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Abstract

Gliomas are the most frequent type of primary brain tumours. Low grade gliomas (LGGs,

WHO grade II gliomas) may grow very slowly for the long periods of time, however they inev-

itably cause death due to the phenomenon known as the malignant transformation. This

refers to the transition of LGGs to more aggressive forms of high grade gliomas (HGGs,

WHO grade III and IV gliomas). In this paper we propose a mathematical model describing

the spatio-temporal transition of LGGs into HGGs. Our modelling approach is based on two

cellular populations with transitions between them being driven by the tumour microenviron-

ment transformation occurring when the tumour cell density grows beyond a critical level.

We show that the proposed model describes real patient data well. We discuss the relation-

ship between patient prognosis and model parameters. We approximate tumour radius and

velocity before malignant transformation as well as estimate the onset of this process.

Introduction

Gliomas are the most frequent type of brain tumours, as they represent approximately 30% of

all central nervous system tumours and about 80% of all malignant brain tumours [1]. The

term “gliomas” refers to tumours originating from glial cells (mainly from astrocytes and oli-

godendrocytes) and includes astrocytomas, oligodendrogliomas and tumours which have fea-

tures of both astrocytoma and oligodendroglioma (hence called oligoastrocytomas). They can

be further separated into different histologic grades according to their morphologic features

reflecting their natural history or biologic behaviour. According to the World Health Organi-

sation (WHO) grade I astrocytomas (pilocytic astrocytomas) are very rare, non-infiltrating

and usually curable, thus will not be addressed in this article. WHO grade II gliomas are usu-

ally referred to as low-grade gliomas (LGGs), while WHO grade III and IV—as high grade gli-

omas (HGGs) (see [2] for the details of the classification).

LGGs are incurable primary tumours, usually occurring in frontal and temporal lobes. Typ-

ically LGG patients present only epileptic seizures, while other symptoms (headaches, lethargy,
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mental changes) are less common. Usually LGGs are slowly-growing, infiltrative tumours, but

the prognoses for LGGs patients are diverse. Some of those tumours grow very slowly for

years, while others progress rapidly causing major neurological deficits and subsequent death.

Because of the unpredictable clinical course, treatment strategies for LGG vary from the “wait

and see” approach to gross total resection followed by immediate radiotherapy or chemother-

apy. Reports [3–5] provide a strong support for the early use of surgery as it influences the

time to progression and median survival. However, due to the infiltrative nature of gliomas,

surgery alone is able to eradicate only the tumour bulk and thus other therapeutic treatments

are necessary to try to control the disease. Radiotherapy has been usually deferred in LGG

patients due to its toxicity and moderate impact on patients overall survival [6–8]. Currently it

is most frequently used only for patients with fast growing tumours or with significant

enhancement on post-contrast T1 magnetic resonance imaging (MRI), see for instance [9]. As

to chemotherapy, the preferred chemotherapeutic agent, temozolomide, is being used because

of its effectiveness and limited side effects [10–12]. However the treatment of LGGs is contro-

versial and in general the decision on the individual treatment strategy is based on numerous

factors such as patient’s age at diagnosis, performance status, patient preference and tumour

location [9].

Most LGG patients die due to the transformation of the tumour into a higher grade one,

which is a process known as malignant transformation, anaplastic transformation or malig-

nant progression. Median survival of LGG patients is between 5 and 10 years [13], compared

with one to two years for HGG patients [14].

The time of occurrence of malignant transformation differs among patients. The results

vary among clinical studies with a 5-year malignancy-free survival rates (that is time when

malignant transformation does not occur) from 30 to 70% [15–19]. There are also reports

claiming that all LGGs undergo malignant transformation during their clinical course, e.g.
[20, 21]. Radiologically, malignant transformation is usually defined based on the notable

appearance of contrast enhancement on MRI and/or a histopathologically proven malignant

degeneration in tissue acquired during biopsy or resection [18].

It was reported that LGGs displaying preoperative contrast enhancement had a significant

increased risk of recurrence [18], thus the complete resection of contrast enhancement areas

of the tumour significantly increases time to phenotypic change [22]. Medical doctors believe

that early detection of indicators of malignant transformation could improve the prognosis,

suggesting the radiological verification of relative cerebral blood volume [22, 23], the pathol-

ogy of gemistocytic astrocytoma [24], the overexpression of epidermal growth factor (EDGF)

and the absence of p53 mutation [25]. However, the statistical significance of such indicators is

still under study.

There has been a lot of activity on mathematical modelling of LGGs in the last years, e.g.
[26–33]. LGGs do not present metastasis, aberrant angiogenesis, hypoxia or necrosis. Thus, we

will not incorporate these elements in the model and instead we build a simple continuous

mathematical model with a minimal number of parameters. To validate our model we use

quantitative measurements of LGGs growth rates as suggested in [34].

Materials and methods

Mathematical model

Our mathematical model describes the change of the tumour cell density in time and space

due to the interplay of net proliferation and net diffusion of cancer cells, as in some previous

works [35, 36].

A mathematical model describes the malignant transformation of gliomas
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It has been suggested that malignant transformation of LGGs may be induced by a high cell

density focus [26, 29, 37–39]. As a result, tumour cells may start having a limited access to

nutrients causing major changes in the tumour microenvironment, including vessels damage,

generation of hypoxic foci, stabilization of hypoxia-dependent signalling molecules like hyp-

oxia-inducible factor-1 (HIF-1) and increase of genomic instability [38, 40–42]. These changes

lead to the appearance of more aggressive tumour cell phenotypes and/or additional

mutations.

Thus we base our model of malignant transformation on the assumption that the first step

in this phenotypic transition is the growth of the tumour density beyond a certain critical level

Lcrit initiating a non-reversible damage to the microenvironment [39]. Beyond that point hyp-

oxia arises and angiogenesis is triggered. However, this microvasculature is aberrant and leads

to both chronic and acute hypoxia events. This abnormal vasculature plays a key role in the

development of more aggressive phenotypes [42, 43] and an enhanced genetic instability.

Malignant transformation cannot be reversed, once the transformation is triggered cells

can not change their phenotype to a less aggressive one because of the accumulation of new

mutations. We assume that after the onset of malignant transformation cells take some time τ
to acquire a more aggressive high grade behaviour.

Cells before and after transformation differ in dynamic properties, which is reflected in the

model by different proliferation and motility rates (ρL, DL and ρH, DH for LGG and HGG,

respectively).

The density of LGG cells is described by a non-negative function L: ½0;þ1Þ � O! Rþ,

where O = [−B, B] describes the brain domain under consideration. The spatio-temporal den-

sity of the more malignant (transformed) cells is described by a function

H: ½0;þ1Þ � O! Rþ. Then, the full mathematical model for the evolution of both tumour

cells populations is given by the following system of partial differential equations:

@L
@t
¼ rLL 1 �

Lþ H
K

� �

þ DLDL �
1

t
SLHðLþHÞL; ð1aÞ

@H
@t
¼ rHH 1 �

LþH
K

� �

þ DHDH þ
1

t
SLHðLþHÞL; ð1bÞ

with initial conditions:

Lð0; xÞ ¼ L0ðxÞ 2 C2ð�OÞ; Hð0; xÞ ¼ 0; ð1cÞ

and no-flux boundary conditions:

@L
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Clearly, system (1) is a pair of Fisher–Kolmogorov–type equations (FKEs) [35]. The last term in

both equations describes the malignant transformation of LGG cells into HGG cells inspired by

[42]. In the proposed model this is described by continuous switch function SLH : Rþ ! ½0; 1�
depending on the total cell density and the rate 1/τ and having the following form:

SLHðTÞ ¼

0 for T < Lcrit � Dcrit

0:5 1þ cothð1Þtanh
T � Lcrit

Dcrit

� �� �
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where T is the total tumour density, Lcrit is the density of tumour cells triggering malignant

transformation and Δcrit is the width (or sensitivity) of the switch function. In what follows, we

express Lcrit in terms of the maximal cellular density K, that is Lcrit = βK for some β 2 (0, 1).

Initial data. As in [35] we assume that initial cells density distribution is a Gaussian one

with a mean cell density h0 at the centre of the tumour x = 0, i.e.

L0ðxÞ ¼ h0 exp �
x2

s

� �

; ð3Þ

where σ is a measure of the spread of LGG cells.

Typical values and ranges of the model parameters. System (1) has eight parameters

describing the dynamical properties of the two glioma cells compartments and the phenome-

non of malignant transformation. Typical values together with the references used in this

paper are summarised in Tables 1 and 2.

The maximal tumour density K is estimated by taking the typical astrocyte size to be about

10 μm in diameter leading to a value 108cells/mm3 [44, 46].

The parameters ρL, DL and ρH, DH quantify the overall biological aggressiveness of gliomas

growth, e.g. proliferation rates ρL and ρH are based on the observable values of tumour cells

doubling times. We assume LGG proliferation rate ρL to be larger than 0.0001/day, which is a

value 10 times smaller than the smallest proliferation rate observed in study of Gerin et al.
[28]. As an upper bound for ρL we take a value 0.008/day, which is the smallest value of prolif-

eration rate observed for HGGs [36]. The diffusion coefficient for LGGs is chosen in the range

between 0.0003 and 0.008mm2/day. These values are, respectively, around three times smaller

than minimal and three times larger than the maximal values for LGG diffusion coefficients

estimated in [28]. For HGG cells, we assume that they proliferate with a typical rate 0.042/day

observed in this kind of tumours, see e.g. [36, 45] and move with diffusion coefficient between

0.0008 and 0.9mm2/day. These values are close to minimal and maximal diffusion rates esti-

mated in [36].

Table 1. Typical parameter values for system (1).

Param. Description Value Units References

K carrying capacity

(maximal cellular density)

108 cells/mm3 [44]

ρH proliferation rate of HGG cells 0.042 1/day [36, 45]

d detection threshold 0.16K cells/mm3 [26, 37, 46]

Lcrit tumour cell density

causing malignant transformation

0.6K cells/mm3 [30]

Δcrit variation in density Lcrit 0.05Lcrit cells/mm3 Assumed

τ time of change to HGG phenotype 100 day Estimated

https://doi.org/10.1371/journal.pone.0179999.t001

Table 2. Ranges of fitted parameters for system (1).

Param. Description Range Units References

h0 initial mean LGG cell density 0.3K–0.57K cells/mm3 [30]

ρL proliferation rate of LGG cells 0.0001–0.008 1/day [28, 36]

DL diffusion rate of LGG cells 0.0003–0.008 mm2/day [28]

DH diffusion rate of HGG cells 0.0008–0.9 mm2/day [36, 46–48]

https://doi.org/10.1371/journal.pone.0179999.t002
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The value of critical density Lcrit triggering microenvironment damage and the malignant

transformation is taken to be around 60% of the carrying capacity K in agreement with previ-

ous estimates [29, 30]. The switch function sensitivity Δcrit is arbitrary chosen to be 5%.

The time τ needed for a high grade tumour to arise corresponds to the time required for the

development of hypoxia in the presence of a high cellularity, the generation of transient hyp-

oxic events leading to the development of more aggressive phenotypes and higher genetic

instability leading to new mutations. Since typical angiogenesis times are of the order of

1-2 weeks we can estimate τ to be of the order of a few months. Thus, we assume that typical

values of τ should be in the range 100-200 days.

The tumour cell density h0 leading to relevant symptoms and disease detection is difficult

to estimate as it can vary a lot depending on the tumour location. The normal physiological

value of cellularity of brain tissue is around 10-15%. LGGs are characterised, among others, by

an increased cellularity with respect to the healthy brain tissue. We will assume that the mini-

mal mean density leading to glioma diagnosis is around 0.3K as in [30]. It means that the

symptoms occur when the tumour cells density is 30% of the maximal tissue density. Then we

can impose the initial mean density h0 to be no smaller than 0.3K. On the other hand, as we

consider only tumours before transformation, see Eq (3), this value should be naturally smaller

than the value 0.57K, which corresponds to minimal density causing the onset of LGG cells

transformation as discussed previously.

Patients data

A retrospective study of the volumetric growth of LGGs was developed to verify the potential

of the mathematical model to describe the malignant transformation. Initially, for the pre-

sented study 82 patients diagnosed with LGG and followed with MRI scans at the Bern Univer-

sity Hospital between 1990 and 2013 were considered. The study was approved by Kantonale

Ethikkommission Bern (Bern, Switzerland), the approval number: 07.09.72. The data was ana-

lysed anonymously.

The criteria for inclusion of the patients into study were: (i) first biopsy/surgery confirmed

LGG (astrocytoma, fibrillary astrocytoma, oligoastrocytoma or oligodendroglioma), (ii) sec-

ond biopsy/surgery confirmed HGG (anaplastic oligodendroglioma, anaplastic astrocytoma,

anaplastic oligoastrocytoma or glioblastoma), (iii) availability of at least 5 MRI scans before the

histological confirmation of the malignant transformation, (iv) no treatment given in the

period of study and (v) no decrease of total tumour size observed in the absence of treatment.

Among all considered patients, 32 had confirmed malignant transformation and 8 satisfied all

of the inclusion criteria of the study. Table 3 summarises the included patients data.

Radiological measurements of tumour size

Radiological glioma growth was quantified by the measurements of the tumour diameter on

successive T2 (or FLAIR) MRI scans. The three largest tumour diameters (D1, D2, D3) accord-

ing to three reference orthogonal planes (axial, coronal and sagittal) were measured and the

tumour volumes were estimated using the ellipsoidal approximation: V = (D1 � D2 � D3)/2, fol-

lowing the standard clinical practice [34, 49]. Then the mean tumour diameter (MTD) was cal-

culated from the tumour volume V using the equation MTD = (2V)1/3.

In T2/FLAIR sequences the delineated abnormality corresponds to the presence of oedema,

see [50]. In LGGs, oedema correlates locally with the presence of glioma cells [37]. We

assumed, in line with previous works [26, 46, 51], that the T2/FLAIR signal is detectable above

a certain local cell-density threshold. The analysis of biopsies in LGG patients suggests that the

detection threshold for gliomas should be fixed between 10 and 20% of the maximal local
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tissue density K [37]. In the following, similarly to [46, 52] we assumed that the threshold of

detection of gliomas d equals 0.16K, what allows to calculate the diameter of the radiologically

detectable part of simulated tumour due to system (1).

Computational details and model fitting

Longitudinal volumetric patient data was used to fit the parameters of system (1). Specifically,

h0, ρL, DL and DH were considered to be patient-specific and thus fitted for each patient. The

remaining parameters were chosen as described in Sec. Typical values and ranges of the model

parameters.

We fixed the initial condition (3) on the basis of the first MRI scan for each patient. Namely

for each patient the variance of LGG cells distribution was computed through

s ¼ � r2
0
= ln

d
h0

� �

; ð4Þ

where r0 is the radius of the tumour calculated from the first MRI scan considered in the

study, d is the detection threshold and h0 is the fitted mean cell density.

System (1) was simulated using the standard Matlab PDE solver pdepe. Since the bulk

dynamics of FK-type equations does not depend much on the spatial dimensionality (see [43]

for a similar example) we chose to simulate model equations in one dimensional domain. In

order to avoid the boundary effects and focus on the dynamics of the tumour bulk, we have

taken the computational domain O to be 10 cm which is much larger than the typical tumour

size. The error between measured tumour sizes and model outputs for each patient was based

on the least squares method. The fitted parameters were obtained using particle swarm optimi-

zation algorithm, originally contributed to Kennedy, Eberhart and Shi [53, 54] and imple-

mented in Matlab with a constriction factor introduced by Clerc and Kennedy [55]. For the

purpose of fitting LGGs evolution 100 iterations of this algorithm were computed for each

patient and the size of swarm in each iteration step was set to be 100. For each patient the set of

fitted parameters (h0, ρL, DL, DH) were fitted at once with starting point chosen visually.

Results

Evolution of virtual patients’ tumours

The typical evolution of a virtual tumour governed by system (1) is presented in Figs 1 and 2.

Parameters h0, ρL, DL, DH of the virtual patient were fixed to the mean values of parameters

Table 3. Characteristics of patients selected in the study.

Age at diagnosis, mean (st. deviation), 37.89 (13.66)

Sex, M/F 3/5

Histology at diagnosis

Oligodendroglioma 2

Oligoastrocytoma 2

Astrocytoma 3

Fibrillary astrocytoma 1

Ki-67 LI at diagnosis, mean (st. deviation) 4.71% (1.72%)

Histology after malignant transformation

Anaplastic oligodendroglioma 4

Anaplastic astrocytoma 4

Ki-67 LI after malignant transformation, mean (st. deviation) 14.25% (4%)

https://doi.org/10.1371/journal.pone.0179999.t003
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fitted to patients data, see Table 4. The initial condition for the simulation is

Hðx; 0Þ ¼ 0; Lðx; 0Þ ¼ h0 exp ð� x2=235:012Þ ð5Þ

with x measured in mm, what gives an initial tumour diameter of 31.278 mm, being the mean

value of initial tumour diameters of patients selected for model fitting. The remaining parame-

ters used in the simulations are fixed as listed in Table 1.

When the cell density of LGG cells (Figs 1(a) and 2(a)) reaches the critical level (Fig 2(b))

HGG cells appear and start growing (Fig 2(c)) until they completely dominate the dynamics

(Figs 1(b) and 2(d)). This change in a cellular density is observed in patients as an appearance

or a significant increment in contrast-enhancing areas in post-contrast T1+Gd MRI scans in

the areas where the malignant transformation occurs. It also causes a considerable increase in

the total tumour mass that is reflected in solutions of our model, see Fig 2 and also visible in

diffusion-weighted imaging in the form of a restriction of the water mobility in the corre-

sponding tumour areas [56]. Moreover, after some time the tumour is almost completely com-

posed of the high-grade tumour cells as observed in clinical practice and also reflected by our

model.

System (1) describes the dynamics of real-patients LGG growth and its

malignant transformation

We fitted the solutions of the system (1) to the MRI longitudinal volumetric data for each

patient included in the study as described in the methods section. Parameters values obtained

are listed in Table 4.

Fig 3 shows for each patient included in the study the real tumour diameter longitudinal

data obtained from the MRI scans together with the virtual tumour evolution obtained with

Fig 1. Spatiotemporal simulations of the malignant transformation of LGGs. Pseudocolor plots

represent densities of (a) LGG cells, (b) HGG cells and (c) total (LGG + HGG) population with maximal

density rescaled to 1. The vertical and horizontal axes correspond to time in years and space in mm,

respectively. The virtual tumour evolves according to system (1) with initial condition and the values of

parameters as in Sec. Evolution of virtual patients’ tumours.

https://doi.org/10.1371/journal.pone.0179999.g001
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the parameters listed in Table 4. The model dynamics shows a very good agreement with the

real dynamics despite the use of a minimal number of parameters.

LGG proliferation rate determines prognosis

To correlate the numerical simulations with the patient prognosis we assume that a tumour of

a certain size is not compatible with life as stated, among others, in [46, 48]. This critical size is

usually referred to as fatal tumour burden. In this study we fix the value of the fatal tumour

burden to be equal to the tumour of 8 cm in diameter. Although this is critically dependent on

Fig 2. Snapshots of the evolution of the LGG and HGG cells densities solving system (1) for the parameter values and initial

conditions as described in Sec. Evolution of virtual patients’ tumours. The densities of LGG cells L(x, t) (red dashed lines), HGG cells

H(x, t) (blue dotted lines) and the total tumour (black solid line) are shown. The horizontal blue lines correspond to the value Lcrit (solid line),

Lcrit − Δcrit (blue dotted line) and Lcrit + Δcrit (blue dashed-dotted line). The value of the detection threshold is marked with dashed horizontal

lines. Results are shown for time t equal (a) 12, (b) 20, (c) 22 and (d) 25 months.

https://doi.org/10.1371/journal.pone.0179999.g002
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tumour location, in general this is believed to be a reasonable approximation. The assumed

value of fatal tumour burden is larger than the value suggested in previous studies of HGG

growth with the use of mathematical models [46, 48] due to the fact that in our patients data-

base the tumours of diameter even greater than 7.5 cm are reported. Moreover, the slow evolu-

tion of LGGs allows the brain to remap neurological functions to other brain areas enabling

these tumours to grow to larger sizes in comparison to HGGs. In our mathematical framework

we refer to the time ranging from detection to the time when the virtual tumour reaches the

fatal tumour burden size as virtual patient survival.

Based on numerical simulations of system (1) we conclude that the parameter ρL has a large

influence on virtual patient survival. Fig 4 presents virtual patient survival as a function of

both proliferation rates for LGG and HGG in the absence of any treatment and parameters

fixed to the mean values obtained from fit to real patients data. We observe that changes in ρH

have a minor effect on survival. However, a modification of ρL, proliferation rate in the slowly

growing stage of the disease, affects very significantly the virtual patient survival.

For the mean value of proliferation rate ρL = 0.0009/day virtual patient survival varies from

3.7222 years (for ρH = 0.008/day) to 2.1944 years (for ρH = 0.08/day). For the typical value of

ρH = 0.042/day (see Table 1) virtual patient survival varies from 22.2778 years (for ρL = 0.001/

day) to 1.0556 year (for ρL = 0.008/day). This is an expected outcome of the model since in pre-

vious works [34, 52, 57, 58] it has been shown that the value of velocity of LGG growth is a

prognostic factor for malignant transformation-free survival and overall survival. It is also

reflected by our model.

This is an interesting result which can have an influence on treatment planing since in

many cases more intensive therapies such as radiotherapy or even significantly less toxic che-

motherapy are reserved until there are signs of progression (e.g. spots of contrast enhancement

on T1+Gd MRI scans). Although an inclusion of treatment into the model and further analysis

are needed, our results indicate that it is better to use more aggressive intervention earlier, try-

ing to prevent malignant transformation than to wait and treat already transformed and fast-

growing tumour cells. One can base the treatment decisions on the estimates of the tumour

aggressiveness and potential time to malignant transformation which can be derived from

imaging [29], taking into account also the levels of cytotoxicity induced. This is also in line

with recent results that one may get a substantial therapeutical benefit by the use of protracted

therapies instead of waiting for the malignant transformation to occur [30, 31].

Table 4. Model parameters fitted for each patient and errors of fits.

patient id h0 ρL (/day) DL (mm2/day) DH (mm2/day) error

60 0.3404 0.001223 0.001227 0.004056 0.38%

61 0.3005 0.000253 0.000306 0.894292 0.21%

65 0.5435 0.000447 0.000858 0.745564 0.14%

66 0.5371 0.000243 0.000550 0.008817 0.08%

141 0.4613 0.001789 0.003597 0.015512 0.19%

165 0.5692 0.000553 0.0007558 0.001919 0.83%

195 0.4602 0.000764 0.007971 0.173277 0.45%

211 0.4144 0.002387 0.007383 0.087882 0.02%

mean

(virtual patient)

0.4533 0.0009 0.0028 0.2414 0.2875%

st. deviation 0.0973 0.0008 0.0031 0.3639 0.2622%

https://doi.org/10.1371/journal.pone.0179999.t004
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Fig 3. Tumour diameter evolution for patients with confirmed malignant transformation. The

diameters calculated from MRI scans (red circles) and from the fitted mathematical model (1) (solid blue lines)

are shown. The vertical black dashed lines mark the times when malignant transformation was confirmed
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The rate of phenotypic change does not change survival significantly

Intuitively, time τ gives an order of magnitude of the time to complete malignant transforma-

tion once the density reaches the critical level. Fig 5 shows the dependence of the virtual

patient survival on the parameter τ for our standard set of parameters described in Sec. Evolu-

tion of virtual patients’ tumours, which are the mean values obtained from fit to real patients

data. It is clear that the choice of this parameter does not essentially influence survival which

differs within the range of 3 months, which is not significant when compared to the average

survival of low grade gliomas [13]. Since the major component of survival time is given by the

survival before the malignant transformation, this time adds only weeks or at most a few

months to the total survival. For the other sets of parameters the results were very similar.

Theoretical estimates of LGG growth and malignant transformation

Estimates of LGG growth. Initially, until the onset of malignant transformation the

tumour is composed only of LGG cells and thus its evolution is described by a single FKE:

@L
@t
¼ rLL 1 �

L
K

� �

þ DLDL ð6aÞ

histopathologically. The values of parameters σ, h0, ρL, DL, DH were different for each patient (see Table 4).

The parameter σwas calculated using Eq (4). Other parameters values are listed in Table 1.

https://doi.org/10.1371/journal.pone.0179999.g003

Fig 4. Virtual patient survival (VPS) for different proliferation rates of LGG and HGG cells evolving as

indicated by system (1). The initial tumour cell densities and parameters for virtual patients were taken as in Sec.

Evolution of virtual patients’ tumours.

https://doi.org/10.1371/journal.pone.0179999.g004
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with initial condition:

Lð0; xÞ ¼ h0 exp �
x2

s

� �

ð6bÞ

and no-flux boundary condition:

@L
@n

�
�
�
�
@O

¼ 0; ð6cÞ

see system (1) and Eq (3). For convenience throughout this section we will use ρ and D instead

of ρL and DL.

Until malignant transformation, glioma total density is significantly smaller than the maxi-

mal cellular density in brain. As a result, tumour cells do not have to compete for space.

Fig 5. Relation between the characteristic time of phenotypic change τ and virtual patient survival. The initial

tumour cell densities and parameters’ values are taken as in Fig 1.

https://doi.org/10.1371/journal.pone.0179999.g005
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Therefore, we neglect in system (6) the non-linear term and approximate the solution L to sys-

tem (6) by a solution u to the following equation referred to as Skellam equation [59]

ut ¼ ruþ DDu ð7Þ

together with free boundary condition and the initial condition

uð0; xÞ ¼ h0 exp �
x2

s

� �

: ð8Þ

Therefore, we approximate the tumour cell density after diagnosis by a solution of Eq (7):

uðt; xÞ ¼ h0ert

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s

sþ 4Dt

r

e� x2

sþ4Dt: ð9Þ

The virtual tumour is detectable at time t if maxx u(t, x)� d. Then it is detectable for all pos-

itive times if

min
t�0

max
x uðt; xÞ ¼ min

t�0
uðt; 0Þ ¼

@

@t
uðt; 0Þ � d:

Function u(t, 0) is increasing if

sr > 2D ð10Þ

and minimum is attained for time 2D� sr

4Dr
. Finally when the condition

h0e
2D � sr

4D
ffiffiffiffiffiffi
sr

2D

r

� d

holds the analytical formula for the radius of tumour reads

rðtÞ ¼ 2t
ffiffiffiffiffiffiffi
Dr
p

1 �
ln ðsþ 4DtÞ

2rt
þ

1

t
s

4D
þ

1

r
ln

h0

d
ffiffiffi
s
p

� �� �

þ

�

�
s ln ðsþ 4DtÞ

8Drt2
þ

s

4Drt2
ln

h0

d
ffiffiffi
s
p

� ��1=2

:

ð11Þ

Next, calculating the first derivative of r with respect to time we obtain the tumour growth

velocity:

r0ðtÞ ¼
2
ffiffiffiffiffiffiffi
Dr
p

1 �
ln ðsþ 4DtÞ

4rt
þ

1

2t
s

4D
þ

1

r
ln

h0

d
ffiffiffi
s
p

� �

�
1

2r

� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
ln ðsþ 4DtÞ

2rt
þ

1

t
s

4D
þ

1

r
ln

h0

d
ffiffiffi
s
p

� �� �

�
s ln ðsþ 4DtÞ

8Drt2
þ

s ln
h0

d
ffiffiffi
s
p

� �

4Drt2

v
u
u
u
t

:
ð12Þ

Clearly, the formulae for the tumour radius and tumour growth velocity are rather complex.

Thus, we derive approximations of these formulae for the case when t� 1 and when t� 1.

First we investigate the long time behaviour of Eqs (11) and (12). In this case using Taylor

expansion we have

ln ðsþ 4DtÞ ¼ ln t þ ln ð4DÞ þ ln 1þ
s

4Dt

� �
¼ ln t þ ln ð4DÞ þ

s

4Dt
þ o

1

t

� �

: ð13Þ

Plugging Eqs (13) into (11), using asymptotic approximation and keeping only terms of order
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equal or higher than 1/t we obtain

rðtÞ ¼ 2t
ffiffiffiffiffiffiffi
Dr
p

1 �
ln t
4rt
þ

1

2rt
sr

4D
þ ln

h0

d
ffiffiffi
s
p

� �

�
ln 4D

2

� �

þ o
1

t

� �� �

: ð14Þ

A similar procedure leads to the formula for the velocity:

r0ðtÞ ¼ 2
ffiffiffiffiffiffiffi
Dr
p

1 �
1

4r
�
1

t
þ o

1

t

� �� �

: ð15Þ

This results show that tumour radius asymptotically grows with the speed slower than the

asymptotic velocity of FKE, where the first correction term is equal to 1/(4ρt). This means that

for large times lack of restriction on the density leads to slower tumour growth. This might

seem a surprising result, but in fact it not so much. Although density limitation due to the

competition slower cell division it also forces cells to move to the area with less density leading

to faster increase in tumour radius.

The behaviour of the radius and velocity of tumour for small times is even more important.

The maximal tumour density is relatively small and we expect better agreement of the results

with the full model. In order to obtain asymptotic approximation of the tumour radius for

t� 1 we expand the right-hand side of Eq (11) in Taylor series around t = 0. We have

ln ðsþ 4DtÞ ¼ ln sþ ln 1þ
4D
s

t
� �

¼ ln sþ
4D
s

t þ oðtÞ; as t ! 0:

Thus, neglecting the terms of order higher than t and using Eq (4) to eliminate ln(h0/d) we

arrive at

rðtÞ ¼ r0 1þ
1

2

4D
s
þ

sr � 2D
r2

0

� �

t þ oðtÞ
� �

: ð16Þ

Finally using the same techniques we derive the approximation of the velocity of the tumour

growth as t! 0:

r0ðtÞ ¼
2D
s

r0 þ
sr � 2D

2r0

þ t
4D
s
�
sr � D

r0

�
r0

4

4D
s
þ

sr � 2D
r2

0

� �2
 !

þ oðtÞ: ð17Þ

It is interesting that the velocity of the tumour growth depends on r0 or, being precise, on the

term ln(h0/d). In particular for σρ> D there exists a ratio h0/d for which this velocity is

minimal.

It is easily seen that for t! 0 the value of tumour radius and tumour growth velocity tend

to r0 and 2D
s

r0 þ
sr� 2D

2r0
; respectively. We present the results of comparison of FKE, Skellam

model and asymptotic behaviour in Fig 6 using the parameters values estimated for patients

selected in this study.

Estimates of malignant transformation. Here we intend to provide some analytical esti-

mates for the onset of malignant transformation as we believe that knowing the approximated

time of this transformation could help in making clinical decisions [60].

The onset of malignant transformation can be estimated from numerical simulations of

Eq (6), let us denote it as tOMT. However instead of considering partial differential equations,

we would like to obtain algebraic formula feasible to solve in common programmes like

Microsoft Excel, available in clinics.

Based on Eq (9) we can estimate the time tOMT, S of the onset of malignant transformation

as the time when the LGG cell density hits the value Lcrit − Δcrit. Let us recall that h0 < Lcrit −
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Fig 6. Evolution of LGGs diameter—Results based on the simulations of FKE Eq (6) (black solid line),

analytic equation of radius evolution Eq (11) (red dashed-dotted line) due to Skellam model (7) and

asymptotic behaviour of radius as t! 0 Eq (16) (blue dotted line). The vertical dashed line denotes the
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Δcrit, see Sec. Typical values and ranges of the model parameters. As function u attains its maxi-

mum in x = 0, we will calculate tOMT in the following way:

Lcrit � Dcrit ¼ h0ertOMT;S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s

sþ 4DtOMT;S

r

;

2rtOMT;S ¼ ln
Lcrit � Dcrit

h0

� �2

1þ
4D
s

tOMT;S

� � !

:

ð18Þ

The right-hand side of Eq (18) is a convex function of tOMT. The solution of Eq (18) exists

when the condition

sr � 2D

holds, compare condition (10).

We observe that tOMT strongly depends on tumour density at center, that is where the cellu-

lar density is highest. For sufficiently small LGG cell diffusion coefficient we can approximate

the evolution of tumour density at x = 0 by the logistic equation instead of solving nonlinear

partial differential equation. Thus, we consider L(0, t)� u(t), where u is a solution to

ut ¼ ru 1 �
u
K

� �

ð19aÞ

with initial condition given by the density in the center of the tumour:

uð0Þ ¼ h0: ð19bÞ

Solving Eq (19), we obtain that onset of malignant transformation could be approximated as:

tOMT;L ¼
1

r
ln
ðLcrit � DcritÞð1 � h0Þ

h0ð1 � ðLcrit � DcritÞÞ

� �

: ð20Þ

Clearly, such estimation is good for small diffusion rates of LGG cells, but on the contrary (for

larger diffusion coefficients) estimation given by Eq (18) is a better one, compare Fig 7. Thus,

we would propose to estimate tOMT analytically as

tOMT � maxftOMT;S; tOMT;Lg: ð21Þ

We have computed estimates of the onset of malignant transformation for first six patients

for which the occurrence of malignant transformation was observable radiologically in tumour

size, see Fig 8. Our work shows that all estimated onsets of malignant transformation appears

in medically viable time period, see also S1 File. We can observe a significant delay from the

onset of malignant transformation to the visible change in the velocity of tumour radius

growth. A natural explanation for this is that there is a visible increase in detectable tumour

size when the significant part of the tumour is formed by already transformed cells.

Discussion

In this paper we addressed the process of malignant transformation of low-grade gliomas,

what is the main reason for the disease lethality. The early detection of malignant

time when malignant transformation was confirmed histopathologically. The model parameters and initial

conditions were the same as in Fig 3 for patients selected in this study.

https://doi.org/10.1371/journal.pone.0179999.g006
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transformation could improve the therapeutical management and prevent the misdiagnosis of

actual tumour grade. It can have major therapeutic implications, namely the tumour with

undetected malignant transformation would be treated less aggressively than necessary and as

a result an increase in mortality will occur.

To our knowledge up to now the only mathematical model accounting for the LGG malig-

nant transformation was formulated by Swanson et al. in [26]. In that work a system of differ-

ential equations was describing the evolution of three types of glioma cells (normoxic, hypoxic

and necrotic) with a vascular component and antiangiogenic factors. Interestingly, authors

claim that the accumulations of genetic mutations is not necessary for malignant progression

and the growth kinetics parameters alone can drive the glioma transformation. The main

drawbacks of that model are their complexity and the fact that some of the underlying biologi-

cal assumptions that are not completely realistic. For instance, normoxic cells convert directly

not only to hypoxic, but also to necrotic ones, which is contradictory to biological

observations.

Recently it has been hypothesised that malignant transformation may be triggered by the

change of the tumour microenvironment due to the elevation of the cell density in a specific

tumour areas [29, 30, 33, 39]. In fact, previous studies suggested the use of antithrombotics to

avoid early tumour-induced vaso-occlusions (probably caused by the increment in cellularity)

in order to delay the malignant transformation [38].

In this paper for the first time we try to use this concept in a quantitative way to describe

the full process of the malignant transformation from a LGG to a HGG. We describe this pro-

cess in a minimal way using a model of two coupled FKEs in which total tumour density is a

driving force of phenotypic change. Interestingly, the model is able to reproduce the main fea-

tures of the transition from low grade into high grade glioma. We presume that in our mathe-

matical framework we can treat the tumour consisting of both LGG and HGG cells (see Fig 6)

as WHO grade III glioma, which is an intermediate tumour stage between LGG (grade II) and

secondary glioblastoma (grade IV) both histologically and in molecular features [61, 62].

Grade III gliomas, compared to grade II tumours, are more cellular, demonstrate more atypia,

Fig 7. Estimates of the onsets of malignant transformation:tOMT (black solid line), tOMT,S (blue dotted

line) and tOMT,L (red dashed-dotted line) for different values of diffusion rate D. The initial tumour cell

densities and other parameters’ values are taken as in Fig 1.

https://doi.org/10.1371/journal.pone.0179999.g007
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Fig 8. Evolution of tumour diameter due to system (1) together with the clinical data as in Fig 3, the estimation of the onset of

malignant transformation calculated using simulations of Eq (6) (vertical black solid lines), Eq (20) (red dashed-dotted lines) and Eq

(18) (blue dotted lines). We also show the percentages of HGG cells in total tumour mass calculated based on the results of simulations. The
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and mitoses are seen. However unlike glioblastomas, they lack vascular proliferation and

necrosis on pathologic evaluation. The difference between gliomas grade III and IV is also

reflected in the patients overall survival [60, 63] and prognosis, implying the necessity of using

different treatment strategy.

We were also able to fit the model to the retrospective volumetric data of LGG patients who

underwent malignant transformation and obtained a very good agreement. Based on this

results we can treat our new model as a first step to the investigation of malignant progression

as a function of patient-specific coefficients. We suggest combining the use of the early imag-

ing and the results of mathematical modelling. To be specific, first we simplified our model of

evolution of LGGs and obtained analytical equations for tumour radius and velocity before the

onset of malignant transformation. As a result, we were able to provide an early approximation

of the onset of malignant transformation based on the patient-specific parameters. Although

Eq (21) looks complex, this formula is a significant simplification as instead of considering in

fact a system of partial differential equations, we deal with an algebraic equation. Based on this

formula and retrospective volumetric patients data, we have been able to compute post-hoc
estimates of the onset of malignant transformation using the values of fitted parameters for

individual patients. All estimated onsets of malignant transformation appears in medically via-

ble time period, however there have been a significant delay from these times to the visible

change in the velocity of tumour radius growth suggesting that there is a visible increase in

detectable tumour size when the already transformed cells form the substantial part of the

tumour. Importantly, the obtained values do not overestimate medically confirmed malignant

transformation time. Thus, we can interpret the estimated values as the earliest times when

malignant transformation could occur.

Let us note that the estimated time of onset of malignant transformation depends crucially

on three biologically relevant parameters: proliferation rate, motility rate and mean initial den-

sity. The last one is essential to estimate in an unambiguous way the time of malignant trans-

formation before it occurs. In general, we would like to provide predictions of time to

malignant transformation for individual patients using data of only few medical examinations

(MRI scans). However, our research shows that in order to do so, we would need not only vol-

umetric data, but also imaging data at least from the first diagnostic MRI, based on which an

initial tumour density could be estimated. Clearly, the proliferation and diffusion rates for

LGG cells could be estimated from a few MRIs (possibly three) using e.g. a standard linear

regression method. Subsequently, having parameters describing initial LGG density and

tumour growth rates, the estimate of malignant transformation time can be computed from

Eq (21) using standard Microsoft Excel package, which, in contrast to considering full partial

differential model, could be done even in clinics. In such a way, combining the modelling

approach and imaging, one would be possibly able to predict non-invasively the malignant

transformation. Interestingly, Hathout et al. in [52] using the methodology from the previous

works, e.g. [36], estimated mean proliferation and motility rate based on results of two MRIs

for contrast-enhancing grade II astrocytoma and found out that those kinetics rates were sig-

nificantly higher in the tumours that transformed to grade III or IV gliomas. It has been

hypothesised recently that using different MRI modalities one is able to identify patients which

tumours has recurred and underwent malignant transformation [64] as well as predict if the

risk of rapid malignant transformation is large [22, 23, 65]. The use of perfusion-weighted

MRI should be considered for broader use due to its potential [22, 23, 65]. We believe that by

time scale of simulation ends when malignant transformation was confirmed histopathologically. Model parameters and initial conditions were

the same as in Fig 3 for the first six patients in this study (dashed lines).

https://doi.org/10.1371/journal.pone.0179999.g008
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continuing the research on both advances in analysis of imaging modalities and mathematical

modelling we would also be able to predict successfully malignant transformation.

Using such approach, the results obtained from imaging data and fitting the model opens

the doors for the treatment personalisation. The estimations of the time of malignant transfor-

mation can possibly assist in selecting the best treatment. In particular, cases of fast-growing

tumours or those which initial density was found to be significant should be followed with

imaging thoroughly and early treatments strategies should be taken into account. One could

consider applying treatment in the time of predicted malignant transformation. By eradicating

glioma cells either by surgery or chemotherapy, the tumour cells density will be reduced result-

ing in prolonged malignant transformation-free survival and as a consequence overall survival,

as well. In the future we would like to address the problem of optimal therapeutical schedulings

taking into account the results of this study. In order to do so, the mathematical model may be

improved by inclusion of more biological details.

We also believe that further understanding of the dynamics of the malignant transforma-

tion of LGGs may enable the development of more effective treatment strategies aimed at pro-

longing recurrence and delaying the arising of malignancy. Thus, further studies aimed at

improving the understanding of the evolution of the malignant transformation, coupling mul-

timodal imaging with mathematical models and studying the impact of optimised therapeuti-

cal schedules on the time to malignant transformation are necessary.

Supporting information

S1 File. Patients data. Containing data of LGG patients followed at Bern University Hospital

selected in the study, see also Sec. Patients data.

(XLSX)
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Visualization: Magdalena U. Bogdańska, Marek Bodnar, Monika J. Piotrowska.

Writing – original draft: Magdalena U. Bogdańska.

Writing – review & editing": Magdalena U. Bogdańska, Marek Bodnar, Monika J. Piotrowska,

Vı́ctor M. Pérez-Garcı́a.
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