression.
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different types of cancers.42,43 Thus, we hypothesized that
patients in different groups would have different immunother-
apeutic responses. As expected, we found that high-risk LUSC
patients generally had higher monocytes and macrophages M1
infiltration and lower fractions of T cells CD8 and T cells folli-
cular helper than low-risk patients. Moreover, we found that
high-risk LUSC patients had higher TMB values than low-risk
patients. Higher TMB values were correlated with increased
probability of a favorable immunotherapy.44,45 Consistently,
TIDE prediction, indicated that high-risk LUSC patients were
more likely to respond to anti-PD-1 therapy. Chemotherapy is
the most common method used to treat lung cancer, and high-
risk patients with LUSC were more sensitive to 29 chemothera-
pies than low-risk patients. The above results suggest that the
poorer prognosis for high-risk patients with LUSC is due to
higher immunosuppression and lower immunoreactivity in the
tumor microenvironment, and that these differences promote
tumor growth, progression, invasion, and metastasis.
Importantly, due to these differences, high-risk patients with
LUSC may derive greater benefit from immunotherapy and
chemotherapy.

We found that the clinical TNM stage, T stage, and risk
score significantly affected the overall survival of patients
with LUSC, and determined that the three-gene signature
was an effective independent prognostic model for LUSC.
In routine clinical practice, the pathologic stage is a vital
prognostic determinant of lung cancer. However, clinical
outcomes differ among patients at the same stage, indicat-
ing that current staging systems are insufficient for effec-
tive prognosis, and cannot fully reflect the biological
heterogeneity of patients with lung cancer. Therefore, it
is essential to find potential biomarkers to use as prog-
nostic and therapeutic indicators. To the best of our
knowledge, this is the first prognostic gene signature
related to TP53 mutation status identified. This gene sig-
nature provides a novel method to evaluate patients with
LUSC, and guide prognostic prediction and therapeutic
decisions. The three-gene signature could even distinguish
the prognoses of patients with LUSC with different types
of TP53 mutations. Importantly, we provide a nomogram
that can be used to combine the risk score with LUSC
clinical data to predict patient outcomes, which demon-
strated that the risk score was a better signature for pre-
dicting the short- and long-term survival of patients with
LUSC.

The expression of KLK6 and CSN1S1 and the prognostic
prediction value was further validated in clinical samples.
KLK6 and CSN1S1 proteins were significantly overexpressed
in tumor tissues when compared with those in normal tissues.
Survival analysis showed that high expression of these pro-
teins was related to poor prognosis. The results might further
prove the reliability of our analysis.

Overall, for the first time, this study identifies a three-gene
signature associated with TP53 mutation status that can inde-
pendently predict the survival of patients with LUSC. High-
risk patients with LUSC may derive greater benefit from
immunotherapy and chemotherapy, and using the signature
could have significant impact of the clinical treatment of these
patients.
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