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Abstract

Background: Genotyping of structural variation is an important computational problem in next generation
sequence data analysis. However, in cancer genomes, the copy number variant(CNV) often coexists with other types
of structural variations which significantly reduces the accuracy of the existing genotype methods. The bias on
sequencing coverage and variant allelic frequency can be observed on a CNV region, which leads to the genotyping
approaches that misinterpret the heterozygote as a homozygote. Furthermore, other data signals such as split mapped
read, abnormal read will also be misjudged because of the CNV. Therefore, genotyping the structural variations with
CNV is a complicated computational problem which should consider multiple features and their interactions.

Methods: Here we proposed a computational method for genotyping indels in the CNV region, which introduced a
machine learning framework to comprehensively incorporate a set of data features and their interactions. We
extracted fifteen kinds of classification features as input and different from the traditional genotyping problem, here
the structure of variant may fall into types of normal homozygote, homozygous variant, heterozygous variant without
CNV, heterozygous variant with a CNV on the mutated haplotype, and heterozygous variant with a CNV on the wild
haplotype. The Multiclass Relevance Vector Machine (M-RVM) was used as a machine learning framework combined
with the distribution characteristics of the features.

Results: We applied the proposed method to both simulated and real data, and compared it with the existing
popular softwares include Gindel, Facets, GATK, and also compared with other machine learning cores: Support Vector
Machine, Lanrange-SVM with OVO multiple classification, Naïve Bayes and BP Neural Network. The results demonstrated
that the proposed method outperforms others on accuracy, stability and efficiency.

Conclusion: This work shows that the genotyping of structural variations on the CNV region cannot be solved as a
traditional genotyping problem. More features should be used to efficiently complete the five-category task.
According to the result, the proposed method can be a practical algorithm to correct genotype structural variations
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with CNV on the next generation sequence data. The source codes have been uploaded at https://github.com/
TrinaZ/Mixgenotype for academic usage only.

Keywords: Cancer genomics, NGS data analysis, Genotyping structural variation, Copy number variant, Multiclass
relevance vector machine

Background
Structural variations(SVs) generally refer to cyto-
genetically visible and submicroscopic variants, including
insertion, deletion, inversion, copy number variant and
etc [1, 2]. The genotype of SVs, also known as geno-
type analysis, is a technique to determine whether the
structural variation is heterozygous or homozygous [3].
Obtaining the accurate genotypes of SVs can be widely
used in downstream analysis, such as imputing genotypes
[4], estimating genomic diversity [5], calculating linkage
disequilibrium [6] and clinical practices including disease
diagnosis [7], treatment management [8] and drug design
[9].

Traditional methods used genomic chips to detect
structural variations and their genotypes. In recent
decades, with the development of the next genera-
tion sequence technology, sequencing data analysis has
replaced the microarray. The existing methods often
extract the data signals as features from the sequencing
data and use these features to further estimate the geno-
types. According to the strategies of incorporating the fea-
tures, the existing methods can be divided into three cat-
egories, the first often rely on the overlapping points and
breakpoints, such as Pindel-C [10]. The second category,
include piCALL [11] and MATE-CELEVER [12], incorpo-
rate the features based on the Bayesian framework, and
the third category, include Gindel [13] and CIGenotyper
[14], adapt the machine learning models. Nevertheless,
these methods do not take the effect of the copy number
variant (CNV) into account and suffer an accuracy loss for
tumor sequencing data. CNV is a kind of common struc-
tural variant that widely exists in cancer genome, which
plays an important role in cancerization [15], recurrence
[16], metastasis [17], drug resistance [18], and is associ-
ated with clinical diagnosis [19] and antipsychotic drugs
[18]. Recent studies reported that a CNV often combines
with other structural variations [20, 21], resulting in het-
erozygous variant being misjudged as homozygote, which
seriously affects the accuracy of genotyping SVs on tumor
data.

Specifically, to further investigate this computational
problem, each human gene has two copies of the same
haplotype and the CNV amplifies a one-sided signal,
which causing the expression rate of the two gene copies
deviated from 1:1 [22]. When a CNV appears on the
haplotype harboring the variant, the number of reads in

the mutated region presents multiple times more than
that of the normal region, which may lead an existing
method misclassifies a heterozygote to a homozygous
variant, as shown by the red rectangle in Fig. 1. On the
other hand, when a CNV appears on the wild haplo-
type, more reads mapped to the normal region will be
observed and the signal of the variant side will be con-
cealed, causing a heterozygous variant be misjudged as a
non-variant homozygote, as shown by the blue rectangle
in Fig. 1. Furthermore, these problems will be compli-
cated by other data signals in cancer sequencing data. To
name a few, all the tumor sample have the problem of
purity and may cause the bias on data signals as shown by
the black rectangle in Fig. 1, which is quite similar with
the bias caused by CNV and may also be contributed by
clonal structure. The tumor purity may change the vari-
ant allelic frequency (VAF) while may not contribute to
the increase of coverage, if the purity causes the cover-
age of the normal hapolotper to be equal to the coverage
of the mutated haplotype, a heterozygous variant with
mutated haplotype CNV will be misjudged as a normal
heterozygous variant, as shown by the red dotted rectan-
gle in Fig. 1. Consequently, we have to further consider
other data signals such as coverage, split mapped reads,
read depth, extended read depth and their interactions to
solve this problem. Moreover, recent studies reported that
CNV is often combined with adjacent Single-Nucleotide
Variants, which is one signal in detecting the CNV region
and should also be considered. Other examples will not
be repeated here, but it should be pointed out that other
methods do not consider multiple features and their inter-
actions may lead to computation exploration. It’s ineffi-
cient to either consider single feature or use a Bayesian
framework, while the machine learning framework is the
most effective choice in this case with limited training
samples.

In conclusion, the existing genotyping methods may suf-
fer accuracy loss in processing the tumor sequencing data
regardless the CNV, and the genotyping problem should
be considered comprehensively as shown in Fig. 1. The
computation problem in this case is complicated into
a five category problem which a structural variant may
fall into one of the five category: normal homozygote
(N), homozygous variant (G1), heterozygous variant with-
out CNV (G2), heterozygous variant with a CNV on the
mutated haplotype (G3), and heterozygous variant with
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Fig. 1 Genotype classification. The red rectangle indicates the deletion variant and the blue rectangle indicates the insertion variant. The black
dotted rectangle indicates that the VAF of the CNV-free region has changed due to the purity of the tumor, the VAF is diluted by tumor purity and
the coverage is same as the normal region. The red dotted rectangle indicates that the VAF and the coverage are both changed in the mutated
haplotype CNV heterozygote region, where if the coverage of mutated haplotype equals to the wild haplotype, the former features can hardly
distinguish the G3 and the G1

a CNV on the wild haplotype(G4). We proposed 15 fea-
tures to train the model based on extensive research and
chose the Multiclass Relevance Vector Machine(M-RVM)
as the machine learning framework based on the data
analysis. We applied the proposed method on both simu-
lated and real data, compared it with the existing popular
softwares include Gindel [13], Facets [23], GATK [24],
and also compared with other machine learning cores,
Support Vector Machine, Lanrange-SVM with OVO mul-
tiple classification, Naïve Bayes and BP Neural Network.
The results showed that the average of our method accu-
racy is 83% (±2%) on simulated data and 88.2% (±15%)
on real data, while the classification accuracies of other
methods are around 65% on simulated data and 75% on
real data with more than 20% range at the same con-
dition, which demonstrated that the proposed method
outperforms others on accuracy, stability and efficiency.

Methods
The genotype representations
Considering the genotyping problem, we defined five
classes of genotypes: normal homozygote (N), homozy-
gous variant (G1), heterozygous variant without CNV
(G2), heterozygous variant with a CNV on the mutated

haplotype (G3), and heterozygous variant with a CNV
on the wild haplotype (G4). Each category is represented
by vectors [ 0, 0, 0, 0, 1]T , [ 0, 0, 0, 1, 0]T , [ 0, 0, 1, 0, 0]T ,
[ 0, 1, 0, 0, 0]T , [ 1, 0, 0, 0, 0]T , respectively, which is one of
the output vectors of M-RVM and the other output is their
probability [ pN , pG1, pG2, pG3, pG4], where pN + pG1 +
pG2 + pG3 + pG4 = 1 and pN , pG1, pG2, pG3, pG4 repre-
sent the probabilities of the state N , G1, G2, G3 and G4,
respectively. Note that the index set of the output vector
is I = {N , G1, G2, G3, G4}, and M-RVM finally output the
genotype with the highest probability.

Input features extraction
As mentioned above, to accurately classify genotypes has
to incorporate multiple features which are extracted from
the sequence data with the Standard Alignment/Map
(SAM) or Binary Alignment/Map (BAM) format and list
of candidate calls in the Variant Call Format (VCF). There
are fifteen features considered in this approach as listed in
Table 1. Details are discussed as follow.

Features based on the length of SV and the insert size relation
The insert size is the length of template captured by the
sequencer and the DNA fragments are expected to follow
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Table 1 Features description

Description of Features

1 Abnormal read The number of abnormal insert size read
pairs

2 Normal read The number of normal insert size read
pairs

3 Incompletely
mapped reads

The number of incompletely mapped
read pairs

4 Fully mapped read The number of read pairs that can fully
mapped to the reference

5 Split mapped read The number of split mapped reads

6 Single mapped read The number of single mapped reads

7 Unmapped read The number of the mutated region
reads which comes from the Samtools

8 Mapping qualities Sum of mapping qualities of anchor
reads

9 Read depth The read depth of the mutated region

10 Weighted read depth The read depth of the mutated region
weighted by mapping qualities

11 Extended weighted
read depth

Extended the weighted read depth to
up down 100 bps each

12 Affected read The number of affected reads

13 Variant length The length of structural variant

14 Direction 1 The number of reads which clipping
from 5’ during initial mapping

15 Direction 2 The number of reads which clipping
from 3’ during initial mapping

the normal distribution around insert size in paired-end
sequence [13]. We set μ as the mean library insert size
and σ as its standard deviation, which can be either speci-
fied by users or calculated from the given BAM/SAM file.
We define the normal read as the read whose insert size
located in the μ ± 3σ range, and position located in the
mutated region. Accordingly, the read whose insert size
deviates from normal distribution, exceeding the range of
μ ± 3σ , and position located in the mutated region is
defined as the abnormal read. Consequently, we extract
the numbers of normal reads and abnormal reads as two
features as shown in Fig. 2.

When we consider the normal structural variant, the
number of abnormal read is an important index to detect
the indel. For example, large deletions may introduce
the abnormal reads with extremely large insert size, and
large insertions may introduce the abnormal reads with
extremely short insert size. Furthermore, in the CNV
region, this is more complicated. For a heterozygous vari-
ant without consideration other factors, the ratio of nor-
mal read to abnormal read is roughly close to 1 : 1,
when a CNV exists in the mutated haplotype and the
copy number equals to n, the ratio is close to n : 1, and
when the CNV exists in the wild haplotype of a heterozy-
gous variant, the ratio is close to 1 : n. Thus, different

from the existing approach, the number of abnormal reads
and normal reads should be considered at the same time.
In addition, if the insertion is extremely longer than the
insert size, the variant may not introduce the abnormal
reads, while if the insertion is shorter than the insert size,
the abnormal reads will be multiplied. Accordingly, the
length of structural variant (L) should also be considered
as a feature, which can reflect the information about vari-
ant itself and indicate the difference in the relationship
between the variant and the reads.

In practice, each row of the VCF file corresponds to
a variant and indicates their matching positions respec-
tively. Since the read length is 100 bps, we extract the
second and the eighth columns, POS and End, from the
VCF file, calculate the length of |POS-End| and record
it as the L, and define the [POS-100, End+100] interval
as the mutated region for each variant; Then select the
row of the BAM/SAM file which fourth column located in
each mutated region and calculate the insert size of each
read pairs. For each BAM/SAM file, calculate the mean
and deviation of the insert size, and record the number
of abnormal reads and normal reads for each structural
variant.

Features based on the alignment information
We extract the numbers of incompletely mapped reads,
split mapped reads, fully mapped reads, single mapped
reads, unmapped reads, read directions, mapping qual-
ities and affected reads as features based on the read
alignment information.

Figure 3 lists five situations that a read located in a
mutated region may fall into, if the reads are perfectly
mapped to the reference, we extract the perfectly mapped
read pair as the fully mapped read and the other as the
single mapped read. Conversely, if the reads cannot be
perfectly mapped to the reference, we define the read
which one segment mapped to the reference and the rest
cannot as the incompletely mapped read, define the read
separated into two parts and each part mapped to the
reference successfully as split mapped read, and define
the rest cannot perfectly mapped read as unmapped read.
For a region harboring a structural variant, the incom-
pletely mapped reads may be caused if a non-homologous
insertion mutation occurs. If a homologous deletion or
insertion occurs, it may cause the split mapped reads. If
the non-homologous insertion is extremely long and a
whole read fall into the insertion fragment, the read may
be counted as an unmapped read. Similar to the previous
description, when there exists a CNV, the ratio that the SV
caused reads to normal reads will be increased if the CNV
happens in the mutated haploytpe, while the ratio will be
deceased if the CNV happens in the wild haplotype.

Furthermore, the two reads in a read pair is usually in
the opposite direction and some structural variations may
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Fig. 2 Features based on the insert size. The red rectangle indicates the deletion, and the green portion indicates the insertion variant. When the
deletion occurs, the observed insert size is larger than the true insert size, while the observed insert size is shorter than the true insert size when
harboring the insertion variant, which are all counted as the abnormal reads

Fig. 3 Features based on alignment information. The red rectangle indicates the deletion, and the green portion indicates the insertion variant
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cause some reads to be reverse mapped to the reference,
resulting the pair reads the same direction. If there are
CNV and inversion, the reads harbor the inversion will
show the same direction owing to the reverse comple-
mentarity, and the number of reads with same direction
should not be ignored. Accordingly, we define the num-
ber of reads that clipping from 5’ during initial mapping
and clipping from 3’ as two features. Moreover, the map-
ping quality is a measure of the confidence that a read
actually comes from the position it is aligned to by the
mapping algorithm [25]. Because of the structural varia-
tion, the mapping quality of read pairs in mutated regions
varies greatly from genotypes and copy numbers, and the
sum of the mapping qualities of reads in mutated region
can be used as a feature to identify genotypes.

Same as the former features, we first extract the mutated
region for each structural variant, select the row in the
BAM/SAM file which fourth column located in each
mutated region and extract the CIGAR value of the row,
which can fully reflect the alignment signals. We then
count the read pairs whose CIGAR value is equal to
"100M" as fully mapped reads, the single read whose
CIGAR is equal to "100M" as single mapped read. On the
other hand, we count the read whose CIGAR value is not
equal to "100M" as incompletely mapped reads. Thirdly,
for each pair of reads (every two rows), we count the num-
ber of read pairs whose fourth column POS value are one
in and the other out of the mutated region as split mapped
reads. Fourthly, we extract the reads which located in
the mutated region and cannot match to the reference
using the Samtools command "./samtools view -bS -bf -h
**.f.bam > **.sam" in the Linux terminal, so that the infor-
mation file **.f.bam file (** is the user-defined file name)
of the unmapped reads is obtained. Fifthly, we count the
number of reads which located in the mutated region and
the second column FLAG equals to "83" as the direction
1, count the number of reads which FLAG equals to "163"
as the feature direction 2. Sixthly, we sum the correspond-
ing fifth column MAPQ values of the reads that located in
the mutated region in the BAM/SAM file for each SV, and
record it as the value of Mapping qualities feature. The
commands are all listed in the bat.sh file.

Last but not least, existing research found that there
is a higher probability of base variation in the vicin-
ity when structural variation occurs and different struc-
tural variations may lead to different probabilities of base
variation [26]. Consequently, we extract the number of
peripheral read pairs affected by structural variation as
a feature and named it as the affected reads, which can
reflect the existence characteristics of structural variation
and facilitate the identification of multiple genotypes. We
extract the second column and the eighth column, POS
and End, from the VCF file, and set the [POS-length/10,
End+length/10] as the variation vicinity range. We count

the number of reads which fourth column POS value
located in the variation vicinity range and recorded it as
the affected reads value for each variant.

Features based on the read depth
Read depth refers to the number of reads mapped to
a particular site or genomic region. Assuming that the
sequence process is uniform, read depth follows a random
(typically Poisson or modified Poisson) distribution [13]
and the number of reads mapping to a genomic region is
expected to be proportional to the ploidy that the region
appears in the sequence sample. Compared with the nor-
mal region, the number of read depths in the mutated
region will be reduced, while will be increased in the
CNV region. Accordingly, the read depth may be a fea-
ture to distinguish five genotypes and we set the read
depth(D) equals to the number of reads that located in the
mutated region divide the L. Furthermore, we propose the
weighted read depth as a new feature by weight the read
depth with the coefficient wi.

wi = Qi
Qmax

. (1)

Where the wi refers to the coefficient, Qi refers to the
MAPQ value of each mapped read pair, Qmax equals to the
highest MAPQ value of the read in one BAM/SAM file.
And then the weighted read depth can be calculated as:

WRD =
∑n

i=0 wi
L

(2)

The n refers to the number of reads that in the mutated
region of each variant.

We further propose the extended weighted read depth
feature to avoid considering the mutated region only
and to make full use of the difference between the
mutated region and the normal region. Comparing with
the weighted read depth, we expand the mutated region
from [Pos - 100, END + 100] to [Pos - 200, END +
200], based on the relationship between the reads and
the L. The expanded weighted read depth can reflect the
genotype characteristics of multiple variants from another
point of view.

Framework selection rationale
To select the suitable machine learning framework, we
sampled a random 1 Mbps region from the reference (ver-
sion:hg19) and randomly planted 100 structural variants
for each dataset. The type of the variants include inser-
tion, deletion, inversion, complex indel and CNV. We cre-
ated 20 candidates for each genotype and set the lengths
of variations between 0.5 ∼5 kbps, while the lengths of
CNVs between 1 ∼5 kbps. For each variant, we set an
elevated region with 1000 bps longer than its own length
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and set the regional mutation rate to 0.01, some associ-
ated single nucleotide variants (SNVs) were planted in the
preset elevated region and the background mutation rate
was set to 0.0001. About one fourth inserted fragments
of the complex indel came from nearby regions [27]. We
set the read length to 100 bps, the distribution of insert
sizes to follow the normal distribution of the 500 bps
mean and 15 bps standard deviation, and the sequence
error rate of reads sampling was considered as 0.005. We
extracted the features and plotted them in Fig. 4, where
the vertical axis represents the value of the features and
the horizontal axis represents the structural variant calls.
From 0 to 100, each of the 20 calls represent N, G1, G2,
G3 and G4, respectively. The figure indicated that the type
N can be distinguished from types G1-4, but types G1,
G2, G3, G4 are difficult to classify. We tried a variety of
machine learning models and found that the Multiclass
Relevance Vector Machine (M-RVM) [28] works well for
our datasets, and the five categories can be easily classi-
fied after the M-RVM kernel function transformation as
shown in Fig. 5.

Compared with the popular methods and according to
the description of the literatures, we suggest the M-RVM
has the following advantages: 1. M-RVM adopts hierarchi-
cal Bayesian model structure and has the characteristics
of flexible kernel function, overcoming the limitation that
the selected kernel function must satisfy the Mercer con-
dition, it is easier to find a suitable kernel function. 2. The
membership probabilities of multiple classes output are
realized by introducing Multi-probability likelihood func-
tions. The M-RVM obtains probabilistic output and can
directly output the prediction probability of each category.

3. M-RVM does not always depend on all feature data,
which greatly reduces the calculation of kernel function,
the test time and avoids over-fitting. 4.The M-RVM actu-
ally calculates the inner product of input vectors in feature
space indirectly through the kernel mapping and does not
need to be solved in high-dimensional space, which skill-
fully avoids the "Curse of Dimensionality" caused by the
dimensions increase. We chose the M-RVM framework
to deal with the linear and nonlinear datasets in higher
dimension, and generated a more complex surface model
in higher dimensional space according to data character-
istics, so as to classify high-dimensional complex datasets
non-linearly.

Results
Generating simulated datasets and testing model
parameters
To evaluate the performance of the proposed method,
we sampled a random 1 Mbps region from the reference
(version:hg19), and then randomly planted 300 structural
variants for each dataset. The type of the variants include
insertion, deletion, inversion, complex indel and CNVs.
Based on the distribution probability of CNV, we created
60 Type N calls (normal homozygous genotype without
variants), 80 Type G1 calls (homozygous variant with-
out CNV), 80 Type G2 candidates (heterozygous variant
without CNV), 50 Type G3 candidates (heterozygous vari-
ant with CNV occurs in mutated haplotype) and 30 Type
G4 calls (CNV occur in wild haplotype heterozygote). Set
the lengths of variations between 0.5 ∼5 kbps, while the
lengths of CNVs between 1 ∼5 kbps. For each variant,
we set an elevated region with 1000 bps longer than its

Fig. 4 The distributions of the features values. The vertical axis represents the value of the features and the horizontal axis represents the structural
variant calls. From 0 to 100, every 20 calls represent N, G1, G2, G3 and G4, respectively. F1 to F15 follows the same order as listed in Table 1. The
figure indicated that the type N can be distinguished from types G1-4, but types G1, G2, G3, G4 are difficult to classify
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Fig. 5 The features after the kernel function operation. The data presents five distinct linear categorizations after M-RVM kernel processing

own length and set the regional mutation rate to 0.01,
some associated SNVs were planted in the preset ele-
vated region and the background mutation rate was set to
0.0001. About one fourth inserted fragments of the com-
plex indel came from nearby regions [27]. We set the read
length to 100 bps, the distribution of insert sizes to follow
the normal distribution of the 500 bps mean and 15 bps
standard deviation, and the sequence error rate of reads
sampling was considered as 0.005.

The main evaluation index of the performance of the
method are the accuracy and the number of relevant vec-
tors, and are mainly affected by the kernel parameter. The
accuracy refers to the ratio of the number of samples cor-
rectly classified by the classifier to the total number of
samples for a given test dataset, and the relevant vec-
tor refers to the nonzero parameter corresponding point,
which reflects the characteristics of the training data onto
the reason that most of the parameters of the poste-
rior distribution tend to zero and has nothing to do with
forecast [29]. We first randomly selected five groups of
coverage and copy number for parametric adjustment
experiments and analyzed the influence of parameters on
the accuracy of the method as shown in Fig. 6. The vertical
axis represents the accuracy and the number of relevant
vector, while the horizontal axis represents the parame-
ter. The results showed that when the kernel parameter
was 0.7 (or 10), the accuracy was the highest with the least
relevant vectors, which provide some enlightenment for
parameter selection.

Comparing the performance on simulated dataset
To evaluate the performance of the proposed method
comprehensively, we chose three existing methods to

compare: 1) obtain the CNV region through the Facets
[23] and then estimated the genotypes by 20%-80%
rule (correct the interval by the copy-number), the
snp.vcf.gz file required for the Facets was downloaded
at https://www.ncbi.nlm.nih.gov/variation/docs/human_
variation_vcf/. 2) GATK [24], default setting with Hap-
lotypeCaller. 3) Gindel [13]. We compared the result at
different copy numbers, and for each copy number con-
figuration, we changed the coverage from 5× to 20×. The
accuracy of each experiment were listed in Table 2 and
the third column represented the result from the pro-
posed approach, the accuracy of Gindel, Facets, GATK
were listed at column 4,5,6, respectively. Each result was
an average of five repeated experiments.

The result demonstrated that the accuracy of our
method was stable above 83% (±2%) while the classifica-
tion accuracies of M-SVM, Facets and GATK were very
low and unstable. The average of M-SVM was 45% and
the range was about 30%, the mean of Facets was 52.79%
and the range of it was 10.70%, of GATK were 63.8%
and 57.95%. Specifically, as the coverage increased, the
accuracies of these methods showed an increasing trend,
and the methods decreased slightly as the copy number
increased, which were all consistent with the theoretical
principle. When the coverage and copy number changed,
our method showed stable adaptability, strong robustness
and maintained a high level. Furthermore, we visualized
the variation of the relevant vectors in the iteration pro-
cess as shown in Fig. 7, in which the horizontal axis
represented the number of iterations, and the vertical axis
represented the number of relevant vectors. The relevant
vectors in the iterative learning process were obviously
reduced after about 200 iterations, which showed that our

https://www.ncbi.nlm.nih.gov/variation/docs/human_variation_vcf/
https://www.ncbi.nlm.nih.gov/variation/docs/human_variation_vcf/
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Fig. 6 Kernel parameter selection. The vertical axis represents the accuracy and the number of relevant vector, while the horizontal axis represents
the parameter. The results showed that when the kernel parameter is 0.7 (or 10), the accuracy is the highest and the number of relevant vectors is
the least, which provide some enlightenment for parameter selection

model only needed a small number of relevant vectors and
the data sparsity was reduced with the increase in iter-
ation steps by the M-RVM approach. Consequently, our
method could achieve higher model sparsity and shorter
diagnosis time, the computational complexity was low on
new sample input data diagnosis.

Comparing the performance on real dataset
We obtained nine set of sequencing data from the Gene+
public database provided by Henan Cancer Hospital.
All of the nine sets were the targeted sequencing reads
with Gene+ 1021 panel. All the clinical information were
removed, patients were numbered by a random target and
all the germline variants were also removed before we
obtained the data. The raw data has been already pro-
cessed on the public data base, following the pipeline
which the raw sequence read was mapped by BWA-0.7.5a
[25] and GATK MUTect, CNVkit were used to detect the
true structural variation information.

We obtained the input SAM file and VCF file of the
algorithm by processing the offline data and compared
the proposed method with popular machine learning
framework SVM, Naïve Bayes, BP Neural Network and
Lanrange-SVM with OVO multiple classification as shown
in Tables 3, 4 and Fig. 8. Because the popular method
Gindel selected the discordant pair reads, split mapped
read, read depth as features and was a binary classifi-
cation method based on the SVM framework, we com-
pared our method with multi-classification SVM and

extra tested the Gindel features with the machine learn-
ing frameworks. The results showed that the proposed
method can adapt well on real data and the experi-
ment results were even better than simulation results
because of the large sample size and high coverage of

Table 2 Performance comparison on simulated datasets

Copy Number Coverage The
proposed
method

Gindel Facets GATK

2

5× 0.8100 0.3054 0.4710 0.5328

10× 0.8353 0.5342 0.5125 0.8157

15× 0.8477 0.5728 0.5125 0.7697

20× 0.8510 0.6175 0.5150 0.7039

3

5× 0.8142 0.4137 0.4713 0.7368

10× 0.8195 0.4205 0.4912 0.4539

15× 0.8168 0.4273 0.5124 0.8157

20× 0.8195 0.4296 0.4625 0.8355

4

5× 0.8234 0.4296 0.5467 0.2560

10× 0.8247 0.4201 0.5626 0.5942

15× 0.8234 0.4268 0.5672 0.6714

20× 0.8395 0.4336 0.5695 0.7101

5

5× 0.8313 0.4796 0.5573 0.3125

10× 0.8358 0.4877 0.5630 0.6057

15× 0.8356 0.4905 0.5645 0.6153

20× 0.8413 0.4592 0.5680 0.7788
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Fig. 7 Relevant vectors during the simulation dataset training process. The horizontal axis represents the number of iterations, and the vertical axis
represents the number of relevant vectors. Figure a - d are four randomly records in multiple experiments

the real datasets. Compared with the popular algorithms,
the average of our method accuracy was 88.20% (±15%),
while the average of M-SVM was 79.17% (±20%), of
Naïve Bayes was 75.85%(±40%), of BP Neural Network
was 83.67%(±16%), of Lanrange-SVM with OVO multi-
ple classification was 68.43%(±28%), of Gindel features +
M-SVM was 72.31%(±26%), of Gindel features + Naïve
Bayes was 68.40%(±34%), of Gindel features + BP Neu-
ral Network was 76.35%(±22%), and of Gindel features
+ Lanrange-SVM with OVO multiple classification was
75.57%(±23%), which indicated that our method main-
tained higher accuracy and stability. We also visualized the
change of the relevant vectors in the iteration as shown

in Fig. 9, which confirmed that our method maintained
high model sparsity and short diagnosis time. These indi-
cated that our method has the advantages of accuracy and
computation, and can be well applied to clinical practice.

Discussion
Performance tests with considering the low complexity
region
There is a research topic in the genome called the low
complexity region (LCR), which contains one or more
genes, pseudogenes, gene fragments, retroviral sequences
and gene regulatory regions, usually located in telomeres
and telomeres. Its repeats create ambiguities in alignment
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Table 3 Performance comparison on real datasets

Coverage InsertSize The proposed method G-Features+M-SVM G-Features+NB M-SVM NB

1 472× 216 0.8875 0.9851 0.9777 0.9880 0.9777

2 396× 213 0.8917 0.9098 0.9031 0.9469 0.9317

3 394× 223 0.9083 0.6265 0.5513 0.7493 0.6766

4 291× 175 0.9082 0.6403 0.6839 0.7089 0.8582

5 448× 214 0.9000 0.6299 0.7254 0.7444 0.6886

6 460× 210 0.9167 0.5881 0.3415 0.6502 0.3589

7 402× 202 0.7258 0.4603 0.4632 0.6361 0.6217

8 422× 207 0.8917 0.7444 0.7439 0.7660 0.7469

9 369× 215 0.9083 0.9234 0.7667 0.9336 0.9669

Average 0.8820 0.7230 0.6840 0.7914 0.7585

Range 0.1909 0.5248 0.6362 0.3519 0.6188

In practice, we adopted the multi-classification support vector machine (M-SVM) as a plus version because the Gindel is a binary classification method based on support
vector machine (SVM), it will treat the other three genotypes as classification errors and lead to low accuracy when applied directly

and in genome assembly, which, in turn, can produce
errors when interpreting results. Repeat that is sufficiently
divergent do not present problems, the LCR defined a
repeat as a sequence that is at least 100bps in length,
occurs two or more times in the genome and exhibits
>97% identity to at least one other copy of itself. This def-
inition excludes many repetitive sequences, but it includes
those present the principal computational challenges [30].

To better test the performance of the proposed method,
we tested the method on the simulated dataset consider-
ing the low complexity region. We downloaded the bed
file of LCR from ENCODE Project (Encyclopedia of DNA
Elements) website, and inserted the recorded LCR infor-
mation into the corresponding region fragments of chro-
mosome hg19 and constructed reference containing LCR.
The simulation data which meet the requirements of the
existing popular literature [31] was constructed through
the structural variation and CNV planting. The results

were shown in the Table 5, where the average of the exper-
iment was 81.51%, which indicated that our method can
effectively deal with the LCR impact.

Result discussion and further study plan
We try to explore the loss of accuracy of our method,
which can be discussed from three aspects. First, the rea-
son why that the classification accuracy of the simulation
data is lower than the real data; Second, the reason for the
accuracy loss of the real data; Third, the reason why the
accuracy of real data fluctuates. Based on the experiment
results, the accuracy of the simulation data is 83% on aver-
age, and the mean accuracy of the real data is 88.20%. We
analyzed the data in detail and found that the reason for
this phenomenon is that the sample size and the coverage
of the simulation data is small, which we set as 300 and 5
∼20×. In comparison, the scale of real data is thousands
of times of simulation data, and the coverage is dozens of

Table 4 Performance comparison on real datasets-2

The proposed method BP G-Features+BP SVM with OVO G-Feature+SVM with OVO

1 0.8875 0.9929 0.9868 0.9279 0.9897

2 0.8917 0.9677 0.9122 0.8753 0.8910

3 0.9083 0.8270 0.6190 0.5653 0.7699

4 0.9082 0.9251 0.7983 0.7131 0.8018

5 0.9000 0.7870 0.6417 0.4540 0.6057

6 0.9167 0.7324 0.6566 0.4017 0.5884

7 0.7258 0.6752 0.5807 0.6455 0.6016

8 0.8917 0.7724 0.7513 0.6131 0.6302

9 0.9083 0.8513 0.9250 0.9633 0.9230

Average 0.8820 0.8367 0.7635 0.6843 0.7557

Range 0.1909 0.3177 0.4061 0.5616 0.4013
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Fig. 8 Methods comparison results on real dataset. The horizontal axis represents the real dataset serial, and the vertical axis represents the accuracy

Fig. 9 Relevant vectors during the real dataset training process. The horizontal axis represents the number of iterations, and the vertical axis
represents the number of relevant vectors. Figure a - d are four randomly records in multiple experiments
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Table 5 Performance test considering of the low complexity
region

Copy Number Coverage Accuracy Parameter number

2

5× 0.7800 8

10× 0.8153 14

15× 0.8277 20

20× 0.8310 35

3

5× 0.7942 10

10× 0.8177 15

15× 0.8168 22

20× 0.8195 37

4

5× 0.7934 12

10× 0.8147 24

15× 0.8285 32

20× 0.8295 37

5

5× 0.8113 14

10× 0.8258 17

15× 0.8256 24

20× 0.8113 37

times of simulation data, which has better classification
accuracy and model training advantage consequently.

Secondly, we try to explain the accuracy loss of the real
datasets. On the one hand, the accuracy of the machine
learning model is not expected to be 100%. The more clas-
sification categories, the higher the probability of accuracy
loss will be. Moreover, we observed the output probability
matrix of the model and found that there are a small num-
ber of samples have the equal calculated probabilities of
five genotypes, our method directly considered these sam-
ples as error classifications. We counted the number of
the sample of equal probability results in the real datasets
as shown in Table 6, and found that the samples of equal
probability were 1% of the total samples and the range
was 2.04%. We set the equal probability samples as invalid

Table 6 Result discussion

Accuracy Sample capacity Invalid sample Accuracy of
valid sample

1 0.8875 960 23 0.9093

2 0.8917 4800 35 0.8983

3 0.9083 2624 23 0.9163

4 0.9082 3990 27 0.9144

5 0.9000 6810 30 0.9040

6 0.9167 5470 25 0.9210

7 0.7258 1047 23 0.7421

8 0.8917 2024 21 0.9011

9 0.9083 6950 25 0.9116

samples and recalculated the ratio of the correct classi-
fied samples of all the valid samples. The mean accuracy
was 0.89% higher than the original accuracy, and the range
growth was 1.85%.

In addition, we also found some problems worthy of
further study. When dealing with real data, there were
not many samples of genotype markers for copy num-
ber loci (which is the reason that we only did real data
experiments for nine patients). One reason is that the
sequence company lack of this awareness, for the mech-
anism of individual copy number is relatively clear, and
other unclear ones are not necessary for labeling. Another
reason is costing considerations. Motivated by these, we
want to explore the use of semi-supervised machine learn-
ing framework to learn only a small number of labeled
data and train a general model for classification. The idea
is being explored in another article.

Conclusion
In this article, we focused on the genotyping of struc-
tural variations with copy number variant, and proposed
a machine learning method based on M-RVM. CNV is
widely exists in cancer genome, which causes the mis-
judgment of structural variation genotyping by existing
methods and greatly reduces the accuracy of process-
ing cancer data. The correctly distinguish the position of
CNV from the structural variation genotypes is necessary.
Accordingly, we transformed the problem of genotyping
into a multi-classification problem and 15 features were
carefully selected as input on the basis of observation and
practice. Based on the data analysis of features, we chose
M-RVM framework, which can efficiently deal with the
problem of low-dimensional linear inseparability, achieve
efficient classification results and output the result of
genotyping with the greatest possibility. We tested the
performance of this method and compared it with exist-
ing popular genotype method Gindel, GATK, Facets and
four commonly used machine learning methods: SVM,
Naïve Bayes, BP Neural Network and Lanrange-SVM with
OVO multiple classification. The results showed that the
proposed method significantly improved the accuracy of
structural variations genotyping and the mean recogni-
tion rate of this method was obviously higher than other
classification methods under the same conditions. In con-
clusion, our method is stable, reliable, robust, useful for
genotyping and downstream operation, and has good
response to coverage and copy number, which anticipates
a wider usage in cancer clinical sequence.
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