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Abstract

Existing compartmental models in epidemiology are limited in terms of optimizing the resource allocation to control an
epidemic outbreak under disease growth uncertainty. In this study, we address this core limitation by presenting a multi-stage
stochastic programming compartmental model, which integrates the uncertain disease progression and resource allocation
to control an infectious disease outbreak. The proposed multi-stage stochastic program involves various disease growth
scenarios and optimizes the distribution of treatment centers and resources while minimizing the total expected number
of new infections and funerals. We define two new equity metrics, namely infection and capacity equity, and explicitly
consider equity for allocating treatment funds and facilities over multiple time stages. We also study the multi-stage value
of the stochastic solution (VSS), which demonstrates the superiority of the proposed stochastic programming model over its
deterministic counterpart. We apply the proposed formulation to control the Ebola Virus Disease (EVD) in Guinea, Sierra
Leone, and Liberia of West Africa to determine the optimal and fair resource-allocation strategies. Our model balances the
proportion of infections over all regions, even without including the infection equity or prevalence equity constraints. Model
results also show that allocating treatment resources proportional to population is sub-optimal, and enforcing such a resource
allocation policy might adversely impact the total number of infections and deaths, and thus resulting in a high cost that we
have to pay for the fairness. Our multi-stage stochastic epidemic-logistics model is practical and can be adapted to control
other infectious diseases in meta-populations and dynamically evolving situations.

Keywords Epidemic diseases - Resource allocation - Compartmental models - Uncertainty in disease growth -
Multi-stage stochastic mixed-integer programming model - Equity constraints - Ebola Virus Disease (EVD) - West Africa -
COVID-19 - Infection, capacity and prevalence equity metrics

1 Introduction

An epidemic is the rapid spread of an infectious disease
that impacts a large number of people. Epidemic diseases
can disperse widely in a short time period, usually, two
weeks or less, such as influenza, meningitis, and cholera,
impacting populations either in a specific area, or become
a pandemic affecting the lives of millions at a global scale,
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such as the ongoing the coronavirus pandemic. All over the
world, outbreaks continue to take lives, ruin the economy,
and weaken the health-care system. Unfortunately, the toll
is higher in the less-developed countries because millions
of people in poor regions of the world do not have the
opportunity to receive sufficient treatment in case of an
outbreak.

Ebola virus disease (EVD) is a prime example of a
devastating epidemic. The EVD, also known as Ebola
hemorrhagic fever, is a severe, often fatal illness affecting
humans and other primates [1]. The 2014-2016 outbreak
in West Africa was the biggest Ebola outbreak in history,
causing more than 28,600 cases and 11,325 deaths by the
end of June 2016 [2]. The virus started in Guinea, then
moved across countries to Sierra Leone and Liberia. The
tenth outbreak of the Ebola virus disease has been ongoing
in the Democratic Republic of the Congo (DRC) since
August 2018. The outbreak has started from the northeast
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region of the country, centered in the North Kivu and Ituri
provinces. More than 3000 cases have been verified by
March 2020 [3], and it is the country’s largest-ever Ebola
outbreak.

There are no specific cure, or treatment for Ebola-
infected individuals. Multiple investigational Ebola vac-
cines have been developed and tested in numerous clinical
trials around the world, some of them have been licensed
to prevent the Ebola virus disease [4]. Short term inter-
vention strategies, including quarantine, isolation, contact
tracing, and safe burial, have been helpful to Ebola control.
Moreover, Ebola treatment centers (ETCs), which mainly
isolate and treat infected individuals, play a significant role
in controlling the Ebola virus disease.

The optimization problem of allocating resources to con-
trol an epidemic, such as Ebola, is an immense challenge,
especially in the regions where available treatment facili-
ties and funds are scarce. The decision-maker has to make
difficult decisions to allocate limited resources to the right
locations and in the right amount for slowing down the out-
break and minimize its impacts. Due to the insufficiency of
intervention resources, some regions may not receive their
fair share of treatment resources, compared to other regions
that are also impacted by the disease. Furthermore, the EVD
can spread from one individual to another through multiple
mechanisms, such as through person-to person-contact or
by touching the dead body infected by the EVD. The rates
of disease transmission can change under various conditions
and thus could be highly unpredictable.

Operations Research (OR) and mathematical modeling
methods have been widely used to determine optimal resource
allocation strategies to control an epidemic disease. Those
approaches include simulations [5-8], differential equations
[9, 10], network models [11-14], resource allocation analy-
sis [15-18], and stochastic compartmental models [19-22].

The majority of previous work focuses on analyzing the
impact of different intervention strategies on disease trans-
mission. Most of those studies consider disease growth and
resource allocation problems separately in different models
or enumerate each resource allocation policy in a simula-
tion model one by one. Moreover, few studies incorporate
fairness in resource allocation optimization models. The
former epidemic-logistics model presented in [23] incor-
porate the logistics of treatment into a disease spread
model, which foresees the disease growth over a spatial
scale, and at the same time allocates limited resources
to control the spread of the disease. [23] consider the
varying treatment capacity based on a limited budget. The
mathematical model of [23] is deterministic and assumed
expected values for disease transmission rates. However, in
reality, the disease transmission rate could be quite uncer-
tain, changing over time and space under various scenarios.
Thus, a stochastic OR model is necessary to represent the
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uncertainty in transmission in a more realistic way. More-
over, the majority of the OR models do not consider equity
and fairness in resource allocation, resulting in solutions
that may provide few or no resources to some regions
impacted by the disease, especially when resources are quite
limited.

The objective of this paper is to develop a multi-stage
stochastic programming extension of the deterministic
epidemic-logistics model of [23] with equity considerations
and present realistic insights into controlling the EVD under
disease transmission uncertainty. Considering different bud-
get levels and various tightness of the equity constraints,
we analyze the optimal resource allocation strategies in a
meta-population over three countries in West Africa. In our
paper, the stochastic program incorporates various scenar-
ios of disease transmission rates through person-to-person
contact, thus capturing the uncertainty and variability in
the infection transmission rate better compared to its deter-
ministic counterpart. The objective function of our multi-
stage stochastic programming epidemic-logistics model is
to minimize the expected number of new infections and
deceased individuals overall scenarios, all time periods, and
all regions considered. We study the Value of the Stochas-
tic Solution (VSS), a well-known stochastic programming
measure that compares the efficiency of the determinis-
tic and the stochastic models. Furthermore, we introduce
two new equity metrics for fair resource allocation in epi-
demics control and analyze the impact of various budget
distribution strategies on the number of infected people and
deceased individuals under each of these equity metrics.

1.1 Literature review

The majority of mathematical models in the epidemiolog-
ical literature use simulation methods to forecast the pro-
gression of the epidemic and to study the efficacy of several
interventions [5, 24-28]. Several studies consider stochas-
tic compartmental models to analyze different strategies for
controlling epidemic diseases, such as vaccination strate-
gies, behavioral changes that impact the interaction between
different groups, and regional intervention strategies [19,
21]. Some other studies use simulation and network models
to explore Ebola vaccination strategies [17, 18, 29].
Previous operations research models that study the
epidemic diseases and resource allocation mainly focus
on the logistics and operation management to control
the disease in optimal ways [23, 30-32]. Regarding the
capacity of hospitals and logistics issues, [23] develop a
new epidemic-logistics mixed-integer programming model
of the epidemic control problem. Their model consider
the dynamic spread of an epidemic over multiple regions
and the allocation of Ebola treatment centers and resources
to control the disease simultaneously. Different than the
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classical epidemiological models, the transmission rate
between the infected and treated compartment was not
constant but instead depended on the treatment capacity and
the number of infected people receiving treatment. Later,
[32] adapt the epidemics-logistics model of [23] to study
the control of the 2009 HINT1 outbreak in China and present
similar results for the HIN1 epidemic.

In the sensitivity analysis of [23], the disease trans-
mission rate within the community is found to be the
most critical parameter impacting infected and funerals.
While the disease transmission rates are highly uncertain,
relatively fewer studies in the OR community take into
account the uncertain parameters for resource allocation in
an effort to control the disease. Those OR models that inte-
grate resource allocation with epidemics control use either
stochastic dynamic programming (SDP), partially observ-
able Markov decision process (POMDP) framework [33] or
two-stage stochastic programming [20, 34-37].

Most resource allocation models on epidemic control
compute the optimal solution without considering fairness
in resource allocation. Fair resource allocation has been
studied in the literature, but mainly with different applica-
tions. For example, [38] consider a food allocation model
with equitable and effective distribution of donated food
under capacity constraints. [39] develop a multi-period lin-
ear optimization model for improving geographical equity
in kidney allocation while also respecting transplant system
constraints and priorities. Moreover, [40] give a systematic
review of equity in health-care resource allocation decision-
making. [41] present a literature review of various math-
ematical methods for equity measures in facility-location
decision models. To our knowledge, fairness has not been
studied before within the context of resource allocation for
epidemic control over large spatial scales.

1.2 Key contributions and insights

Former stochastic programming approaches on epidemic
control involved a time domain with only two periods.
Furthermore, there is a need for analyzing the equity and
efficiency tradeoff in a mathematical programming formu-
lation when allotting resources for controlling infectious
diseases. Our approach contributes to the epidemiology and
OR literature in the following ways.

Modeling Contributions Firstly, to the best of our knowl-
edge, our study presents the first multi-stage stochastic
programming (SP) model for infectious disease control,
considering the uncertainty in the disease transmission
parameter. Multi-stage SP is superior over two-stage SP
models because disease transmission dynamically changes
over multiple time stages. Our stochastic programming

approach is also preferable to probabilistic sensitivity anal-
ysis, which considers a single scenario at a time and also to
robust optimization (RO), which could provide highly con-
servative results by focusing on the worst-set of outcomes
in a hostile environment [42]. Due to the temporal and spa-
tial dimensions considered in our resource allocation model,
multi-stage SP is also computationally more amenable com-
pared to dynamic programming, which cannot tackle such a
high-dimensional problem.

Second, we present the multi-stage VSS, which shows
that the proposed stochastic programming model is superior
to its deterministic counterpart.

Third, we introduce and formulate two new equity
metrics and incorporate equity measures as a constraint
in the mathematical formulation to balance efficiency and
equity for fair resource allocation in epidemics control.
To our knowledge, this study is the first one that models
equity in a multi-stage stochastic programming formulation.
Our multi-stage model provides an advantage of adjusting
the level of equity over time with respect to evolving
disease dynamics, as opposed to using a standard equity
measure, which is not updated over time. Furthermore,
unlike former work, we address equity in both establishing
treatment centers and allocating treatment resources over
metapopulations and multiple periods using mathematical
optimization.

The infection equity constraint is also easier to imple-
ment than using standard equity metrics, such as the
absolute difference between regional prevalence (cases per
population in a region) and the overall prevalence (cases
per population over all regions), because the absolute gap
value using the prevalence metric could be tiny and diffi-
cult to adjust compared with the absolute gap value defined
by the infection equity constraint. Furthermore, computa-
tional results imply that our model balances the proportion
of infections in each region, even without including the
infection equity or prevalence equity constraint.

Fourth, while we tailor our epidemics-logistics stochastic
programming modeling framework for the EVD, it can
be adapted to study different diseases to determine the
optimal and fair resource-allocation strategies among
various regions and multiple planning periods to curb the
spread of an epidemic.

Applied Contributions and Policy Insights: Our mathemati-
cal model could be used as a decision support tool to aid
policymakers in understanding disease dynamics and mak-
ing the most effective decisions to fight epidemics under
uncertainty. In particular, our model could be used by the
stakeholders in epidemic control (e.g., governments, UN
entities, non-profit organizations) to determine the opti-
mal location and timing of ETCs opened and treatment
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resources allocated to minimize the total expected infections
and deaths over metapopulations in multiple locations and
over multiple time periods.

Our model provides significant insights into the control
of the Ebola Virus Disease in West Africa that would not
be possible with existing models and methods in infectious
disease control. Our multi-stage stochastic program foresees
various disease growth scenarios to optimize resource
allocation, as opposed to solving the problem for an
average scenario and myopically for one stage at a time
with fixed periodic budgets, which could provide sub-
optimal solutions and thus less effective resource allocation.
Specifically, our study provides the following several policy
insights and recommendations to decision-makers:

(i) Our analysis emphasizes that quick response, such as
allocating treatment centers and resources in the early
stages of the epidemic, is critical for minimizing the
total number of infected individuals and deaths related
to the disease.

(ii)) The value of the stochastic solution demonstrates that
the optimal timing and location of resource allocation
vary with respect to the disease transmission scenario,
and thus possible disease growth scenarios should be
considered when planning for an epidemic instead of
considering a single scenario of the expected value.

(iii) Our results show that the infection level (“the number
of infected people in a region” / “the total number
of infected people” - “population in a region” / “total
population”) is a key factor for resource allocation.

(iv) Our analysis suggests that the region with the highest
infection level has the priority to receive the majority
of the resources at the beginning of the time horizon
to minimize the number of infections and funerals.

(v) Model results also show that allocating treatment
resources proportional to population is sub-optimal.

(vi) While equitable resource allocation is important in
decision making, too much focus on the equity of
resource allocation might adversely impact the total
number of infections and deaths and thus resulting
in a high cost that we have to pay for fairness.
Therefore, decision makers are advised to be cautious
about enforcing fairness when allocating resources to
multiple regions.

2 Problem formulation
This section gives the formulation of a multi-stage stochas-

tic programming model, including the compartmental
model, description of the scenario tree, formulation, equity
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constraints, and their explanation. Model notations that will
be used throughout the rest of this paper are presented in
Appendix A.

2.1 Compartmental disease model description

Figure 1 shows the transmission dynamics of the Ebola
Virus Disease (EVD) in a region r of a country located
in West Africa. The disease spreads among the susceptible
population (S), by either person-to-person contact at a
periodic rate of x{°, under scenario w or through touching
Ebola-related dead bodies that are not yet buried during
traditional funerals at a periodic rate of x2,. Thus,
susceptible individuals (S) are infected and become infected
() with a rate of X{‘jr as a function of I and with a rate of x2 ,
as a function of funerals (F), who represent deceased but
unburied people. Without treatment, some of the infected
individuals in the compartment (I) will die and move to
the funeral (F) compartment with the rate of A ,, while
some of the infected individuals will recover with a rate of
A3,r, moving into the recovered compartment (R). However,
the number of individuals that will be hospitalized for
treatment (T) is based on the treatment capacity variable
C;ffr, which gives the total available number of beds in
the ETCs in region r under scenario @ in period j. Thus,
there is no constant transition rate from 7 to 7. Meanwhile,
individuals who did not receive treatment will remain in the
community and continue to spread the disease. In treated
compartment (T), some of the individuals will recover with
a periodic rate of A4 ,, and a fraction of them will die with a
periodic rate of A, .. The deceased individuals in the funeral
compartment are safely buried at a rate of A5 ., moving into
the buried compartment (B). Thus, we assume that every
death (F) leads to a safe burial (B). In order to describe
the migration of susceptible and infected individuals within
a given country, we define (o, v,—;) as the rates of
migration of susceptible individuals into and out of region
r, respectively, and (¢;—r, pr—;) as the rates of migration
of infected individuals into and out of region r, respectively.
The multi-stage stochastic programming epidemic-logistics
model is defined in detail in the next section.

The latent period for the EVD is highly variable, chang-
ing from 2 to 21 days [43]. In our model, we assume that
each time stage represents two weeks, in which an infected
but asymptomatic individual can become symptomatic and
infect others. For this reason, and to avoid computational
complexity, we do not include an explicit latent compart-
ment in the model; instead, we fit those individuals within
the infected compartment. Similarly, the Ebola modeling lit-
erature focusing on logistics usually omit the latent period to
avoid further computational complexity (see, e.g., [23, 37]).
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Fig.1 One-Step Disease Compartmental Model

2.2 Uncertainty representation and multi-period
scenario tree generation scheme

It is beyond the scope of this work to introduce a new
methodology for multi-period scenario tree generation;
we refer the reader to [44, 45], and [46] for different
approaches to generate scenario trees. To generate the
scenario tree for our case, we follow a similar approach
presented in the study of [47]. Here, we focus on the most
uncertain parameter: the community transmission rate based
on former research stating that transmission rates impact
the infections and deaths the most among all different input
parameters based on sensitivity analysis [23].

We model the future uncertainties regarding the pro-
gression of the disease by a discrete set of scenarios,
denoted w € 2. Each scenario has a probability, p®, where
Y weq P = 1. We assume that the uncertain community
transmission rate follows a normal distribution. The data
regarding the distribution of the community transmission
rate parameter is not available. Thus, we use the lower and
upper bounds on the transmission rate in the community
based on the data gathered from literature (Table 1) to gen-
erate the normal distribution function for the transmission
rate parameter at time zero. The upper and lower bounds,
thus the distribution functions for the uncertain parameter,
are specified for each country and are different at each node
of the scenario tree. Accordingly, the mean p! is defined
for each region » € R and node n € N. The lower bound
and upper bound are considered as the value of 0.001- and
0.999-quantiles of the normal distribution, respectively. The
standard deviation o, is defined according to a normal dis-
tribution using the initial lower and upper bounds provided
for each region r € R. Also, we use Qj to represent the
value of the h-quantile of the normal distribution.

As shown in an example scenario tree in Fig. 2, a
particular scenario could give the community transmission
rates (x;’,) into the future for the next two stages in
all considered regions. In our model, we consider three
realizations for each node of the scenario tree, namely
as low, medium, and high. The low and high realizations
have a probability of 0.3, and the medium realization has

Recovered (R)

Buried (B)

a probability of 0.4. Each path from the root node to the
leaf node of the scenario tree represents a scenario w. In
the example shown in Fig. 2, we have two stages, and
thus 32 = 9 scenarios. In addition, two scenarios are
inseparable at stage j if they share the same scenario path
up to that stage. This implication is modeled using non-
anticipativity constraints, as described in Appendix B. For
example, for scenarios o' to &, the decision at node 0
should be the same as we do not know the values of the
uncertain parameters at stage 0. Similarly, for scenarios !
to >, the decision at node 1 should be the same because
these scenarios cannot be differentiated at stage 1 due to
uncertainty.

The probability of a scenario w, p®, is calculated as
the multiplication of probabilities on the scenario path. For
example, the probability of scenario w', which corresponds
to a low realization in the first and second stages, is 0.09,
while the probability of scenario w’, which corresponds to
a medium realization in the first stage and a high realization
in the second stage, is 0.12.

For each node n € N in the scenario tree, the low
realization value of the random variable & is given by the
value of the 0.15-quantile (,uf’l()w = E(&"1 Qo001 < &' <
0030) = Qo.15), the medium realization is given by the
value of the 0.50-quantile (M;l,me dium E(' Qo300 <
&' < Qo70) = Qos0), and the high realization is equal
to the value of the 0.85-quantile of the normal distribution
(7 hign = EGEF Qo0 = & < Qo999) = Qosgs). In our
example, at node O the normal distribution of the uncertain
community transmission rate parameter in Guinea has ;/,9 =

Table 1 The range (lower and upper bounds), mean, and standard
deviation of community transmission rate in each country

Region Rate range Mean Standard deviation
Guinea [0.24, 0.84] 0.54 0.10
Sierra Leone [0.24, 0.88] 0.66 0.07
Liberia [0.24, 0.64] 0.44 0.07

Data is gathered from [48] and [49]
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wl =0.54
c=0.10
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Stage 1 ‘ ‘ ‘
‘ Decision should be same at Stage
1 for scenario w’, w8, w°.
Stage 2 OOOCOEEOLO®
§w1§w2§w3§w4 0w | W w® W
5 I i ul=044 |
0.13 0.39 0.44 0.49 0.75
A
Qo5 = 0.44
Fig.2 Scenario tree generation example for Guinea, where each circle, denoted by n, n := {0, ..., 12}, represents a node of the scenario tree

0.54 and 0,0 = 0.10. The low, medium, and high realizations
of the uncertain parameter at nodes O and 1 are given in
Table 2 below.

The normal distribution of community transmission rate
associated with nodes 1, 2, and 3 at stage 1 have a mean
of Qo.1s 0.44, Qo0 0.54, and Qgss 0.64,

Table 2 The 0.15-, 0.50-, 0.85-quantiles of the normal distribution of
the random variable £ at nodes 0 and 1 of the scenario tree in Fig. 2

Low Medium High
node 0: Q0A15=O.44 Q0A50=0.54 Q0A35=0.64
node 1: Q0_15=O.26 Q0A50=0.44 Q0A85=0.62

@ Springer

respectively. While scenarios ', ?, and w? at stage 1 has a

single realization value of 0.54 for the random parameter at
node 1, the realizations of scenarios w!, w2, and w3 at stage
2 correspond to nodes 4, 5, and 6, with a mean of Q¢ 15 =
0.26, Qo.50 = 0.44, and Q¢35 = 0.62, respectively.

2.3 Model features and assumptions

In this study, we have considered six regions, each con-
sisting of multiple districts, in the three countries most
affected by the 2014-16 EVD. West Africa is poor and
the budget for the Ebola treatment comes from an inter-
national consortium of partners, including governments,
international financial Institutions, regional organizations,
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and private foundations [50]. Those funding is either
directly provided to the affected governments or the United
Nations (UN) entities. In this paper, we took the perspective
of the UN entities, such as the World Health Organization
(WHO), where the total funding is collected centrally and
allocated among those three countries to optimize the use of
treatment resources and the donated funding.

The actual capacity of ETCs varies from 20 to 200
operational beds [51]; however, we used 50 and 100-bed
ETCs in our model to reduce the computational complexity.
It is essential to differentiate the small and large ETCs in
the model because each ETC type has a different setup
cost, which impacts the optimal allocation of resources.
We assume that each Ebola patient will receive the same
treatment in either a large or small capacity ETC. The
treatment capacity parameter is cuamulative and only reflects
total ETC beds.

Furthermore, the cost of burying dead bodies safely is
shown to be minor compared to the ETC and treatment cost
[23, 52]. In addition, changing the burial rate into a variable
that is optimized in the model would have complicated the
model considerably, and so we only focus on adjusting the
variable values of treatment resources. Thus, we assume
that the burial rate is constant, and burials and treatment are
operated separately using different budgets.

2.4 Model formulation

Following the convention of [23], the multi-stage stochas-
tic programming epidemic-logistics model (2.4) can be
formulated as follows:

min Y YN pUUY, — 1)+ FYy ) (la)

jeI\{J} r€ER weQ

st. 8o, =, Iy, =y, Ty, =6, Ry, =7,
Fg.=v, Bf, =1, C§, =¢,
re R, YoeQ, (1b)
S8+1),r = S;Ljr + S;fr - S;(fr - X]a,)rljc'l,)r - Xz’rFﬁ)r,
jeJ\{J},r e R,Vo e Q, (1c)
160y, = 100+ 18, = 10, + X007 + 220 FY
—ir + 3, =15,
jeJ\{J},r e R,Vo € Q, (1d)
T, = Tf + 15, — Oor + 2 )TP,
jeJ\{J},r e R,Vo e Q, (le)
R8+l),r = R;fir + )‘4J’T;L,)r + )‘3,"1;(,);*’
jeJ\{J},r e R,Vo e Q, (1f)
Fiirn.r = Filr t e di 402, 1) = dsr Fi
jeJ\{J},re R, Vo e Q, (1g)

BEuj+l),r = B;f?r + }‘S,VF/C'l,)r’
jeJ\{J},r e R,Vo e Q, (1h)
$9.=3 a8, jel,re R, Vo e Q, (i)

leM,
i]‘fjrz Z b1 1), jeJ,re RVo e, (1j
leM,
§2.=3 vS?,.  jel.reRVoeQ, (k)
leM,
.= plf,, jel.reRVoeQ, ()
leM,
20 D0 D gapr ¥ Db T
TER jej\{0,J}acA jeJ
<A VweQ, (1m)
j
€ty = Y Y ki + o
m=1acA
jeJ\{J},r e R,Vow € Q, (1n)
7?, = min{Ij‘,’r, ijfr - T/“”r},
jeJ\{J},r e R,Vo e Q, (1o)
St g TR RS, Fp BY T9, 20
jelJ,re R,Vow e Q, (1p)
Yo, €00,1,2,% ye, <17,
acA,jeJ\{J},re RVoeQQ, (1q)
y:zut(n),r - yan,r = O’ T?J(n),r - 77’[,}" = O’
Ctafn)’r - Cn,r =0,
a € A, VYo € B(n),Vn € N. (1r)

The objective function (1a) minimizes the total expected
number of newly infected individuals plus funerals over all
scenarios, in all regions throughout the planning horizon.
Constraints (1b) represent the number of individuals in
susceptible, infected, treated, recovered, funeral, and buried
compartments and the total ETC capacity, respectively, in
each region r at the beginning of the planning horizon.
Equations 1c—1h represent the dynamics of the population in
each disease compartment, as shown in Fig. 1. Specifically,
constraint (lc) implies that the number of susceptible
individuals in region r at the end of period j + 1 under
scenario w is equal to the number of susceptible individuals
from the previous year plus the number of susceptible
individuals who immigrate into region » minus the number
of susceptible individuals who emigrate from region r
and minus the number of newly infected individuals at
the end of period j under scenario w. Constraint (1d)
gives the number of infected individuals at the end of
period j + 1 in region r under scenario w, which is equal
to the number of infected individuals from the previous
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year plus immigrated infected individuals minus emigrated
infected individuals, plus newly infected individuals and
minus individuals who recovered, died, or were accepted for
treatment at the end of period j under scenario w. Constraint
(le) describes the total number of treated individuals in
region r at the end of time period j + 1 under scenario
o, which is equal to the number of treated individuals at
the end of period j plus infected individuals who accepted
treatment based on the availability of beds minus treated
individuals who died or recovered. Constraint (1f) ensures
that the cumulative number of recovered individuals in
region r at the end of the period j + 1 under scenario w
is equal to the number of recovered individuals from the
previous year plus newly recovered individuals. Constraint
(1g) defines the total number of unburied funerals in
region r at the end of time period j + 1 under scenario
w, which is equal to the infected and treated individuals
who moved to the funeral compartment minus the buried
dead bodies. Constraint (1h) gives the cumulative number
of buried dead bodies at the end of the period j under
scenario w. Constraints (1i)—(11) present the number of
immigrated and emigrated individuals in susceptible and
infected compartments. Specifically, constraints (1i) and
(1j) give the number of susceptible and infected individuals
who immigrated into region r from region / € M, under
scenario w. Constraints (1k) and (11) represent the number
of susceptible and infected individuals, who emigrated from
region r into neighboring region ! € M, under scenario w.
Constraints (Im)—(1o) represent the restrictions regarding
logistics and operation management. Specifically, constraint
(1m) denotes the budget limitation on the sum of the fixed
costs of opening ETCs and the variable cost of treating
infected individuals over all regions r in all periods j
under scenario w. Constraint (1n) shows the total capacity
in region r at the end of period j under scenario w.
Constraint (1o) ensures that the number of hospitalized
individuals is limited by the number of available beds in
ETCs in region r. In particular, the number of hospitalized
individuals (7) is equal to the minimum of the number of
infected individuals and the capacity available at established
ETCs after considering currently hospitalized individuals in
ETCs. Constraints (1p) present non-negativity restrictions
on the number of susceptible, infected, treated, funeral,
buried, and recovered individuals, respectively, under
scenario w. Constraints (1q) denote the integer requirements
on the number of type-n ETCs to be opened in region
r at the end of period j under scenario w. In addition,
if the number of infected individuals is less than 1 in a
region r, the value of the integer variable corresponding
to opening an n-bed ETC is forced to be zero, and thus
no ETC will be opened in that region. Constraints (1r)
represent nonanticipativity restrictions, which state that if
two scenarios share the same path up to stage j, the
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corresponding decisions should be the same, as described in
Appendix B.

2.5 Equity of ETC and treatment resources
distribution

Equitable resource allocation has long been studied in
health-care resource allocation decision making [40]. Some
examples include equity in facility location [41, 53], organ
allocation for kidney transplantation [54, 55], vaccine
coverage [56], and health-care fleet management [57].

In the health-care sector, an equity metric compares
two or more populations based on the service or utility
the health system provides to the different populations.
The comparison of various populations could be based on
the health status, distribution of resources, expenditures,
utilization, and access [58, 59].

While it is essential to clearly define equity to be used for
fair resource allocation, there is no universal consensus on
the definition and measurement of equity in public health
decision making [60]. Lane et al. [40] find a large disparity
in the description of equity in health care resource allocation
based on their review of the related literature.

Among numerous definitions of equity, [61] defines three
equity concepts on resource allocation: parity (claimants
should be treated equally), proportionality (goods should
be divided in proportion to differences among claimants),
and priority (the person with the greatest claim to the
good should get it). Savas et al. [62] describes equity as
fairness, impartiality, or equality of service. Culyer et al.
[63] discusses utilitarian principles dictating that resources
should be allocated in such a way as to maximize the overall
health and wellbeing of a society, and egalitarian principles
dictating that all people are equal and that inequalities
between groups should be removed. Mccoy et al. [57] use
utilitarian, proportionally fair, and egalitarian principals to
incorporate equity into optimal resource allocations.

Marsh et al. [41] present a list of 20 equity measures
within the context of facility location. Among the most
commonly-used equity measures are the sum of absolute
deviations (SAD), the mean absolute deviation (MAD),
the minimum effect (ME), and the Gini coefficient (GC).
Love et al. [64] categorize methods used to define
equity measures into five: 1) gap measures, regression-
based measures, Lorenz and concentration curves, measures
incorporating inequality aversion, and health-related social
welfare. The equity measures defined by absolute and
relative gaps are commonly used by international agencies,
such as the WHO, to distribute resources, such as vaccines
and medical treatment, between population groups in low-
and middle-income countries [65].

Equitable resource allocation has also been studied
considering the tradeoff between the efficiency and equity
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in resource allocation for infectious diseases, such as HIV
and influenza (e.g., [56, 66—68]). For example, [69] develop
a linear programming planning tool to help policymakers
understand the effectiveness of different allocations of HIV
prevention funds under fairness constraints. [56] propose
an equity constraint in a mathematical program to help
public health authorities consider fairness when making
vaccine distribution decisions. In a food allocation problem,
[38] present a deterministic linear programming model
to optimize the allocation of donated food, considering
objectives of both equity and effectiveness.

Similar to these works, we will follow an approach
that would balance the efficiency and equity in epidemics
resource allocation. Specifically, we will focus on equity
over meta-populations and multiple spatial dimensions.
We define our equity measures within the context of
proportionality and priority, as described in [61]. Our
formulations of equity are gap-based, combining absolute
and relative gaps. Our approach is seeking a balance
between utilitarian and egalitarian objectives studied in
[59] and [57] by determining a resource allocation strategy
that will minimize total infections and deaths but at
the same time incorporates equality dimensions as a
constraint. Unlike former work, we address equity in the
resource allocation for both treatment centers and treatment
resources using mathematical optimization.

Our definition of equity is similar to the descriptions of
[66], who defines social equity as the equal opportunity for
infected individuals to access treatment, [41], who define
equity within the context of facility location, and [38] who
study equity in the fair allocation of food. Specifically, we
define equity as the case where each region and country
receives its fair share of the ETCs and medical treatment
resources during an epidemic outbreak.

The majority of studies on fair resource allocation define
the equity as a one-period metric, which does not change
over time. In our multi-stage stochastic programming
model, the equity standard is adjusted over time with respect
to the changing disease dynamics throughout the planning
horizon, increasing the efficiency of the resource allocation.
To the best of our knowledge, our study is the first to model
the fair resource allocation using a multi-stage stochastic
programming model.

2.5.1 Infection equity constraint

In the first formulation, we will address the objective of
equity by limiting the absolute deviation between a region’s
relative number of infections and its relative population with
respect to all regions, while effectiveness corresponds to
minimizing the expected number of infections and deaths. In
this equity measure, namely infection equity constraint, we
consider priority concerning the proportions of infections

and enforce resource allocation to limit the proportion of
infections with respect to the population for each region.
The infection equity constraint is given as follows:

> 2 Iy,
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The infection equity constraint (1s) gives a bound on the
total number of infections in each region relative to the
total infections in all regions. Specifically, constraint (1s)
implies that the absolute value of the number of infected
individuals in region r divided by the total number of
infected individuals over all regions minus the ratio of the
population of region r, u,, over the total population over all
regions should be less than or equal to a specific value k.

Because the EVD case fatality rate is high [50% on
average [43]] and the EVD is highly contagious, having
the lowest infections system-wide will lead to the lowest
mortality for the EVD. Thus, we consider the number
of infections instead of deaths as the main parameter for
resource allocation in our equity metric. The number of
infections in constraint (2) could also be adjusted to the
number of fatalities.

2.5.2 Capacity equity constraint

In the second formulation, we will formulate equity by
limiting the absolute deviation between the proportion of
treatment capacity established in a region and proportion of
the population in a region relative to all regions while again,
effectiveness corresponds to minimizing expected deaths
and infections. The capacity equity constraint enforces
allocating resources considering the proportionality based
on the relative population and is formulated as follows:

> 2 pCy,
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Similarly, we define the capacity equity constraint (1t)
to bound the absolute value of the difference between the
proportion of the capacity at region r over the total capacity
with the proportion of the population at region r over the
total population with a predefined parameter k.

2.5.3 Prevalence equity constraint
We also study a widely-used equity metric, known as
prevalence [70, 71]. Here, we define the prevalence equity

constraint to limit the absolute difference between the
regional prevalence (cases per population in a region) and
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the country prevalence (cases per population over all
regions) by the parameter k, and formulate it as follows:

LLTT BERES
€ S (S € S
=2 A | < k. (1u)
Ur Zur
rerR

The prevalence equity constraint (1u) bounds the propor-
tion of infections in each region relative to the proportion of
infections in all regions.

2.6 Mixed-integer linear program (MIP) model

In the mathematical formulation (2.4), we have two types of
non-linearity. The first non-linear equation corresponds to the
capacity-availability constraint (10), and the second corres-
ponds to the equity constraints (1s) and (1t) (see Appendix
C for linearization of (10), (1s), and (1t)). The non-linear
multi-stage stochastic programming epidemic—logistics
model (2.4) is converted into an equivalent MIP formulation
by replacing the non-linear capacity availability constraint
(1o) with constraints (8), (9a)-(9d) and (10a)-(10d), the non-
linear infection equity constraint (1s) with constraints (11a)
and (11b), and the non-linear capacity equity constraint (1t)
with constraints (12a) and (12b), as given in Appendix C.

We apply the MIP model to a case study involving the
control of the 2014-2015 Ebola outbreak in the three most-
affected West African countries, Guinea, Sierra Leone, and
Liberia. The details of the 2014-2015 Ebola outbreak data
used as an input into the mathematical model, including
population and migration data, resource cost data, and
epidemiological data are presented in Appendix D.

The MIP model is solved using CPLEX 12.7 on a
desktop computer running with Intel i7 CPU and 64.0
GB of memory. A time limitation of 7,200 CPU seconds
was imposed for solving the test instances without equity
constraints, while the time limit is increased to 72,000 CPU
seconds for the instances with equity constraints due to their
computational difficulty. The multi-stage stochastic model
is solved over eight stages for the base case with each stage
representing a 2-week period, thus for a total of the 16-
week planning horizon. Since we consider three outcomes
on each branch of the scenario tree, we solve for 3% = 6561
scenarios in the mathematical model.

3 Results

In this section, we present computational results for the
multi-stage stochastic MIP model presented in Section 2
for the considered case study instance in West Africa. Our
goal in this section is to provide insights into the optimal
and fair resource allocation for controlling the Ebola disease
outbreak under the uncertainty of disease transmission.
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3.1 Model validation

In this subsection, we validate our model against the real
outbreak data [72] in terms of the cumulative number of
infections from August 30, 2014, to December 19, 2014.
The values of parameters used in the model are obtained
from the literature [73-75].

We fix the number of ETCs at each stage according to the
number and timing of the ETCs established in reality [23].
For instance, according to the outbreak data, one 50-bed
ETC was established on September 15, 2014, in northern
Liberia, and so the value of the related variable is fixed to
one in stage one in the model. Once the ETCs are fixed
in the model based on their opening time and the capacity
throughout the planning horizon, the model is solved and
validated by comparing the predicted number of infections
with the real outbreak data given in the WHO database [72].

According to the visual comparison of the predicted
results and real outbreak data in Fig. 3, our model provides
a good fit for the cumulative number of infected individuals
in Guinea, Sierra Leone, and Liberia during the considered
time period. In addition, we apply the paired t-test to analyze
the difference between the pairs of weekly predicted cases
and the actual data. As shown in Table 3, all p-values
are greater than 0.05, indicating that our model provides
statistically similar results to the real outbreak data from
August 30, 2014, to December 19, 2014.

3.2 The value of stochastic solution (VSS)

To demonstrate the value of using a stochastic program over
a deterministic (expected value) model, we use a standard
measure in stochastic programming, known as the value of
stochastic solution (VSS) [76]. The VSS gives the expected
gain from solving a stochastic model over its deterministic
counterpart, in which random parameters are replaced by
their expected values.

3.2.1 Two-stage VSS

WS is the wait-and-see problem objective value, which is
the expected value of using the optimal solution for each
scenario. EEV is the expected result of using the solution
of the deterministic model (EV), which replaces all uncer-
tain parameters by their expected values, and RP is the optimal
value of our stochastic programming model, i.e., the mini-
mization recourse problem. Then the following inequalities
are satisfied for the minimization problems [77]:

WS <RP < EEV.
The VSS can then be formulated as follows:

VSS=EEV — RP.
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Fig.3 Comparison of predicted cases with real outbreak data for cumulative infections in Guinea, Liberia, and Sierra Leone

A large value of the VSS implies that incorporating uncer-
tainty is important to represent the problem realistically, and
the solution of the deterministic problem is not “so good.”
On the other hand, if the VSS value is small, replacing
uncertain parameters with their expected values might be a
good choice.

3.2.2 Multi-stage VSS

For the multi-stage problem, the value of the stochastic solu-
tion is introduced as a chain of values VSS; for r =
1,...,T, where T is the final period of the planning hori-
zon [78]. In order to calculate the V §'S;, the solution up to
stage ¢+ — 1 of the associated deterministic model is fixed
in the stochastic model resulting in the EEV; value, and
RP value is subtracted from EEV;. Consider a stochas-
tic model, which only contains decision variables x and
recourse variables y, and let (xX;, y;) be the optimal solu-
tion of the corresponding EV model. The E E'V; can then be
formulated as:

EEV:: RP model

S.t. xi‘) =X

The VSS; foreacht =1, ..., T is then given as:

VSS;=EEV, — RP.

As an example, we calculate the V SS; for an 8-stage
problem fort = 1, ..., 4. Since EEV| = RP, the value of
the V S8 is zero. We solve the model under a $24M budget
and present the results in Table 4 below.

The RP value for the 8-stage problem is 2207 individuals.
The V §S; value is increasing as the stage ¢ increases, thus
a multi-stage stochastic model is needed to obtain a better
result compared to the deterministic problem. We notice that
under the $24M budget level, the model allocates almost all
the ETCs in the first stage. Thus, the V' SS; value will not
change significantly when ¢ > 3. For varying budget cases
or disease dynamics, we expect that the model will allocate
ETCs in the stages following the first stage, and thus the
VSS; values may become larger than the values in this
instance. The results for solving the 8-stage model highlight
the importance of using a multi-stage stochastic model
for the epidemic-logistics problem over its deterministic
counterpart.

3.3 Analysis of budget allocation

The columns of Table 5 present results for each Budget
level ($12M, $24M, and $48M), each Country and Region,
Stage-1 Budget allocated, Total Budget allocated, Stage-1
ETC (50/100) representing the number of 50- and 100-bed
ETCs allocated in the first stage of the planning horizon,
and Total ETC (50/100) indicating the total number of
50- and 100-bed ETCs allocated throughout the planning
horizon. Here, expected values of the optimal budget and the

Table 3 Statistical analysis to

compare bi-weekly predicted Country Mean Two-tailed paired t-test
cases and real outbreak data
Outbreak Predicted t-stat t-critical p-value
Guinea 221.0 266.8 0.41 1.89 0.65
Infections Sierra Leone 866.3 910.1 0.65 0.73
Liberia 471.1 534.5 0.45 0.67
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Table4 VSS; values up to 4 stages for the 8-stage problem with EEV;
values

VSS1(RP) VSS VSS; VSSy

0 41 65 69

number of ETCs allocated at the first stage and throughout
the planning horizon over 6561 scenarios are presented for
each budget level. Correspondingly, the expected value of
the total number of infections and funerals for different
budget levels are presented in Fig. 6. The CPU time used
to solve the model is 7230s for the $12M budget, 7232s
for the $24M budget, and 7228s for the $48M budget. The
optimality gaps for all the cases are 0.1%.

The fifth column of Table 5 and Fig. 4 show the allocation
of the total budget among three different countries. Due to
the high initial number of infected individuals, Sierra Leone
gets the most budget allocation under all different budget
levels. Although the transmission rate of Guinea is higher
than Liberia, the second highest budget goes to Liberia
under the $48M budget case because the initial state of the
infection in this country is high, and thus, the allocated
budget will provide a more significant impact on Liberia
compared to Guinea when the budget is ample. According

Table 5 Budget and bed allocated under different budget levels

Budget Country Region Stage-1 Total  Stage-1 Total

M) Budget Budget ETC ETC
($M) ($M)  (50/100) (50/100)

12 Guinea UG 0.06 0.13 171 171
MG 0.01 0.02 1/0 1/0
LG 0.03 0.06 1/0 1/0
Sierra Leone S 4.33 11.67 1/4 1/4
Liberia NL 0.04 0.09 171 171
SL 0.01 0.03 171 171
Total 4.47 11.99 6/7 6/7
24 Guinea UG 0.72 1.83 171 171
MG 0.52 1.21 1/0 171
LG 0.62 1.53 171 1711
Sierra Leone S 5.35 1550 1/5 1/5
Liberia NL 0.83 2.31 171 171
SL 0.57 1.60 171 171

Total 8.62 2398 6/9 6/10
48 Guinea UG 1.11 2.52 171 1711
MG 0.91 1.91 171 171
LG 1.01 2.32 171 171
Sierra Leone S 6.85 18.89 4/5 5/5
Liberia NL 3.94 1042  3/3 3/3
SL 2.40 6.03 2/2 2/2

Total 16.22  42.09 12/13 13/13
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Fig.4 Total budget allocation under different budget levels

to the results of ETC allocation at all budget levels, most
of the beds are allocated in the first period (stage-1) of
the planning horizon under tight budget cases, as shown in
Table 5. Figure 5 shows the total capacity allocation under
different budget levels.

Figure 6 shows the total number of infections and
funerals in those three countries under different budget
levels. According to the result under the $0M budget level,
the case in which no intervention action is taken, the
number of infections and funerals in Sierra Leone would be
extremely large if we do not take any intervention action. As
shown in Fig. 6, the total number of infections and funerals
in all three countries, especially in Liberia and Sierra Leone,
drops significantly from $12M to $48M budget level.

The results presented in this section represent the
expected values over all scenarios. To perform a more
detailed analysis, we picked 5 (five) out of 6561 scenarios
and analyzed the corresponding results in the next section.

3.4 Analysis of different scenarios

In this section, we present results regarding the budget, and
ETC allocation as well as the corresponding total number
of infections and funerals for five specific scenarios under
a budget level of $24M. Those four different scenarios are
defined as follows. The first scenario is the “All Low”
case that corresponds to the low realization of the uncertain
community disease transmission rate from stages 1 to 8, the
second scenario is the “All Medium” case that corresponds
to the medium realization of the uncertain community
disease transmission rate from stages 1 to 8, the third
scenario is the “All High” case that represents the high
realization of the community disease transmission rate from
stages 1 to 8, the fourth scenario is the “Low-High” case
that stands for the low realization of the disease transmission
rate from stages 1 to 4 followed by its high realization
from stages 5 to 8, and the fifth scenario is the “High-Low”
case that represents the high realization of the community
disease transmission rate from stages 1 to 4 followed by
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a low transmission rate from stages 5 to 8. According to
the results, we divided scenarios into two groups except for
the “All Medium” case; the first one is called the better
group, including “All Low” and “Low-High” cases, on the
other hand, the second group is called the worse group,
encompassing “All High” and “High-Low” cases. Similar
to Table 6 presents results for each Scenario defined above
under the $24M budget level.

The first-stage budget allocation is presented in the fourth
column of Table 6, while the total budget is presented in
both the fifth column of Table 6 and Fig. 7. In terms of
bed allocation, all the regions have the same number of
bed allocation for stage-1 and for the total stages under
all scenarios. This result implies that it is optimal to open
treatment centers early in all the locations, in particular, in
the initial stages.

Figure 8 represents the total capacity allocation under
different scenarios. According to the results, the total
capacity allocated under the worse scenario group is higher
than the capacity allocated for the better group. This result
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implies that under the worse scenario group, more budget is
allocated to build new Ebola treatment centers. In addition,
as shown in Fig. 9, the total number of new infections and
funerals under the “High-Low” case is much higher than the
corresponding number under the “Low-High” case. Thus,
a scenario where the disease starts with a low transmission
rate and then progresses fast is better than a scenario in
which the disease progression is fast and then slows down.
This may be because diseases that initially progress less
aggressively give us more time to get prepared, establish the
ETCs and treatment resources, and thus reduce the number
of infections immediately.

The results above indicate that if the budget is tight or the
disease moves fast, some countries or regions may not get
the ETC allocation or treatment. For example, under the “All
High” scenario, no budget is allocated to Liberia. Therefore,
in the next subsection, we introduce the equity constraint to
remedy the problem of not allocating any ETCs or treatment
resources to a single country or some of the regions of a
country.

Infections and Funerals

11342

7410

Budget level (S Million)

Sierra Leone =—@==|iberia
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Table 6 Budget and bed

allocated under different Scenario Country Region Stage-1 Total Total
scenarios ($M) Budget Budget Bed
($M) (M) (50/100)
All Low Guinea uG 0.60 1.15 2/0
MG 0.60 1.02 2/0
LG 0.60 1.13 2/0
Sierra Leone S 5.39 12.44 0/5
Liberia NL 2.15 5.46 02
SL 1.08 2.79 02
Total 10.41 24.00 6/9
All Medium Guinea UG 0.60 1.64 2/0
MG 0.60 1.43 2/0
LG 0.60 1.64 2/0
Sierra Leone S 5.39 16.13 0/5
Liberia NL 0 0 0/0
SL 1.08 3.16 02
Total 8.26 24.00 6/7
All High Guinea UG 1.08 2.75 02
MG 0.60 1.51 2/0
LG 1.08 2.23 02
Sierra Leone S 7.06 17.51 2/7
Liberia NL 0 0 0/0
SL 0 0 0/0
Total 9.82 24.00 4/11
Low-High Guinea UG 0.60 1.44 2/0
MG 0.60 1.18 2/0
LG 0.60 1.34 2/0
Sierra Leone S 4.31 12.02 0/5
Liberia NL 1.68 491 2/2
SL 1.08 3.11 02
Total 8.86 24.00 8/9
High-Low Guinea uG 1.08 244 02
MG 0.60 1.29 2/0
LG 1.08 2.23 02
Sierra Leone S 6.46 15.47 077
Liberia NL 1.08 2.56 02
SL 0 0 0/0
Total 10.29 24.00 2/13

3.5 Impacts of equity considerations

In this subsection, we present results by adding each of the
three equity constraints (1s), (1t), and (lu), as introduced
in Section 2.5, separately into the linearized multi-stage
stochastic programming epidemic-logistics model (2.4).
Equity constraints impose a bound on the total number of
infections in each region and thus enforcing that each region
considered in West Africa receives a more equitable share
of resources, including ETCs and treatment funds, while
minimizing the total number of infections and deaths.
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According to the results, imposing the infection equity
constraint (1s) or the prevalence equity constraint (lu)
does not significantly change the optimal budget allocation
or the total number of new infections and funerals (see
Appendix E for detailed results). Without introducing the
infection equity constraint into the mathematical model
(2.4), the absolute value of the difference between the
infection ratio and the population ratio in Guinea, Sierra
Leone, and Liberia is 0.42, 0.04, and 0.38, respectively,
based on the optimal solution value similar to the k values
considered here. This result implies that our model balances
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the total number of infections in each region with its
population and population, even without the infection equity
constraint.

Similar to the infection equity case, we introduce the
capacity equity constraint (1t) into the multi-stage stochastic
programming epidemic-logistics model (2.4) for an 8-stage
instance with the $24M budget level under different values
of k. Table 7 represents the run time specifics regarding
the mathematical model (2.4) with the capacity equity
constraint (1t), while Figs. 10 and 11 present the budget
allocation and the total number of infections and funerals
over the three considered countries for varying k values.
When £ is larger than 0.4, we observe no significant change
in the results. However, a small k£ value can impact the
results significantly. For example, when k = 0.05, all three
regions have a similar budget allocation. If k increases from
0.05 to 0.2, the total number of infections and funerals
in Guinea is slightly increased, but it is decreased when
k is further increased. Thus, allocating the majority of
resources to Guinea may not be necessary, and some of
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those resources would be wasted. As we relax the equity
capacity constraint by increasing the k value from 0.05
to 0.4 and above, we observe a significant drop in the
number of infected individuals and funerals in Sierra Leone.
The total number of infected people and funerals over all
three countries is the largest (12,769) when the capacity
equity constraint is strictly enforced, and it is the smallest
(10,995) when the capacity equity constraint is relaxed. This
result implies that enforcing a tight equity constraint might
adversely impact the total number of infections and deaths,
and thus resulting in a high cost that we have to pay for
fairness.

4 Discussion and future research directions

In this paper, we extended the epidemic-logistics model
of [23] to study an epidemic control problem in a large-
scale population where the transmission rate of the disease
is uncertain. To our knowledge, this is the first multi-stage

Total Capacity Allocation
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stochastic epidemic-logistic model that takes into account
both the uncertain disease growth and equitable resource
allocation simultaneously. We consider various disease
progression scenarios resulted from the realization of the
community transmission rates. Our objective is to minimize
the total expected number of infected individuals and
funerals over all scenarios, all periods, and all regions
considered. We study the value of the stochastic solution and
introduce the equity constraints to analyze the fair resource
allocation among different countries and multiple regions of
a country. Our multi-stage VSS analysis suggests that the
stochastic model considerably improves the solution of the
deterministic model, and the consideration of uncertainty in
a multi-stage disease-transmission model is necessary.

We define the infection level as the difference between
the ratio of the number of infected people in a region to the
total number of infected people over all regions and the ratio
of the population in a region to the total population over
all regions. Under tight budget levels, most of the budget
would be allocated to the region that has the highest initial
infection level, while other regions would receive ETCs
and treatment resources according to their infection level
as the available budget increases. This indicates that the
initial infection level is a key factor in resource allocation.
Additionally, more 100-bed ETCs would be allocated to the

Table 7 Model run specifics with the capacity equity constraint (1t)

k value Solution Time Optimality
(CPU sec) Gap (%)

0.05 72,103 7

0.1 72,121 8

0.2 72,053 6

0.4 72,031 2

A large k value 7,232 0

(no-equity-constraint case)
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country that has a high infection level since more capacity
will be needed to treat infected people while saving from the
fixed cost of opening new ETCs.

According to the results, our model allocated most of
ETCs in the first stage to provide a quick response to
the epidemic and reduce a large number of unnecessary
infections and funerals. Our results showed that the number
of untreated infections dropped quickly when early actions
were taken with a sufficiently large budget, and the disease
was controlled much faster than the report date of the World
Health Organization (WHO). The uncertainty in disease
transmission is a critical factor that makes it challenging
to manage an outbreak in a real-life situation. To be
more specific, the transmission rate might suddenly become
high after a latent period, and the existing resources may
not be sufficient to handle such unexpected situations.
Consequently, a large number of unisolated and untreated
individuals could stay in the community and continue
to spread the disease, as in the case of the current
outbreak of Coronavirus (COVID-19) disease [79]. Thus,
the preparedness and early action to handle the uncertain
disease transmission are crucial, and we would rather “the
beds waiting for people” than “people waiting for the beds.”
Our findings are consistent with several other articles that
also report the importance of early action for epidemic
control [19, 80, 81]. The lessons learned from the EVD
control in West Africa by WHO and Centers for Disease
Control and Prevention (CDC) also indicate that an early
action will have a significant improvement in slowing down
an epidemic and eventually stopping it [2, 75].

Different than the former literature, the solutions of our
multi-stage stochastic programming model show that the
optimal timing of the resource allocation might vary if we
have a relatively ample budget. For instance, in both $24M
and $48M budget levels, some resources were allocated
throughout the planning horizon in some locations, such
as Guinea and Sierra Leone. This is because we have
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Fig. 10 Optimal budget allocation under different k values for an 8-stage problem with $24M budget

more budget to take action when the transmission of the
disease gets worse. This result shows that the timing of
the resource allocation should be decided dynamically and
based on the predicted disease growth scenario and budget,
and thus implying the superiority of a multi-stage stochastic
programming model over a two-stage or static model again.

We analyze five specific disease growth scenarios and
study resource allocation strategies under each scenario.
Under the scenarios in which the disease moves faster, more
number of ETCs are allocated compared to the scenarios
in which the disease moves slower to treat more people.
In addition, if the disease moves faster, the majority of the
capacity is allocated to the region that has the highest initial
infection level. If the disease consistently moves at a slow
rate, the treatment capacity is allocated more equally among
regions to help fight against the disease. In the “Low-High”
case, in which the disease moves in a slow rate first and then
starts to be more aggressive in the following time stages, the
model allocates budget immediately to the regions with a
high infection level and knocks down the number of infected
individuals to low values, which will lessen the impacts of a
high disease transmission rate later in the planning horizon.
Because an initially slow-moving disease gives us more

time to get prepared to control the disease spread, the “Low
High” case can be considered as a better scenario compared
to the “High-Low” case.

We introduced the infection and capacity equity con-
straints separately into our model to analyze the impact of
enforcing fairness in resource allocation. Solutions obtained
with the infection equity constraint imply that the origi-
nal optimal solution balances the resource allocation among
multiple regions in a similar fashion to the infection equity
constraint. Thus, our model takes into account the ratio of
infection to the total infection level as well as the ratio of
the population to the total population level over all three
countries while making the resource allocation decision.

When a tight capacity equity constraint is enforced, the
budget is allocated equally to the three regions. However, in
this case, some of the budget may be wasted, and no obvious
effects are brought out by providing additional capacity to a
region based solely on its population. This result shows that
allocating treatment resources proportional to population is
sub-optimal, which is also consistent with the findings of
[35]. When the capacity equity constraint is relaxed, the
number of infections and funerals in Guinea and Liberia is
slightly changed, but this number decreased significantly for

Infections and Funerals
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Sierra Leone, and the total three countries. For both tight
and ample budget cases, the total number of infections and
funerals is much higher when the capacity equity constraint
is strictly forced, resulting in a heavy price we would have
to pay for perfect equity in resource allocation. This result
implies that the decision maker should be cautious about
enforcing fairness when allocating resources to multiple
regions.

There are several important future research directions
that arise out of this study. For example, the impact of vacci-
nations currently used to prevent the spread of the disease
could be analyzed in a future study. The influence of vacci-
nation is group-specific, and thus susceptible individuals
can be divided into different groups according to their age,
sex, race, and health status. Due to the lack of available
data, the transmission rate from susceptible individuals to
infected individuals would be more difficult to predict under
vaccination. Furthermore, different kinds of vaccines used,
the amount of vaccine allocated to each region, and the
time when vaccination becomes accessible might impact
the disease transmission rate significantly. Our model could
be extended by adding a compartmental class named as
“vaccinated” to study the various dimensions of vaccination.

Moreover, our multi-stage stochastic program only includes
the expectation criterion in the objective function when
it compares random variables to find the best decisions.
Thus, our study provides a risk-neutral approach. In a future
extension of this work, risk measures, such as Conditional
Value at Risk (CVaR), could be incorporated into the
objective function to reflect the perspectives of a risk-averse
decision maker.
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Appendix A: Notation

Model notations that are used throughout the rest of this
paper are presented in Tables 8—12 below.

Table 8 Sets and indices

Notation Description

Set of time periods, J = {0, ..., J}.

Set of ETC types, A = {1, ..., A}.

Set of regions, R = {1, ..., R}.

Set of all surrounding regions of region r.

a

DE = >~

Set of scenarios, Q = {1, ..., Q}.

@ Springer

Table 8 (continued)

Notation Description

J Index for time period where j € J.

r Index for region where r € R.

a Index defining type of ETC, where a € A.
13 Index for scenario where w € Q.

Table 9 Transition parameters describing the rate of movement
between disease compartments

Notation  Description

Ay Disease fatality rate without treatment in region r.

A2y Disease fatality rate while receiving treatment in region r.

A3, Disease survival rate without treatment in region r.

A4y Disease survival rate with treatment in region r.

A5y Safe burial rate of Ebola-related dead bodies in region r.

Xt Transmission rate per person due to community
interaction in region r under scenario .

X2.r Transition rate per person during traditional funeral

ceremony in region r.

Table 10 Other parameters

Notation Description

bjr Unit cost of treatment for an infected individual in
region r at end of period j.

8aj.r Fixed cost of establishing type a ETC in region r at
end of period j.

kq Capacity (number of beds) of type a ETC.

uy The population in region r.

A Total available budget for treatment.

Ty Initial number of susceptible individuals in region r.

(o Initial number of infected individuals in region r.

6, Initial number of treated individuals in region r.

0y Initial number of recovered individuals in region r.

Uy Initial number of unburied dead bodies (funerals)
in region r.

T Initial number of buried dead bodies (safe burials)
in region r.

Sr Initial treatment capacity in terms of number of ETC
beds in region r.

Ay Migration rate of susceptible individuals from
surrounding regions / € M, to region r.

iy Migration rate of infected individuals from surrounding

regions [ € M, to region r.
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Table 10  (continued)

Notation Description

Vr—s) Migration rate of susceptible individuals from region r
to surrounding regions [ € M,.

Pr—l Migration rate of infected individuals from region r to

surrounding regions / € M,.

Table 11 State variables

Notation Description

Sj.‘f , Number of susceptible individuals in region r at end
of period j under scenario w.

Ij‘ff, Number of infected individuals in region r at end of
period j under scenario .

T;,)r Number of individuals receiving treatment in region
r at end of period j under scenario w.

R;ff , Number of recovered individuals in region r at end
of period j under scenario w.

FJ‘.’fr Number of deceased individuals due to the epidemic
in region r at end of period j under scenario w.

B;ffr Number of buried individuals in region r at end of
period j under scenario w.

S;ffr Number of susceptible individuals migrating into
region r at end of period j under scenario w.

§;ffr Number of susceptible individuals emigrating from
region r at end of period j under scenario w.

IAj’ffr Number of infected individuals migrating into region
r at end of period j under scenario w.

7]‘.*; Number of infected individuals emigrating from

region r at end of period j under scenario w.

Table 12 Decision variables

Notation Description

ijr Total capacity (number of beds) of established ETCs
in region r at end of period j under scenario w.

ﬂ;’ , Number of infected individuals hospitalized (and
quarantined) in region r at end of period j under
scenario w.

y;j , Number of type a ETCs established in region r at

end of period j under scenario w.

Appendix B: Non-Anticipativity

Two scenarios should have the same decision variables at a
stage j if they share the same scenario path up to that stage.
Corresponding decisions up to stage j of two inseparable
scenarios should be the same. These implications are named

as non-anticipativity constraints, and can be formulated as
follows. Consider the node marked » in the scenario tree,
and denote the corresponding stage as 7(n). Let the set of
scenarios that pass through node n be B(n). We must ensure
that decision variables at stage 7(n) that are associated with
node n (for example: xt‘“(n)) have identical values for w €
B(n). One way to do this is to add the non-anticipativity
constraint as in the following form:

xt“fn) —x, =0 VYo € B(n).

As an example, consider the first three stages of the
multi-stage problem shown in Fig. 2. The set of nodes of
this scenario tree is given by N = {0, 1,2,3,..., 13, 14},
where 1(0) = 0,7(1) = 1,t2) = 1,t(3) = 2,t(4) =
2,t(5) = 2,t(6) = 2,t(7) = t(8) = t(9) = t(10) =

t(11) = t(12) = t(13) = 3. The set of scenarios that
share node n = 2 is given by B(2) = {5, 6, 7, 8}. Let xt(z)
represent decision variables for w € B(2). The non-anti-
cipativity constraint for those variables can be written as:

xt“zz) —x=0 Yo € B(2).

Appendix C: Linearization

We first linearize the logical constraint that describes the
number of hospitalized individuals in (10). Following the
method of [82], foreach j € J\ J,r € R,and w € 2,
constraint (10) can be written as:

wr = (C;lfr - T]'u,)r)z(;),r + Ij('lfr(l - Z{;'),r ’ (6)
where z¢  is a binary variable, which takes the value 1
if the number of infected individuals to be hospitalized is
restricted by the number of available beds in ETCs, and the
value 0 if the number of beds in ETCs is sufficiently large
to hospitalize all infected individuals. In order to ensure that
17 j.r takes the minimum value of (C“’ - T;,)r) and I;jr’
we should have the following 1nequahtles satisfied for each
jeJ\J,reR,andw € Q:

Y <CY, —TY, (Ta)
17, <19, (7b)

However, constraint (6) is still non-linear due to quadratic
terms. Therefore, two auxiliary variables U @ and W“’
are introduced to be substituted with (C @ — T“’ )z and
I 21— z‘“ ), respectively. In this case, for each Jj € J \ J,
r € R, and w € , constraint (6) can be written as:

17, =U% +W?,. ®)

We then introduce a lower bound (Hy, p) and upper bound

(Hy g) for Cf — Tjwr, such that Hy g < Cj'lfr — TJ@ < Hyp
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and add the following constraints to the model for each
jeJ\J,reR,andw e Q:

U?, < Hygz},, (9a)
U]r > Hppz§,, (9b)
,_(Cw _Tw)_HLB(l_Z s (9¢)
Y= (CY, —Tf) — Hyp(1 —z%,). (9d)

Similarly, we introduce a lower bound (I ) and an upper
bound (I g) for I/‘ffr, such that I; g < I;‘fr < Iyp, and add
the following four constraints for each j € J \ J, r € R,
and w € Q to the model:

WP, < Iyp(l—2%,), (10a)
W, > ILB(l -7, (10b)
W/’”, < j, ILBZ/r, (10c)
W = 19, — Iypz?,. (10d)

Thus the constraint (10) can be equivalently linearized by
replacing it with constraints (8), (92)-(9d) and (10a)-(10d).
We then linearize the equity constraint given by (1s).
By multiplying the two denominators on the left side
of (1s) by each other and multiplying the right side of

(Is)yby > ur > > > P®I7,, we obtain the following
reR  jeJreRweW ’
inequality:

12w PUI,

rer jeJ weW

<k u Y Y PUIY,. (11)

rer jeJreR weWw

) 3 I

jeJ reR weW

The absolute value in inequality (11) could be linearized
using the following two constraints:

Jour) ) PR —ur ) ) ) PO,

rer jeJ weW jeJ reR weW

k> u, Y YN PUIY, <0, (11a)
rerR jeJ reR weW

Dourd D P —ud Yy PO,

rerR jeJ weWw jeJ reR weW

+kZur ZZ Z PUI, > 0. (11b)

rer jeJ reR weW

Therefore, the constraint (1s) can be equivalently lin-
earized by replacing it with constraints (11a) and (11b).

Similarly, we have replaced the non-linear capacity equity
constraint (1t) with the following two linear constraints:

2urd ) PUCH —u) ) ) PUCY,

rerR jeJ weW jeJ reR weW

HX WYY Y Py, <o

reR jeJ reR weW

(12a)
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D ur) ) PUCy,

rer jeJ weWw

+hD u Y NN PUCY, = 0.

rer jeJ reR weW

L XYY e,

jeJ reR weW
(12b)

The non-linear multi-stage stochastic programming
epidemic—logistics model (2.4) is converted into an equiv-
alent MIP formulation by replacing the non-linear capacity
availability constraint (1o) with constraints (8), (9a)-(9d)
and (10a)-(10d), the non-linear infection equity constraint
(1s) with constraints (11a) and (11b), and the non-linear
capacity equity constraint (1t) with constraints (12a) and
(12b). In the next section, we present a case study involv-
ing the control of the 2014-2015 Ebola outbreak in the
three most-affected West African countries, Guinea, Sierra
Leone, and Liberia.

Appendix D: Ebola Case Study Data

This section presents the data used to formulate the model,
including population and migration data, resource cost
data, and epidemiological data. All data provided in this
section was collected using literature resources and given
bi-weekly. Data pertaining to the 2014-2015 Ebola outbreak
and the deterministic epidemics-logistics model have been
validated by [23].

D. 1 Population and migration data

Table 13 presents the distribution of the population in
Guinea, Liberia, and Sierra Leone, all located in West
Africa. We consider six regions: three of them are located
in Guinea (Upper Guinea (UG), Middle Guinea (MG), and
Lower Guinea (LG)), two of them are in Liberia (Northern
Liberia (NL) and Southern Liberia (SL)) and the last one,
Sierra Leone, is a county itself (S). Table 14 shows the
total number of initial infections in each country. Table 15
gives the migration rates from each of the five regions
(UG,MG,LG,NL,SL) to the other four regions. There is no
migration in Sierra Leone because it is considered as a
region by itself. Rapidly after the initial recognition of the

Table 13 Regions, population size and rate in West Africa

Guinea Population Ratio Liberia Population Ratio Sierra Population Ratio

(millions) (millions) Leone (millions)
UG 43 041 NL 22 0.64 S 4,9 1.00
MG 27 0.25 SL 1,2 0.36
LG 37 0.34
Total 10,7 1.00 34 1.00 4,9 1.00
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Table 14 The number of infected people at the beginning of the
planning horizon (August 30, 2014) in West Africa

Guinea Sierra Leone Liberia

218 604 685

Table 15 Bi-weekly migration rate between regions of Guinea and
Liberia, original data acquired from [83]

From \ To UG MG LG NL SL
UG 0.0032 0.0010

MG 0.0052 0.0025

LG 0.0012 0.0018

NL 0.0007
SL 0.0011

Ebola outbreak, those three countries closed the national
borders, so we only consider the migration within a country.

D.2 Resource allocation cost data

The fixed cost of locating Ebola treatment centers (ETCs)
and the per-person cost of Ebola treatment for either 50 or
100-bed ETC are given below in Table 16. The treatment
cost includes the fixed cost for establishing each type
of ETCs, isolation unit center, and laboratory diagnosis.
Additionally, each facility has a variable running cost
mainly composed of treating infected people and contact
tracing of the infected individuals. There is also a safe burial
cost for safely burying infected dead bodies. Fixed costs are
one-time; however, all other costs are given for a 2-week
period in Table 16. For example, the variable cost of the
Ebola treatment center represents the cost of treating one
infected individual over two weeks.

D. 3 Epidemiological data

Table 17 presents the data values for transmission param-
eters for each of the three considered countries in West
Africa. The data contains the fatality rate with and without
treatment, recovery rate with and without treatment, safe
burial rate, and transmission rates. Because the transmis-
sion rate in the community is an uncertain parameter, we
present its value under each of the two realizations as low
and high. Moreover, we considered the expected value of the
transmission rate at a traditional funeral for each country.

Appendix E: Analysis of Infection
and Prevalence Equity Constraints

The infection equity constraint (1s) limits the difference
between the proportion of infections in each region over
the total number of infections and the proportion of the
population at each region over the total population with a
specific k value. Introducing the infection equity constraint
to the mathematical model with 8 stages increased the
average CPU solution time from 7200 seconds to 10 hours
when k = 0.2, and the average optimality gap from 1%
to 29%. Table 18 gives the run time specifics regarding
the mathematical model (2.4) with eight stages and the
infection equity constraint (1s). As seen in Table 18, for k
values between 0.2 and 0.4, the computational complexity
significantly increases compared to the case where the
infection equity constraint is relaxed, i.e., k is set to a large
number.

Figures 12 and 13 show the budget allocation and the
total number of infections and funerals over the three
considered countries for different k values. According to
the results, varying k values does not significantly change
the optimal budget allocation and the total number of
infections and funerals. Without introducing the infection
equity constraint into the mathematical model (2.4), the

Table 16 Summary of Ebola

treatment cost for 50 (100)-bed Cost description Fixed cost Variable cost* Safe burial cost*
ETC Ebola treatment center $386,000 ($694,800) $8,810

Isolation unit center (IUC) $112,500 $1,133

Laboratory diagnosis $100,000 $540

Subnational technical services $2,250

Contact tracing $1,128

Safe burial $1,127

Total $598,500 ($1,077,300) $13,860 $1,127

* Variable and safe burial costs are bi-weekly
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Table 17 Transmission parameters and bi-weekly rates for the Ebola outbreak

Parameter Description Data Reference
Guinea Sierra Leone Liberia
A Rate of fatality without treatment 0.428 0.124 0.176 [74, 75]
Ao Rate of fatality with treatment 0.350 0.096 0.128 [74, 75]
A3 Rate of recovery without treatment 0.240 0.242 0.232 [74, 75]
A Rate of recovery with treatment 0.416 0.327 0.312 [74, 75]
A5 Safe burial rate 0.730 0.710 0.740 [74, 75]
X{,r Transmission rate in community (Low) 0.660 0.632 0.560 [73]
th,r Transmission rate in community (High) 0.990 0.940 0.840 [73]
X2,r Transmission rate at traditional funeral 1.460 1.420 1.480 [73]
Table 18 Model run specifics
with the infection equity k value Solution Time (CPU sec) Optimality Gap (%)
constraint (1s)
0.2 36,068 29
0.3 7,213 1
04 7,214 1
A large k value 7232 0
(no-equity-constraint case)
= Optimal Budget Allocation
o
= 18 15.48 15.48 15.5
S 15.23 - . :
vr 14
g 12
oo 10
©
s 8
2 ¢ 434 438 4.55 4.62 3.87 4.56 3.91
T 4 s
t: B - e e
a2 o0
O 0.2 03 04 A large k value
(no-equity-constraint case)
Value of k
@ Guinea Sierra Leone # Liberia

Fig. 12 Optimal budget allocation under different k values for an 8-stage problem with $24M budget

absolute value of the difference between the infection ratio
and the population ratio in Guinea, Sierra Leone, and
Liberia is 0.42, 0.04, and 0.38, respectively, based on the
optimal solution value similar to the k£ values considered
here.

As a comparison, we also test the prevalence equity
constraint (lu) and compare it to the infection equity
constraint (1s). The prevalence equity constraint bounds the
absolute difference between the regional prevalence (cases
per population in a region) and the country prevalence (cases
per population over all regions). Without the prevalence
equity constraint (1u) constraint, the absolute value of the

@ Springer

difference between the infection ratio over a region and
the infection ratio over all regions in Guinea, Sierra Leone,
and Liberia is 4.4 x 1074, 8.2 x 1075, and 1.2 x 1073,
respectively, based on the optimal solution value.

We test the prevalence equity constraint under the
$24M budget level. Table 19 presents the run-time and
optimality gap specifics for each k value in inequality (1u).
Figures 14 and 15 show the optimal budget allocation and
the number of infections and funerals under different k
values, respectively. Note that the k values used in the
prevalence equity constraint (lu) are much smaller than
the k values used in the infection equity constraint (1s).
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Fig. 13 Total number of new infections and funerals under different k values for an 8-stage problem with $24M budget

Table 19 Model run specifics

with the prevalence equity k value Solution Time (CPU sec) Optimality Gap (%)
constraint

3x107° 36,041 1

5x107° 7,204 1

1x 1078 7,232 1

2x 1078 7,231 1

A large k value 7,232 0

(no-equity-constraint case)

Optimal Budget Allocation

18 155 1553 15.49 15.49 155

4.62 3.81 4.59 4.58

6
4
. =
0

3.00E-09 5.00E-09 1.00E-08 2.00E-08 A large k value
(no-equity-constraint case)

Optimal budget (S Million)
=

Value of k

B Guinea Sierra Leone # Liberia

Fig. 14 Optimal budget allocation under different k values for an 8-stage problem with $24M budget

Similar to the infection equity constraint, the optimal budget ~ constraint. These results imply that our model balances
allocation does not show any significant difference among  the proportion of infections in each region, even without
each k value, but the number of infections and funerals  imposing the infection equity (1s) or (1u) prevalence equity
slightly reduces when we relax the prevalence equity  constraints.
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Fig. 15 Total number of new infections and funerals under different k values for an 8-stage problem with $24M budget
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