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Elevated NTCP expression 
by an iPSC‑derived human hepatocyte 
maintenance medium enhances HBV infection 
in NTCP‑reconstituted HepG2 cells
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Abstract 

Background:  The sodium taurocholate cotransporting polypeptide (NTCP) is a functional receptor for hepatitis B 
virus (HBV). NTCP-reconstituted human hepatoma cells support HBV infection, but the infection is suboptimal and no 
apparent HBV spread has been observed in this system.

Results:  We found that NTCP-reconstituted HepG2 cells were highly susceptible to HBV infection after cells were 
cultured in a commercial human inducible pluripotent stem cell (iPSC)-derived hepatocyte maintenance medium 
(HMM). The enhanced HBV infection coincided with increased NTCP expression, and was observed in six different 
clones of HepG2-NTCP cells. Promoter assays indicated that HMM activated the cytomegalovirus immediate-early (IE) 
promoter that drives the NTCP expression in the HepG2-NTCP cells. RNA-Seq analysis revealed that HMM upregulated 
multiple metabolic pathways. Despite highly upregulated NTCP expression by HMM, no obvious HBV spread was 
observed even in the presence of PEG 8000.

Conclusions:  Our data suggest that this particular medium could be used to enhance HBV infection in NTCP-recon-
stituted hepatocytes in vitro.
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Introduction
Hepatitis B virus (HBV) infection leads to a wide spec-
trum of liver diseases ranging from chronic hepatitis, 
cirrhosis, and ultimately hepatocellular carcinoma over 
several decades [1]. The chronic hepatitis B prevalence 
was estimated around 3.5% worldwide in 2016, and a 
total of 257 million people are chronically infected with 
HBV [2]. HBV vaccines have been routinely used in 
infants and adults and can effectively prevent new infec-
tions [3]. However, the current clinically approved HBV 

antivirals including nucleos(t)ide analogs and interferons 
are not able to achieve an HBV eradication or functional 
cure [4–6].

HBV is an enveloped virus and a member of Hepad-
naviridae family. It contains a partially double-stranded 
relaxed circular DNA (rcDNA) genome of approximate 
3200 bp in length [7]. After entry into hepatocytes, HBV 
rcDNA is transported to the nucleus and converted to 
a covalently closed circular DNA (cccDNA) [8, 9]. The 
cccDNA is the template for transcription of all viral 
RNAs including the pregenomic RNA (pgRNA) and four 
additional mRNA, which are translated into a total of 
seven viral proteins: the large, middle, and small enve-
lope proteins that form the surface antigen (HBsAg), the 
core antigen (HBcAg), the e antigen (HBeAg), the HBV 
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polymerase, and the regulatory protein X (HBx) [10, 11]. 
The pgRNA interacts with the viral polymerase to initiate 
its encapsidation into the core particles, which are then 
assembled with envelope proteins and released from cells 
as virions [12, 13].

A lack of robust cell culture systems and suitable small 
animal models has hampered the development of novel 
HBV antivirals or therapeutics [14]. Primary human or 
Tupaia hepatocytes, HepaRG, and hepatoma cell lines 
stably transfected with an overlength HBV genome 
(HepG2.2.15, HepAD38, or HepDE19) have been widely 
used for in  vitro HBV basic and antiviral research [15–
24]. However, these systems have limitations including 
the high batch-to-batch variability of primary hepato-
cytes, long-term differentiation procedure for HepaRG 
cells, and the incomplete viral life cycle in HBV stably 
transfected cell lines. Embryo stem cell or induced pluri-
potent stem cell (iPSC)-derived hepatocyte-like cells are 
also susceptible to HBV infection, but the process of gen-
erating these cells is time-consuming and labor-intensive 
[25–27]. In 2012, sodium taurocholate cotransporting 
polypeptide (NTCP), also known as SLC10A1, was iden-
tified to be a cell receptor for HBV and its satellite virus, 
hepatitis D virus (HDV) [28–30]. Since then, several 
NTCP-reconstituted human or murine hepatic cell lines 
have been generated and used for studying HBV infec-
tion [31, 32]. Particularly, the HepG2-NTCP cells have 
been the most widely used cells by HBV researchers. 
However, NTCP expression cannot maintain at a high 
level in proliferative cultured hepatocytes, or in livers 
undergo regeneration [33, 34]. It may involve the elevated 
NTCP degradation through the ubiquitin–proteasome 
system and/or lysosome, or the decreased transcription 
mediated by some important transcriptional factors like 
p53 [34].

In the present study, we reported that a commercial 
hepatocyte maintenance medium (HMM) that signifi-
cantly enhances HBV infection efficiency by only treating 
the HepG2-NTCP cells for 24  h prior to virus inocula-
tion. The enhancement of HBV infection was correlated 
with elevated NTCP expression.

Materials and methods
Virus and cells
HepG2-NTCP cells were previously established and cul-
tured with Dulbecco’s modified Eagle’s medium (DMEM) 
supplemented with 10% fetal bovine serum (FBS), 1% 
penicillin and streptomycin (D10), and blasticidin (8 μg/
ml) [35]. HepG2 cells were maintained in the same 
medium aforementioned without blasticidin. HBV parti-
cles were collected from HepDE19 cell culture superna-
tants as described previously [35, 36]. Briefly, HepDE19 
cells were cultured in Dulbecco’s modified Eagle’s 

medium (DMEM) supplemented with 10% tetracycline-
free fetal bovine serum (FBS) and 1% penicillin and strep-
tomycin to induce HBV virion production, supernatants 
were collected every other day for 18  days. The pooled 
supernatants were mixed with polyethylene glycol (PEG)-
8000 (final concentration of 10%) and rotated at 4  °C 
for overnight, followed by centrifugation at 1000×g for 
30  min at 4  °C. The viral particles were resuspended in 
DMEM medium, the stocks were aliquoted, quantified, 
and stored at − 80 °C.

Reagents
Hepatocyte maintenance medium (HMM) (Y30051, 
TaKaRa Bio USA) was used to pretreat or for long-term 
culture of HepG2 and HepG2-NTCP cells. Primary 
hepatocyte maintenance medium (PMM) was prepared 
according to previous publications [27, 35]. The NTCP 
antibody was generously given by Dr. Bruno Stieger 
(Department of Chemistry and Applied Biosciences, Uni-
versity of Zurich, Switzerland). HBc (B058601-1, Agilent) 
and HBs (MD-05-0186, RayBiotech) antibodies were 
used to stain HBV viral proteins for immunofluorescence 
assay. Cyclosporine A (30024, MilliporeSigma), a chemi-
cal that reportedly targets NTCP to inhibit HBV infec-
tion was used.

HBV infection
HepG2 or HepG2-NTCP cells were pretreated with 
HMM for 24  h before inoculating with HBV at differ-
ent doses mixed with DMEM containing 4% PEG8000 
for overnight. The inoculum was removed and HMM or 
D10/2%DMSO medium was used for further cell culture.

Immunofluorescence assay
At different days post-HBV infection, the cells were 
fixed with 4% paraformaldehyde at room temperature 
for 20 min. The fixed cells were blocked, permeabilized, 
stained with specific primary and then secondary anti-
bodies, counterstained with DAPI, and photographed 
with an LSM 800 microscope (Carl Zeiss Inc., Thorn-
wood, NY, United States).

RNA‑Seq analysis
HepG2-NTCP cells were cultured with D10/2%DMSO 
or HMM for 24 h, followed by total RNA extraction with 
RNeasy Isolation kit (Qiagen) and treated with DNase I. 
Following assessment of the quality of total RNA using an 
Agilent 2100 Bioanalyzer and RNA Nano chip (Agilent 
Technologies), 150  ng total RNA was treated to deplete 
the levels of ribosomal RNA (rRNA) using target-specific 
oligos combined with rRNA removal beads. Following 
rRNA removal, mRNA was fragmented and converted 
into double stranded cDNA. Adaptor-ligated cDNA was 
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amplified by limit cycle PCR. After library quality was 
determined via Agilent 4200 TapeStation and quantified 
by KAPA qPCR, approximately 60 million paired-end 
150  bp sequence reads were generated on the Illumina 
HiSeq 4000 platform. For data analysis, each sample 
was aligned to the GRCh38.p13 assembly of the human 
reference from GENCODE using version 2.1.0 of the 
RNA-Seq aligner HISAT2. Features were identified from 
the GTF file from GENCODE. Feature coverage counts 
were calculated using fetureCounts and differentially 
expressed features were calculated using DESeq2 pack-
age in R and significantly differential expressions were 
those with a false discovery rate (FDR) of  <  0.05 and 
fold-change of  >  2.

Gene ontology and pathway enrichment analyses
Grouping of differentially expressed gene (DEG) dataset 
into molecular functions, biological processes, or cel-
lular components was achieved by gene ontology (GO) 
analysis based on the DAVID program. The Kyoto Ency-
clopedia of Genes and Genomes (KEGG) was used to 
understand high-level biological functions and utilities.

Results
HMM enhances HBV infection at the entry step
In a process of evaluating the utility of induced pluripo-
tent cell (iPSC)-derived hepatocyte-like cells (HLCs) in 
studying HBV infection, we serendipitously found that 
a commercial hepatocyte maintenance medium (HMM) 
designed to maintain iPSC-HLCs appeared to enhance 
HBV infection of HepG2-NTCP cells when compared 
to the regular medium D10/2%DMSO (DMEM sup-
plemented with 10% FBS and 2% DMSO; Fig. 1A). HBV 
Infection of these cells strictly depended on the trans-
genic NTCP, as adding during virus inoculation with 
cyclosporin A, a known HBV entry inhibitor targeting 
NTCP [37–39], resulted in a great reduction in the num-
ber of infected cells. To determine which stage(s) of HBV 
infection was enhanced by HMM, HepG2-NTCP cells 
were cultured in HMM either before, during, or after 
HBV inoculation. Culturing the HepG2-NTCP cells in 
HMM for 24 h before HBV inoculation yielded the great-
est enhancement of infection. In contrast, culturing the 
cells in HMM after HBV inoculation did not enhance 
the infection (Fig. 1B). Interestingly, culturing the cells in 
HMM before and during HBV inoculation did not lead 
to further enhancement (Fig. 1C). Quantification of HBV 
infected area by ImageJ revealed up to 23-fold increase 
when HepG2-NTCP cells were first cultured in HMM for 
24  h before HBV inoculation (relative to cells cultured 
continuously in regular medium). These results demon-
strate that the use of HMM greatly improved HBV infec-
tion in HepG2-NTCP cells. Since the greatest effect was 

observed when HMM was used prior to HBV inocula-
tion, HMM likely enhanced HBV infection at the entry 
level.

HMM promotes HBV infection in HepG2‑NTCP cells 
by increasing NTCP expression
Next, we examined if HMM caused a change in NTCP 
expression in HepG2-NTCP cells. The NTCP mRNA 
level was significantly increased at both 24 and 72  h 
after cells were cultured in HMM (Fig. 2A). Similarly, the 
NTCP protein level was also increased at 24, 48, or 72 h 
after switching the regular medium to HMM (Fig.  2B). 
However, the endogenous NTCP was not induced in the 
parental HepG2 cells under the same condition. Since 
several studies have used primary hepatocyte mainte-
nance medium (PMM) for culturing NTCP-reconsti-
tuted hepatoma cells during HBV infection [30, 35, 40, 
41], we also examined if PMM that was previously used 
by another group to maintain hepatocytes derived from 
human stem cells [27] had any enhancement effect on 
NTCP expression similar to HMM. No further induction 
of NTCP was observed when HepG2-NTCP cells were 
cultured in PMM, indicating that the effect of HMM 
on NTCP expression was unique. In addition, HBV also 
exhibited higher infectivity in HepG2-NTCP cells pre-
treated by HMM compared to PMM (Fig. 2C). Since the 
HepG2-NTCP cells were originally generated by sin-
gle cell cloning, five additional HepG2-NTCP stable cell 
clones were tested. NTCP expression and HBV infection 
were enhanced by HMM in all cell clones tested (Fig. 2D). 
Thus, the effect of HMM on NTCP expression was not 
cell clone-specific.

Because the reconstituted NTCP in HepG2-NTCP 
cells is driven by a CMV-immediate early (IE) promoter, 
we next examined if HMM enhances CMV-IE promoter 
activity using a reporter assay. Plasmids containing a GFP 
cassette controlled by either a CMV-IE or an EF1α pro-
moter were transfected into HepG2-NTCP cells, and the 
expression of GFP was examined under a fluorescence 
microscope after culturing cells in HMM. Only CMV-IE 
promoter-controlled GFP expression was enhanced by 
HMM (Fig. 2E), suggesting that HMM increases CMV-IE 
promoter activity.

HMM induced transcriptomic changes in HepG2‑NTCP cells
To investigate whether the enhanced NTCP expression 
was solely responsible for HMM-mediated enhance-
ment of HBV infection in HepG2-NTCP cells, we per-
formed RNA-Seq analysis to profile the transcriptomic 
changes caused by HMM. A total of 2,727 differentially 
expressed genes (DEGs) were identified, including 1310 
upregulated and 1417 downregulated DEGs (Fig.  3A; 
Additional file 1: Table S1). Consistent with the qRT-PCR 
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result in Fig. 2A, the NTCP reads were increased by 6.4-
fold after cells were cultured in HMM for 24 h (Fig. 3A). 
KEGG pathway analysis revealed metabolic pathways, 
neuroactive ligand-receptor interaction, and cytokine-
cytokine receptor interaction as the top three pathways 
activated by HMM (Fig. 3B). HMM also enhanced meta-
bolic activities in the HepG2-NTCP cells, as evidenced 
by the enriched KEGG pathways associated with mature 
hepatocyte functions including lipid metabolism, amino 
acid synthesis, and xenobiotics metabolism (Fig. 3B). By 
contrast, alcoholism, pathways in cancer, and systemic 
lupus erythematosus were the most enriched pathways 
for the 1417 downregulated DEGs (Fig. 3C). Among the 
162 HBV-related genes (KEGG pathway hsa05161), the 

upregulated genes included SOS1, SLC10A1 (NTCP), 
STAT4, and FASLG; while 17 genes were downregulated, 
among which TNF, MAP2K6, E2F1, and CCNE2 were 
the most downregulated ones (Fig. 3D). Of note, TNF is 
capable of inhibiting HBV replication through disrup-
tion of capsid Integrity [42], and downregulation of E2F1 
or CCNE2 could lead to cell cycle arrest, which may be 
beneficial for HBV replication [43]. However, since the 
maximal effect of HMM on HBcAg and HBsAg expres-
sion was achieved by HMM addition prior to HBV inoc-
ulation, increasing HBV entry via NTCP upregulation 
appears to be the primary mechanism by which HMM 
enhances HBV infection.

Fig. 1  Hepatocyte maintenance medium (HMM) enhances HBV infection in HepG2-NTCP cells. A HepG2-NTCP cells were inoculated with HBV at 
100 or 500 genome equivalents (GE)/cell diluted in 4% PEG8000-containing DMEM or HMM in the presence or absence of 10 μM cyclosporin A 
(CsA). After 16 hours (h), the inoculum was removed, and cells were washed and refed with either DMEM supplemented with 10%FBS and 2%DMSO 
(D10/2%DMSO) or HMM. At 10 days (d) post-inoculation, cells were fixed and subjected to immunofluorescence assays using an anti-HBc antibody. 
Nuclei were stained with DAPI. B, C HMM was added to the HepG2-NTCP cell culture before, during, or after HBV inoculation (100 GE/cell). At 10 d 
(B) or 8 d (C) post-inoculation, cells were fixed and stained with an anti-HBc antibody. Scale bar  =  50 μm. HBV-infected areas were quantified using 
the ImageJ software (NIH), and data were normalized to values in culture infected with 100 GE/cell of HBV in the regular medium (D10/2% DMSO) 
and presented as mean  ±  SEM from two independent experiments
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Long‑term culture in HMM does not lead to HBV spread
Despite a substantial and sustained increase in NTCP 
expression induced by HMM, addition of HMM after 
HBV inoculation did not significantly increase the 
number of infected cells at 10  days post-inoculation 
when compared to cells cultured in the regular medium 
(Fig. 1B). This indicated that increasing NTCP expres-
sion alone is not sufficient for HBV spread in HepG2-
NTCP cells. Since polyethylene glycol (PEG) has been 
routinely used to increase HBV attachment to cells 

and one report shows that the continuous presence of 
PEG could result in HBV spread in cell cultures [44], 
we tested if combination of PEG and HMM facili-
tates HBV spread. HepG2-NTCP cells were cultured 
in HMM or D10/2%DMSO for 24 h, followed by HBV 
inoculation for 16  h in the presence of 4% PEG8000. 
After the removal of the inoculum, cells were cultured 
with either HMM or D10/2%DMSO in the presence 
or absence of 4% PEG8000. Although more cells were 
infected when cultured in HMM, addition of PEG8000 

Fig. 2  Ectopic NTCP is induced by HMM treatment. A RT-qPCR of NTCP mRNA levels in HepG2 and HepG2-NTCP cells after being culturing with 
D10/2%DMSO medium or HMM for 24 or 72 h. Untreated, D10 medium without 2% DMSO. B Immunofluorescence images of NTCP protein 
expression in HepG2-NTCP or parental HepG2 cells after being cultured in indicated medium for 24, 48, or 72 h. Primary hepatocyte maintenance 
medium (PMM) contains 10% FBS, 1% Penicillin/Streptomycin, 0.17 μM of human Insulin, 10 μM of hydrocortisone 21-hemisuccinate and 1.8% 
DMSO [31]. C HepG2-NTCP cells were left uninfected, or pretreated with HMM or PMM for 16 h before inoculating with HBV (500 GE/cell) in PMM 
containing 4% PEG 8000 for 24 h. The HBV inocula were removed and cells were maintained in PMM for 7 days. D Expression of NTCP, HBc (red) and 
HBs (green) in different HepG2-NTCP clones at 10 d post-HBV infection. Clone 12 was used in most experiments in this study. E GFP expression in 
HepG2-NTCP cells transfected with GFP-encoding plasmids under the control of either a CMV-IE promoter or an EF1α promoter and subsequently 
cultured in indicated medium for indicated times. Scale bar  =  50 μm
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did not lead to further increase in the number of HBV 
infected cells (Fig. 4).

Discussion
Despite the wide use of NTCP-reconstituted hepatoma 
cells for HBV research, the low infection efficiency 
remains a major hurdle. In this study, we describe an 
effective way to enhance HBV infection in NTCP-recon-
stituted HepG2 cells. A brief (24  h) treatment with a 

commercially available hepatocyte maintenance medium 
(HMM) prior to HBV inoculation resulted in a substan-
tial increase in HBV infection. This enhancement caused 
by HMM was due to an unexpected boosting effect on 
the CMV IE promoter which drives NTCP expression in 
these cells. Given that increased NTCP expression and 
HBV infection was observed in multiple independent cell 
clones, and that consistent results were obtained with 
different batches of HMM, this method is likely generally 

Fig. 3  Transcriptome analysis of HMM-treated HepG2-NTCP cells. HepG2-NTCP cells were treated with HMM or D10/2%DMSO medium (control) 
for 24 h. Total RNA was collected for RNA-Seq analysis. A Heatmap of 2727 differentially expressed genes (DEGs, foldchange  >  2, adjusted p value  <  
0.05) identified in HMM versus control group. KEGG pathway analyses of 1310 upregulated (B) and 1417 downregulated (C) DEGs. D Heatmap of 
differentially expressed HBV-related genes (KEGG ID hsa05161) in HMM versus control group

Fig. 4  Combination of HMM with PEG does not lead to HBV spread in HepG2-NTCP cells. HepG2-NTCP cells were pretreated with HMM or 
D10/2%DMSO for 24 h prior to HBV infection. After removal of the inoculum,cells were subsequently cultured in HMM or D10/2%DMSO medium 
alone or supplemented with 4% PEG8000 for 5 or 10 days. The HBV infection rate was measured by immunofluorescence with HBc antibody. Scale 
bar  =  50 μm
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applicable to other cell culture systems reconstituted 
with CMV IE promoter-driven NTCP to enhance HBV 
infection.

The expression of NTCP in hepatocytes is critically 
dependent on their differentiation and proliferation 
status [45]. Primary hepatocytes express high levels of 
NTCP, but rapidly lose NTCP expression upon isolation 
and culture in vitro [30]. Commonly used hepatoma cell 
lines including HepG2, Huh7, and HepaRG cells have 
barely detectable NTCP under normal proliferative con-
ditions. Nonetheless, upon DMSO-induced differentia-
tion, HepaRG cells regain NTCP expression and become 
susceptible to HBV infection [24]. Interestingly, cell cycle 
arrest promotes NTCP expression and localization to cell 
membrane in NTCP-reconstituted HepG2 cells, thereby 
increasing the susceptibility to HBV infection [34]. The 
HMM used in this study was originally designed to main-
tain the hepatocyte phenotype of iPSC-derived hepat-
ocyte-like cells. HMM also contains DMSO, consistent 
with the cytostatic effect we observed when HepG2-
NTCP cells were culture in HMM for longer periods. 
However, DMSO alone was apparently insufficient to 
increase NTCP expression in HepG2-NTCP cells. The 
PMM used by others also did not increase NTCP expres-
sion in these cells, highlighting the uniqueness of HMM 
in enhancing NTCP expression and HBV infection.

The induction of NTCP expression in HepG2-NTCP 
cells by HMM was rather quick (< 24 h), and prolonged 
culture in HMM did not further increase NTCP expres-
sion. Our RNA-Seq analysis indicated that multiple 
metabolic pathways are activated by HMM. However, 
how exactly HMM enhances CMV IE promoter activity 
remains unknown. The CMV IE promoter and enhancer 
contains binding sites for multiple transcription factors 
including NFκB, SP1, ETS, C/EBP, SRF, YY1, NF1, Gfi1, 
SBP [46], and the expression of ETS2, CEBPB, NFKB2, 
SP1, and NF1 were induced in HMM-treated cells. Iden-
tifying transcription factors activated by HMM will offer 
a better understanding of how HMM activates CMV 
promoter and modulates cellular pathways resulting in 
enhanced HBV infection.

The active components in HMM that enhanced NTCP 
expression and HBV infection remain to be identified. 
HepG2-NTCP cells require pretreatment with optimal 
medium to gain high susceptibility to HBV infection [35, 
47]. DMSO is a common component in these medium, 
and other molecules including transferrin, EGF, insulin, 
hydrocortisone, dexamethasone, and selenite may also 
be beneficial [30, 35]. A recent study by Xiang et al. [45] 
describes that a combination of five chemicals (5C) can 
effectively maintain the mature function of cultured pri-
mary human hepatocytes (including high levels of NTCP 
expression) up to 30 days. Although the composition of 

HMM is not revealed to us, this information is not neces-
sary for using HMM to enhance HBV infection.

In summary, we reported that a commercially avail-
able hepatocyte maintenance medium (HMM) can sig-
nificantly improve HBV infection in NTCP-reconstituted 
HepG2 cells. This provides an easy and effective way 
to establish robust HBV infection, which will aid in the 
basic and antiviral research of HBV.
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