
1Scientific RepoRtS |         (2019) 9:18181  | https://doi.org/10.1038/s41598-019-53968-8

www.nature.com/scientificreports

the c-fern (Ceratopteris richardii) 
genome: insights into plant 
genome evolution with the first 
partial homosporous fern genome 
assembly
D. Blaine Marchant1,2,3*, Emily B. Sessa2,4, Paul G. Wolf5,6, Kweon Heo7, W. Brad Barbazuk2,4, 
pamela S. Soltis  3,4,8 & Douglas e. Soltis2,3,4,8

Ferns are notorious for possessing large genomes and numerous chromosomes. Despite decades 
of speculation, the processes underlying the expansive genomes of ferns are unclear, largely due to 
the absence of a sequenced homosporous fern genome. The lack of this crucial resource has not only 
hindered investigations of evolutionary processes responsible for the unusual genome characteristics of 
homosporous ferns, but also impeded synthesis of genome evolution across land plants. Here, we used 
the model fern species Ceratopteris richardii to address the processes (e.g., polyploidy, spread of repeat 
elements) by which the large genomes and high chromosome numbers typical of homosporous ferns 
may have evolved and have been maintained. We directly compared repeat compositions in species 
spanning the green plant tree of life and a diversity of genome sizes, as well as both short- and long-
read-based assemblies of Ceratopteris. We found evidence consistent with a single ancient polyploidy 
event in the evolutionary history of Ceratopteris based on both genomic and cytogenetic data, and 
on repeat proportions similar to those found in large flowering plant genomes. This study provides a 
major stepping-stone in the understanding of land plant evolutionary genomics by providing the first 
homosporous fern reference genome, as well as insights into the processes underlying the formation of 
these massive genomes.

There are estimated to be over 400,000 species of extant land plants1, encompassing an enormous array of mor-
phological, physiological, and ecological diversity. Accompanying this diversity is extraordinary variation in 
genome size2,3, spanning a 2,500-fold range from the bladderwort Genlisea aurea (~60 Mbp)4 to that of the mono-
cot Paris japonica (150 Gbp)5. How these genomes are chromosomally partitioned also varies immensely, as land 
plants span a 360-fold range in chromosome number, from 2n = 4 in Haplopappus gracilis, Brachychome dichro-
mosomatica, Zingeria biebersteiniana, and Colpodium versicola to 2n = 1,440 in the fern Ophioglossum reticula-
tum, the highest number reported for any eukaryote3,6,7. Understanding the processes underlying this enormous 
breadth in both genome size and chromosome number has long been a major area of interest among evolutionary 
biologists. However, sampling biases towards smaller, less complex genomes (e.g., Arabidopsis: 135 Mbp, n = 5) 
and crops have pervaded plant genome projects. Fortunately, recent technological advances have enabled the 
assembly and analysis of large genomes, such as those of conifers8–10, providing novel insights into the processes 
underlying genome and chromosomal composition. Despite this progress, the large genomes typical of homo-
sporous ferns remain uninvestigated.
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Polyploidy, or whole-genome duplication (WGD), is the traditional explanation for the large genomes and 
numerous chromosomes found in many plants, as WGD results in the complete doubling of the genome11,12. 
Among flowering plants, phylogenetic and genomic studies have identified WGD events preceding key radia-
tions, such as those of the core eudicots (~70% of the flowering plants)13, monocots14, and the entirety of flower-
ing plants15–17. In addition, it was demonstrated that even species with minute genomes, such as the carnivorous 
plant Utricularia gibba, with n = 13 and a genome size of 80 Mbp, have experienced multiple WGD events; U. 
gibba has undergone at least three ancient WGD events in the last 80 million years18. Thus, genome size and chro-
mosome number may not be reliable indicators of WGD. This disparity between genome size and chromosomal 
composition relative to WGD frequency has altered our understanding of genome evolution as the question has 
changed from whether or not an organism is polyploid, to how many rounds of polyploidy an organism or lineage 
has experienced in its evolutionary history.

Although a few fern genomes, such as those of the heterosporous water ferns (<1% of fern diversity), are less 
than 250 Mbp19, the average homosporous fern genome is 12 Gbp, nearly five times the size of the genome of 
maize (2.5 Gbp) and over 80 times that of Arabidopsis. In addition, homosporous ferns typically have substan-
tially more chromosomes than seed plants, with an average haploid chromosome number of 59 compared to 16 
in flowering plants or 12 in gymnosperms3,20. As a result, longstanding hypotheses have proposed that multiple, 
repeated WGD events were the major factor contributing to the high chromosome numbers and large genomes 
of ferns20–22.

It was originally hypothesized that homosporous ferns undergo intense selection favoring polyploidy to 
buffer against a putatively high rate of inbreeding that results from their unique life history20,23. The homosporous 
fern life cycle includes a free-living haploid gametophyte phase with the potential for intragametophytic selfing 
(IGS)23, or gametophytic selfing sensu Haufler et al.24 – a process that can produce a completely homozygous 
diploid plant in a single generation and thus expose any deleterious mutations. However, numerous isozyme anal-
yses demonstrated that fern species with the lowest chromosome numbers within a given genus (ranging from 
n = 27 to 52) were functionally diploid, producing typical diploid numbers of isozyme loci rather than multiple 
loci as seen in truly polyploid species with multiples of these low chromosome numbers25–27. Despite the lack 
of isozyme evidence for repeated polyploidy in diploid fern species, multiple copies of chlorophyll a/b-binding 
protein genes were discovered in the diploid fern Polystichum munitum, but the duplicated genes were nonfunc-
tional28. Furthermore, early population genetic investigations showed that homosporous ferns have highly varia-
ble mating systems and are typically outcrossing, refuting the hypothesized force (intense inbreeding depression 
via IGS) driving selection for polyploidy29. More recently, a genetic linkage map showed that Ceratopteris richardii 
has one of the highest proportions of duplicated loci among plants (76%) yet lacks large, duplicated blocks that 
would be indicative of polyploidy30. In addition, a paralog-age distribution analysis of Ceratopteris estimated an 
ancient polyploidy event over 180 million years ago (mya); however, the data used for this analysis were from a 
shallow EST library31. Despite little evidence for ancient polyploidy in ferns, chromosome count models suggest 
that 31% of fern and lycophyte speciation events involve WGD, compared to 15% in flowering plants32. However, 
these estimates of WGD refer to relatively recent polyploidy events (neopolyploidy) evident from chromosome 
numbers rather than ancient (paleopolyploidy) events deep in evolutionary history.

Ferns are also the only major lineage of land plants with a significant positive relationship between genome 
size and chromosome number, suggesting that fern chromosomes are relatively static compared to those of angi-
osperms and gymnosperms for which no such correlation exists33,34. While repeated episodes of WGD followed 
by extensive silencing and rearrangement cannot be discounted as an explanation for the paradoxical genomic, 
genetic, and chromosomal composition of ferns21, alternative processes underlying their large genomes and 
high chromosome numbers must be explored. Most notable among these alternative explanations for the large 
genomes of ferns is the impact of transposable elements (TEs) on genome size, as TEs make up the majority of 
genome space in a variety of eukaryotic lineages. For example, TEs are responsible for the difference in genome 
size between cultivated rice (Oryza sativa, 390 Mbp) and wild rice (O. australiensis, 965 Mbp)35. Phylogenetic 
reconstructions of major TE families in various plant lineages suggest that bursts of TE insertion result in inflated 
genome size36–39. However, genome inflation does not seem to be a one-way street, because unequal homologous 
recombination can eliminate repetitive regions, such as those produced by TEs40,41. Analysis of three conifer 
“giga-genomes” (20–30 Gbp) showed that these large genomes were derived not through WGD, but rather via 
extensive expansion of ancient TEs (especially retrotransposons) and an apparent inability to shed these repetitive 
regions via unequal recombination8,42. While TEs provide a possible alternative explanation for the large genome 
sizes of ferns as demonstrated in conifers, they cannot explain the high chromosome numbers of ferns. It is pos-
sible that ferns have ancestrally high chromosome numbers and a relatively low rate of WGD, yet this begs the 
question of how the high chromosome numbers were initially obtained. Aneuploidy or chromosomal fission are 
also possible explanations for the high chromosomal complement of most ferns22,26,43.

There are now hundreds of published flowering plant, gymnosperm, lycophyte, and bryophyte genomes, 
alongside the recent publication of two heterosporous water fern genomes19. While these water fern genomes, 
for Azolla and Salvinia, are much-needed references within the fern clade, they are atypical of 99% of ferns, in 
that these species are heterosporous and have very small genomes with few chromosomes (1 C = 0.25–1.76 Gbp, 
n = 9–22)19. To date, no sequenced genome is yet available for any homosporous fern44. This major information 
gap is made more startling when the high species diversity (>10,000 species), significant ecological roles, and 
economic importance of homosporous ferns are considered45–50. Due to their crucial phylogenetic position as sis-
ter to seed plants, ferns are key for investigating an array of both genomic and non-genomic traits and will permit 
a synthesis of genome evolution across seed plants51,52.

Here we investigated the genome of the homosporous fern Ceratopteris richardii (C-fern; 11.25 Gbp, n = 39), 
characterizing and classifying TE composition and assessing the extent of WGD. Our genomic data for C-fern, 
together with the recently published heterosporous water fern genomes19, help provide a genome evolutionary 
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context not just for ferns, but also for all vascular plants. Collectively, these data will permit deductions about 
ancestral genome characteristics of seed plants and ferns, as in studies of other phylogenetically pivotal line-
ages16,53. Specifically, this Ceratopteris genome provides critical insights into the evolutionary genomics and par-
adoxes of the genomically long-neglected fern clade, in addition to serving as a valuable reference for future 
investigations into land plant genome composition and dynamics.

Results
Genome sequencing and assembly. Here we present the first sequence of a homosporous fern genome, 
providing a new resource for plant and evolutionary biology. The ability of homosporous ferns to undergo IGS 
(see above) partially simplified the assembly of this complex genome, as it made the sporophyte completely 
homozygous so that heterozygosity was not an issue in assembly. However, the quality of the Ceratopteris genome 
assembly and the computational resources required to assemble and analyze the genome reflect the technological 
difficulties of working with such a large and complicated genome with no closely related reference genome.

With paired-end short-read libraries totaling ~24X coverage from 1.8 billion cleaned reads, we assembled the 
11.25 Gbp Ceratopteris genome into ~15 million contigs (>100 bp) or 988,403 scaffolds (>1,000 bp) (Table 1). We 
then combined and reduced the number of scaffolds using 8–10 Kbp mate-pair reads (13X coverage), producing 
a genome assembly (CFern v1.1) of 626,576 scaffolds with an N50 of 16 Kbp and total length of 4.25 Gbp, repre-
senting about 38% of the Ceratopteris genome.

We also sampled a smaller portion of the Ceratopteris genome using long-read sequencing of 32 bacterial 
artificial chromosomes (BACs) of Ceratopteris. This subsample assembly (BAC.SubSample) only totaled 3 Mbp of 
the Ceratopteris genome (0.03%), but had an N50 of 97 Kbp, providing a small, but more accurate and contiguous 
sampling of the 11.25 Gbp genome as long-read technology is less biased by repeat elements and mis-assemblies. 
The GC content of Ceratopteris was 37.7%, very similar to that of both the gymnosperm Picea abies (Norway 
spruce) (37.6%) and the flowering plant Amborella trichocarpa (37.5%), yet lower than that of maize (46.9%), the 
liverwort Marchantia polymorpha (42.0%), and the lycophyte Selaginella moellendorffii (45.3%).

transcriptome assembly. From 12 PacBio SMRT cells, we obtained ~850,000 reads from which we pro-
duced 97,084 full-length, high-quality, cleaned transcripts (IsoSeq.HQ) ranging from 285 to 11,353 bp in length. 
When mapped onto the CFern v1.1 assembly at 98% identity and 98% coverage, the IsoSeq.HQ transcripts were 
collapsed into 4,620 genes and 10,043 isoforms; however, when coverage was reduced to 50%, there were 11,924 
genes and 23,278 isoforms. The 2.5-fold increase in identified genes and isoforms via reduced coverage shows 
that our scaffolds do not span entire genes in the majority of cases. To overcome this fragmentation and provide 

Cytometric Genome Size 11.25 Gbp

Chromosome number 39

Assembly V1.0

Meraculous Contigs 15,871,274 contigs

Total Size 4.21 Gbp

N50% 300 bp

Gaps 0

% GC 36

CFern v1.0 (≥1,000 bp) 988,403 scaffolds

Total Size 2.69 Gbp

N50 3,376 bp

% Gaps 0.5

% GC 36

CFern v1.1 (≥1,000 bp) 626,576 scaffolds

Total Size 4.25 Gbp

N50 16,289 bp

% Gaps 37

% GC 38

CFern v1.1A (≥10,000 bp) 133,755 scaffolds

Total Size 2.79 Gbp

N50 22,401 bp

% Gaps 44

% GC 38

BAC.SubSample 35 scaffolds

Total Size 3.03 Mbp

N50 97,182 bp

% Gaps 0

% GC 39

Table 1. Ceratopteris genome assembly statistics.
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a set of high-confidence gene models, we implemented the Cogent genome-free protocol54 to produce 18,179 
gene models (UniCFernModels) from the IsoSeq.HQ transcripts. Searching for 1,440 embryophyte single-copy 
orthologs55, we found 53% complete, 4.5% fragmented, and 42.6% missing.

Polyploidy. To address the decades-old question of how common ancient polyploidy is in ferns, we employed 
sequence-based and cytogenetic approaches, which assessed three different temporal scopes of evolutionary his-
tory. Using paralog-age distribution analyses, we identified 1,800 paralogous gene pairs in the UniCFernModels 
with a KS value between 0.1 and 2.1. A minor peak around KS = 0.3 was detected; however, such small, “recent” 
peaks are often a result of small-scale gene duplications, not WGD56. In contrast, a single major peak was revealed 
in the synonymous distance plot of Ceratopteris, similar to those observed in Azolla and Equisetum (Fig. 1). Based 
on the significant transition from positive to negative in the SiZER plot, the Ceratopteris peak was at KS = 1.1, 
compared to 0.8 in Azolla and 0.75 in Equisetum, similar to the original results found by Vanneste et al.57.

To determine whether the peaks found in these three ferns (Ceratopteris, Azolla, Equisetum) represent a shared 
WGD rather than three distinct WGD events, we used the Multi-taxon Paleopolyploidy Search (MAPS)58. We 
first recovered 10,182 orthogroups from the clustered amino acid sequences of Ceratopteris, Azolla, Equisetum, 
Amborella, Selaginella, and Physcomitrella. We isolated 4,836 orthogroups with amino acid sequences from all 
six species and estimated gene family trees for each orthogroup. Of the subtrees that fit the known fern topol-
ogy, ((Ceratopteris, Azolla), Equisetum), 34% supported a gene duplication in the most recent common ancestor 
(MRCA) of Ceratopteris and Azolla, and 19% of subtrees fitting the ((Ceratopteris/Azolla, Equisetum), Amborella) 
topology supported a gene duplication shared across the three fern species (Fig. 1) – relatively low propor-
tions compared to similar studies that identified shared WGD events58. These low proportions suggest three 
lineage-specific WGD events rather than one or two shared events between the three fern taxa.

Figure 1. Polyploidy analyses of three fern species. (A) Paralog-age distribution analyses and associated 
SiZER plots of three fern species. Upper panels are Ks-based histograms (0.05 bins) of paralogs in Ceratopteris 
richardii, Azolla filiculoides, and Equisetum giganteum. Lower panels are SiZER plots of the above paralog-age 
distribution data and associated smoothing functions where blue indicates significant (α = 0.05) increases, red 
significant decreases, purple insignificance, and gray too few data points to determine. The white lines show the 
effective window widths for each bandwidth. Both upper and lower panels are on the same x-axis. (B) MAPS 
analysis across land plants and the associated WGD events (shown as stars). The percentages of subtrees that 
contain gene duplications shared by the descendent species of a given node are above the phylogeny (connected 
by dotted lines). Dates are based on Testo and Sundue70 and Morris et al.67.
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While the previously described methods of data analysis for assessing WGD are appropriate at deeper time 
scales, both are susceptible to missing more recent WGD events. As mentioned above, relatively recent (close to 
zero along the x-axis) WGD in the KS plots may be mistakenly attributed to small-scale duplications, while MAPS 
can only identify WGD events that have occurred prior to the MRCA of the next closest taxon included in the 
analysis. In the case of Ceratopteris, that would be 280 million years to the divergence of Ceratopteris and Azolla, 
thus only events older than that can be identified by MAPS.

Our cytogenetic approach using FISH suggests the ploidy of an organism by localizing 125–150 Kbp BAC 
DNA fragments to the chromosomes where the DNA fragment is found. If the organism is diploid, only two 
localizations will be apparent, while a polyploid should have more than two localizations. BAC-FISH evidence 
of polyploidy is relatively short-lived as studies of Nicotiana allopolyploids found that five million years after the 
WGD event, the two parental genomes in the polyploid were no longer distinguishable due to genome turnover, 
mutations, and small-scale duplications59. However, our BAC-FISH results further corroborated our sequenc-
ing results in demonstrating a lack of evidence for recent WGD in Ceratopteris. Significantly, we detected only 
two primary localizations of each BAC probe we exposed to the Ceratopteris chromosome preparations (Fig. 2), 
suggesting diploidy. In a few cases, weak secondary localizations, or “ghost bands,” were found on multiple chro-
mosomes; however, these are likely a result of repeat elements that are distributed throughout the numerous 
chromosomes.

Repeat diversity. In total, ~42% of the CFern v1.1 A assembly was composed of repeat elements (Fig. 3a). 
The Copia LTR RTs were the most prolific with over 800,000 elements making up 16.5% of the assembled genome, 
followed by the Gypsy LTR RT superfamily with 330,000 elements and accounting for 7.5% of the genome 
(Table 2). In comparison, Class II DNA transposons include members of 17 different super-families, yet only 
totaled 52,000 elements and <1% of the genome. The LINE RTs similarly covered 1.6% of the genome across 
64,000 elements. Low-complexity, satellite, and simple repeats all covered <0.5% of the genome.

The repeat content and percent coverage were considerably higher in the long-read BAC.SubSample assembly 
(63%). Nearly 26% of the subsample assembly was made up of Gypsy LTR RTs and 21.8% was Copia LTR RTs, 

Figure 2. Fluorescent in situ hybridizations of Ceratopteris chromosome spreads. The fluorescent probes are 
of 100–150 Kbp DNA fragments from BACs of Ceratopteris. Primary “diploid” localizations (red bands labeled 
with arrows) are shown in all four panels, while weak secondary localizations, most likely reflecting repetitive 
elements, are apparent in (C); note scattered faint red staining in addition to the two strong primary signals. 
BACs are from wells A12 (A), B3 (B), A8 (C), and B9 (D) in Plate CR_Ba #624, Green Plant BAC Library 
Project, Clemson University Genomics Institute.
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while the LINE RTs and DNA transposons represented 3.2% and 0.16%, respectively. Low-complexity and simple 
repeats made up 0.2% and 2.2% of the BAC.SubSample, respectively. The mean lengths of all of the repeat types 
in the BAC.SubSample, with the exception of the DNA TEs, were more than double those of the CFern v1.1 A 
assembly, and the Copia and Gypsy elements were nearly three times as large in the subsample compared to those 
of the CFern v1.1 A assembly.

Similar to the BAC.SubSample results, read-based analyses of Ceratopteris also estimated that ~60% of the 
Ceratopteris genome is repetitive with 17% in Gypsy elements and 30% in Copia elements (Fig. 3c). The read-based 
analysis and BAC.SubSample characterization analysis are more accurate for assessing general genome compo-
sition compared to repeat characterization of the CFern v1.1 A assembly, as they are not biased by the short-read 
assembly which can have trouble assembling repetitive regions beyond the length of the reads. This assembly 
bias is probably the reason the CFern v1.1 assembly was limited in low-complexity, satellite, and simple repeat 
elements. This limitation is also apparent in comparing the mean lengths of the CFern v1.1 A LTR RTs to those of 
the BAC.SubSample (Fig. 3b), as the latter assembly could likely span those longer repetitive regions via long-read 
technology.

We directly compared the repeat content of Ceratopteris to that of other land plants by applying the same 
assembly-based repeat characterization protocol to Amborella trichopoda16, a monocot (Zea mays)60, a liver-
wort (Marchantia polymorpha)61, a lycophyte (Selaginella moellendorffii)62, a conifer (Picea abies)8, and a moss 
(Physcomitrella patens)63. We chose to run our own analyses on these genome assemblies rather than comparing 
our results to those of previously published results due to the wide variation in repeat characterization analyses 
utilized. In addition, we ran the read-based clustering analysis on the above taxa, with the exception of Selaginella, 
using short reads from these assemblies covering 0.5X of each genome. Due to the previously mentioned limita-
tions of the CFern v1.1 A assembly, we largely focused on the BAC.SubSample and read-based results for compar-
ing relative proportions of repeats to other taxa.

Compared to six other land plant genome assemblies, the BAC.SubSample was second in repeat proportion 
behind only Picea (Fig. 3a). The BAC.SubSample had proportions of Copia elements similar to those of Zea, 
substantially higher than any of the other genomes analyzed. The other super-family of LTR RTs, the Gypsy ele-
ments, represented 25.7% of the BAC.SubSample with a mean length of 1,660 bp. In contrast, 35% of the Zea and 
Physcomitrella genomes were made up of Gypsy elements with mean lengths of 2,755 and 1,574 bp, respectively. 
The read-based analyses generally agreed with the repeat proportions of the six analyzed taxa with the exceptions 
of Amborella and Picea (Fig. 3c). These two taxa had lower overall repeat proportions in the read-based analyses 
(58% vs. 25% in Amborella, 80% vs. 50% in Picea), matching previous similar studies64.

We assessed LTR RT richness by comparing recent (>90% LTR similarity) LTR RT exemplars among the 
seven species compared here (Table 3). Zea was by far the most diverse with 4,561 distinct LTR RT exemplars, 
followed by Physcomitrella at 1,217 exemplars and Picea with 509. The CFern v1.1 A assembly was low in recent 

Figure 3. Repeat composition, lengths, and insertion timing for representative embryophyte genome 
assemblies. (A) Genome proportions of repetitive and non-repetitive elements for seven taxa spanning land 
plants, as well as BAC.SubSample, using genome-based analyses. Genome sizes and N50s for analyzed genome 
assemblies are also provided. (B) Mean repeat element lengths based on genome assembly analyses (A) for 
seven embryophyte taxa and BAC.SubSample. (C) Genome proportion of repetitive and non-repetitive elements 
using read-based clustering analyses111. (D) LTR RT insertion dates in Ceratopteris based on the CFern v1.1A 
and BAC.SubSample assemblies. Insertion dates were inferred from the similarity of long terminal repeat 
regions of the LTR RTs and a neutral substitution rate of 6.5 × 10−9 per site per year.

https://doi.org/10.1038/s41598-019-53968-8


7Scientific RepoRtS |         (2019) 9:18181  | https://doi.org/10.1038/s41598-019-53968-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

LTR RT diversity with only 22 exemplars, similar to that of Amborella and Marchantia, which had 11 and 30, 
respectively. Ancient (75–90% LTR similarity) LTR RT richness differed greatly from recent LTR RT diversity in 
Zea and Physcomitrella, which only had 45 and 16 ancient exemplars, respectively (Table 3). Picea also had fewer 
ancient exemplars than recent LTR RTs with 276, but CFern v1.1 A and Amborella both had more ancient than 
recent LTR RT exemplars with 82 and 55, respectively.

The quality of the genome assembly could have had a large effect on these interspecific comparisons of repeat 
diversity, number, and size, as well as genome size, as earlier demonstrated with the BAC.SubSample. For example, 
these eight genome assemblies spanned a 27,000-fold difference in scaffold N50 lengths between that of Picea (8 
Kbp) and maize (217,960 Kbp). Thus, in addition to the genomes of CFern v1.1 A and Picea being many times 
larger than that of maize, they are much more fragmented, making the identification of repeat elements more 
difficult and biased for identifying those repeats with smaller lengths.

To investigate LTR RT insertion timing, we identified 62 full-length, high-confidence LTR RT elements in 
the CFern v1.1 A and BAC.SubSample assemblies65. The insertion timing of these LTR RTs was relatively uniform 

Class Order Superfamily
Element 
count Length (bp) % Genome

Retrotransposon

LINE

Uncategorized 1458 523887 0.02

RTE-BovB 421 128815 0.00

Jockey 434 127827 0.00

R1 2565 1241869 0.04

RTE-X 8733 3937956 0.14

L2 19047 3652063 0.13

L1-Tx1 23635 15522256 0.56

L1 47105 20464731 0.73

LTR

Uncategorized 23507 7859618 0.28

DIRS 361 45453 0.00

Pao 1494 462814 0.02

Gypsy-Troyka 5331 3393861 0.12

ERV1 8083 6191165 0.22

Gypsy 329706 207014935 7.42

Copia 812470 460237954 16.50

DNA Transposon

Uncategorized 3289 693293 0.02

hAT-Tip100 374 251768 0.01

CMC-Mirage 416 153347 0.01

MULE-MuDR 425 41133 0.00

TcMar 530 83430 0.00

hAT-hATw 622 343180 0.01

Harbinger 627 224160 0.01

PiggyBac 1230 122417 0.00

Dada 1981 1130399 0.04

CMC-EnSpm 2339 1276711 0.05

Sola 2739 1565090 0.06

hAT 2774 819873 0.03

Maverick 4082 2443709 0.09

hAT-Ac 4625 1727566 0.06

PIF-Harbinger 4982 1214259 0.04

En-Spm 10115 5487072 0.20

hAT-Tag1 15720 6076071 0.22

Helitron 4260 812693 0.03

Table 2. Ceratopteris repeat diversity and composition.

Selaginella Marchantia Physcomitrella Amborella Zea Ceratopteris Picea

Genome Size 0.11 0.2 0.48 0.87 2.1 11.25 20

% GC 45.3 42 33.7 37.5 46.9 37.7 37.6

N50 (Kbp) 1750 1366 17435 4927 217959 22 8

Recent LTR RT 166 30 1217 11 4561 22 509

Ancient LTR RT 33 24 16 55 45 82 276

Table 3. Genome composition and LTR-RT statistics in sampled land plant genomes.
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over the past 7 million years (Fig. 3d). However, we found considerable differences in the LTR RT identification 
of these two assemblies as the majority of the identified LTR RTs in the BAC.SubSample originated within the last 
million years, while the CFern v1.1 A assembly did not identify a single LTR RT within the past million years and 
instead had largely older (>4 mya) LTR RTs. In addition, we note that the BAC.SubSample had 28 full-length, 
high-confidence LTR RTs, while the CFern v1.1 A assembly had 34, despite nearly a 1,000-fold difference in 
assembly length. These results suggest that the long-read sequencing of the BAC.SubSample was able to span and 
properly assemble these repetitive elements, while the short reads of CFern v1.1 could only assemble older, more 
heterogeneous repetitive elements.

Discussion
Ferns are the second most species-rich clade of vascular plants, with over 10,000 species50,66. In addition, ferns 
are the sister lineage to all seed plants and first appeared approximately 430 million years ago according to 
fossil-calibrated phylogenies67. The oldest unequivocal fossil fern is Ibyka amphikoma with a minimum age of 
384 million years67,68. However, most extant fern diversity arose within the last 40–60 million years during the 
Cenozoic Era following the rise to dominance of the angiosperms69,70. Despite their substantial morphological 
diversity, sister relationship to seed plants, and lengthy evolutionary history, ferns represent the final frontier of 
land plant genomics.

Here we provide the first draft genome assembly of the 11.25 Gbp Ceratopteris genome, as well as a 
high-confidence set of gene models. We assessed the role of WGD in the evolutionary history of Ceratopteris 
at three distinct temporal scales. Despite a genome size five times that of classically “large-genome” flowering 
plants (e.g., maize) and with eight times more chromosomes than Arabidopsis, which has undergone at least 
five WGD events16, we found evidence consistent with only one ancient WGD event in Ceratopteris. The diploid 
signal localizations of our BAC-FISH approach refute any recent WGD events that may have been ambiguous in 
the paralog-age distribution analyses. The three peaks in the paralog-age distribution analyses of Ceratopteris, 
Azolla, and Equisetum overlap and thus could potentially be a shared event before the divergence of these three 
ferns (Fig. 1). However, MAPS analysis indicates that only a minority of subtrees support shared duplications 
among these three taxa, suggesting three lineage-specific WGD events rather than a single shared event. Based 
on our analyses and the timing of the WGD event in Equisetum, another lineage belonging to the broader fern 
(monilophyte) clade57, the WGD of Ceratopteris is likely older than that of Equisetum (92 mya) yet younger than 
the most recent common ancestor of Ceratopteris and Azolla (~280 mya)70 (Fig. 1b). The approaches used here are 
those standardly used for inferring ancient WGD events from transcriptomic and genomic data. Even complete 
transcriptomes or chromosome-level genomes can underestimate the true number of WGDs as pseudogenes 
and gene fragments may be filtered out during analyses. As such, all paralog-age distribution analyses and the 
resulting inferences regarding WGDs are considered minimum estimates; however, similar analyses of diploid 
and triploid Ceratopteris thalictroides found nearly identical Ks frequency distributions to the results presented 
in this study71. If additional WGD events were obscured from the Ks analyses due to incomplete gene sampling, 
it is unlikely that transcriptome samples from a congeneric species would hide the same events. The authors of 
the above-mentioned study dated the WGD event to 52 ± 1 mya due to their use of a relatively rapid synonymous 
substitution rate (11.04 × 10−9)71. Synonymous substitution rates are highly variable among plant lineages and 
across time72,73; thus, we are more confident in our relative dating of the Ceratopteris WGD as occurring between 
that of Equisetum and the most recent common ancestor of Ceratopteris and Azolla due to our MAPS results.

Our results do not support hypotheses of frequent WGD in ferns followed by massive gene silencing and 
the slow loss of genetic material74,75 and instead lend credence to the hypothesis that ferns had ancestrally high 
chromosome numbers26,43 and underwent WGD rarely yet were unable or very slow to lose genetic material21,31. 
This conclusion is in agreement with past studies based on isozymes25–27, transcripts of Equisetum giganteum57, 
a genetic linkage map of Ceratopteris30, as well as ancestral reconstructions76 that found ancient WGD events to 
be rare in the evolutionary history of ferns despite the presence of many neopolyploids32. While genomic anal-
yses in flowering plants have shown that even very small genomes, such as that of Arabidopsis, have undergone 
numerous rounds of polyploidy, yet still have a low number of chromosomes, we find that ferns are much less 
dynamic, having undergone relatively few WGD events, yet retaining a high number of chromosomes. Ancestral 
reconstructions of chromosome numbers across ferns have suggested that the common ancestor of all ferns had 
a haploid chromosome number of 22, while many of the more diverse fern lineages had higher ancestral chro-
mosome numbers, such as n = 30 in Pteridaceae76. If chromosome numbers were ancestrally high in ferns, only 
a single WGD event would therefore be needed to reach a chromosome number of n = 39 in Ceratopteris (or 
n = 59, the average across all ferns) since the divergence of the common ancestor of ferns from that of seed plants 
400 million years ago67,70. Alternatively, the high chromosome numbers of ferns could be a result of aneuploidy 
or chromosomal fission42. To better understand the cause of the high chromosome numbers of homosporous 
ferns, comparative syntenic and phylogenomic analyses will have to be applied across multiple fern taxa based on 
complete genome assemblies.

Similar to other large plant genomes, a large proportion of the Ceratopteris genome is composed of LTR 
RTs and other transposable elements (Fig. 3). This “genome obesity” is the likely result of a steady accumula-
tion of transposable elements and an inability to discard them, as found in smaller flowering plant genomes8,40. 
Importantly, Ceratopteris had a very low diversity of recent LTR RT exemplars when compared to other 
large-genome species such as maize or Picea. While this finding could be indicative of low LTR RT richness and 
high abundance, given that the counts of the LTR RTs were considerably higher in Ceratopteris compared to the 
other genomes, it is also possible that we are unable to identify the majority of full-length LTR RTs due to low 
scaffold contiguity with the CFern v1.1 assembly. The BAC.SubSample assembly and read-based analyses provide 
a more accurate representation of the general repeat composition of Ceratopteris; however, these results provide a 
much smaller representation of the genome and are limited in their resolution. Clearly, long-read technology will 
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be necessary to overcome and fully analyze a genome of this size, as short-read sequencing simply cannot span 
and assemble the repetitive structures found in Ceratopteris. However, expense must be taken into account in any 
sequencing project, and here the deep sequencing of an 11.25 Gbp genome using long-read technology would 
take much longer and cost much more than similar sequencing with short reads.

This study provides a major stepping-stone in the understanding of plant evolutionary genomics by provid-
ing the first homosporous fern reference genome, as well as unique insights into the processes underlying the 
formation of these massive genomes. Future efforts should focus on long-read technology to provide a complete 
assembly of multiple homosporous ferns—thus permitting more extensive comparisons of genome evolution and 
synteny across green plants.

Methods
tissue samples. Ceratopteris richardii (Pteridaceae) is a fast-growing tropical fern, used globally in research 
laboratories as well as in K-12 and undergraduate biology courses for studying alternation of generations in 
plants. Inbred lines and single-gene mutants are commercially available and readily produced. For this study, 
spores from the Hn-n inbred line were kindly donated by Dr. Leslie Hickok (University of Tennessee). The spores 
were germinated on nutrient media77,78 and grown following the recommended conditions in the C-Fern Manual 
(www.c-fern.org). We isolated the germinated gametophytes to individual petri dishes and growth media. Given 
that C. richardii is homosporous, the gametophytes are typically bisexual and produce both antheridia and arche-
gonia. By isolating the gametophytes prior to sexual maturity, we ensured that any sporophytes that did develop 
were a product of gametes from a single gametophyte and thus completely homozygous (doubled haploid).

Library construction and sequencing. We extracted genomic DNA (gDNA) from Ceratopteris using a 
modified CTAB protocol79 and quality checked and quantified the gDNA using a Qubit fluorometer (Invitrogen, 
Carlsbad, CA, USA) and NanoDrop spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). 
Genomic short-read library preparation and sequencing for Ceratopteris were completed by the University 
of Florida’s Interdisciplinary Center for Biotechnology Research (UF ICBR). The gDNA was fragmented and 
size-selected for ~300 base pair (bp) inserts, and the sequencing of 150 bp paired-end (PE) reads was conducted 
on two runs of the Illumina NextSeq platform (Illumina, San Diego, CA, USA). Mate-pair (MP) libraries (125 bp 
PE, 8–10 Kbp inserts) were prepared and sequenced at the Duke Genome Sequencing and Analysis Core on two 
lanes of Illumina HiSeq 2000 (Illumina, San Diego, CA, USA).

We also subsampled the Ceratopteris genome with long-read technology to avoid the assembly biases inher-
ent in short-read technology by sequencing BAC clones (Plate CR_Ba #624, Green Plant BAC Library Project, 
provided by Clemson University Genomics Institute). We selected 34 Ceratopteris Hn-n BAC clones to be grown, 
pooled, purified, and sequenced using the RS II platform (Pacific Bioscience, Menlo Park, CA, USA) at the 
Arizona Genomics Institute. The reads were cleaned and de novo assembled using the Hierarchical Genome 
Assembly Process (HGAP) in the SMRT Analysis software package (Pacific Biosciences, Menlo Park, CA, USA) 
to produce the BAC.SubSample assembly.

Long-read technology was also used to acquire a high-confidence set of gene models from sporophyte tis-
sue. We extracted total RNA from sexually mature leaf tissue using the RNeasy Plant Mini kit (Qiagen, Hilden, 
Germany). The total RNA was size-selected for 0.8–2, 2–3, 3–5, and >5 Kbp with the SageELF (Sage Science, 
Beverly, MA, USA) at the UF ICBR. The libraries were prepared following the SMRTbell library protocol, and 
each library was sequenced on three PacBio SMRT cells (Pacific Bioscience, Menlo Park, CA, USA) at the UF 
ICBR.

Genome assembly. The raw genomic PE reads were trimmed of adapters and then quality-filtered with 
Trimmomatic80, while the raw MP reads were trimmed of adapters and separated into MP, PE, and unknown 
reads with NxTrim81. All libraries were quality-checked before and after cleaning with FastQC (www.bioinfor-
matics.babraham.ac.uk/projects/fastqc/). We divided the cleaned PE reads into 24-mers with Jellyfish82 and plot-
ted their frequencies with KAT83 to assess environmental contamination, organellar genome content, nuclear 
genome size, and repeat content.

The PE reads were assembled using Meraculous284 and a k-mer size of 61 based on the results of KmerGenie85 
to produce assembly CFern v1.0. The scaffolds from the CFern v1.0 assembly were further scaffolded with the 
MP reads using the SSPACE assembler86 to produce the genome assembly CFern v1.1. To compare the content 
of CFern v1.1 with the overall content of the cleaned reads, we divided the assembly into 24-mers with Jellyfish82 
and compared the resulting frequencies to those of the cleaned PE reads using the compare feature of KAT83. For 
subsequent analyses, only scaffolds over 10 Kbp were used (CFern v1.1A).

transcriptome assembly. We cleaned and processed the long reads following the IsoSeq protocol54 in 
which the circular consensus sequences (CCS) were acquired from the raw reads and then classified and clus-
tered. Only full-length, high-quality (accuracy >= 99%), polished sequences (IsoSeq.HQ) were used for analysis 
following the Iterative Clustering and Error correction (ICE)/Quiver algorithm. The IsoSeq.HQ sequences were 
further collapsed into unique isoforms and genes using both genome-based and sequence-based protocols (see 
below).

For the genome-based method, the IsoSeq.HQ sequences were mapped to the CFern v1.1A assembly using 
GMAP (parameters: -f samse –n 0 –z sense_force)87. The sam file output was sorted (parameters: -k 3,3 –k 4,4n), 
and transcripts were collapsed together (collapse_isoforms_by_sam.py, https://github.com/Magdoll/cDNA_
Cupcake)54. We used both 98% coverage and 98% identity as our full-length mapping cutoff and then searched 
for incomplete genes with 50% coverage and 98% identity.
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Due to the fragmented state of the CFern v1.1A assembly, many transcripts did not map. Thus, we also used 
CD-Hit v4.6.4 (parameters: -c 0.99 –G 0 –aL 0.90 –AL 100 –aS 0.99 –AS 30)88 to cluster and collapse highly simi-
lar transcripts into putative isoforms without a reference genome. We then used those sequences with the Coding 
Genome reconstruction tool89 for genome-free isoform collapse and gene identification. This pipeline divided the 
sequences into 30-mers and then grouped those kmers into clusters based on pairwise distances. De Bruijn graphs 
of the sequences for each cluster were then used to resolve sequencing errors and alternative splicing events and 
output putative genes. Due to the high accuracy, full-length, de novo nature of IsoSeq and subsequent cleaning 
protocols, these genes served as our reference gene models for Ceratopteris (referred to as UniCFernModels).

Polyploidy. The UniCFernModels data set was used in the DupPipe pipeline90,91 to estimate the relative age 
of gene duplications. DupPipe finds duplicate gene pairs and then estimates the divergence of these genes using 
the number of substitutions per synonymous site (KS). The frequency of duplicate genes corresponding to a given 
level of divergence, as a substitute for timing, was plotted as a histogram, and peaks were inferred to repre-
sent synchronous gene duplications, indicative of ancient polyploidy events90,92. Genes from two other ferns, 
Equisetum giganteum57 and Azolla filiculoides19, were similarly analyzed and plotted for comparison. To reduce 
the subjectivity of smoothing based on varying bin sizes, we analyzed the KS values of these three ferns using the 
SiZer (Significance of Zero Crossings of the Derivative)93 package in R v3.4.294. This analysis determines whether 
an increase or decrease in a scatterplot or histogram is significant at α = 0.05 and plots the changes along the orig-
inal x-axis with blue coloration indicating a significant increase, red a significant decrease, purple insignificance, 
and gray too few data points to determine.

To determine whether the three ferns examined here (Ceratopteris, Equisetum, and Azolla), spanning over 400 
million years since their most recent common ancestor70, share any ancient polyploidy events, we clustered the 
predicted proteins of Ceratopteris, Equisetum, Azolla, Amborella, Selaginella, and Physcomitrella into orthogroups 
using OrthoFinder95. Only orthogroups with gene representatives from all six species were retained. The pro-
tein sequences of each orthogroup were aligned with MAFFT96, and the alignments were converted to nucleo-
tide alignments using the pxaa2cdn tool in Phyx97. The alignments were stripped of highly ambiguous (>90% 
missing data) columns, and gene trees were produced with RAxML using 100 rapid bootstrap searches and the 
GTRGAMMA model of evolution98. These gene family trees were entered into the Multi-tAxon Paleopolyploidy 
Search (MAPS) package58. This package first filters all of the gene family trees for subtrees that match the known 
species tree [here (Physcomitrella, (Selaginella, (Amborella, (Equisetum, (Ceratopteris, Azolla)))))]. It then counts 
the number of subtrees with gene duplications at a specific node in the species tree relative to the number of avail-
able subtrees. A node with a high proportion of gene duplications is presumed to have a shared polyploidy event.

We also used a cytogenetic approach to assess more recent WGD. We conducted fluorescent in situ hybridiza-
tion (FISH) using the previously described BAC clones as probes following Chester et al.99 and Chamala et al.100. 
To produce the probes, the BAC DNA was extracted from the Escherichia coli culture and amplified by rolling 
circle amplification (RCA)101. The RCA product was labeled by nick translation with Cy5-dUTP and purified with 
a QIAquick Nucleotide Removal kit (Qiagen, Venlo, Netherlands).

Root tips for chromosome preparations were collected in the mornings and immediately treated with pres-
surized nitrous oxide for 1 hour before being fixed in 3:1 ethanol (EtOH): glacial acetic acid overnight at room 
temperature and transferred to 70% EtOH at −20 °C for long-term storage. The root tips were then treated and 
chromosome spreads prepared to produce slides for in situ hybridization with the fluorescently labeled probes99. 
The BAC FISH images were taken on an AxioImager M2 microscope with an AxioCam MR camera (Carl Zeiss 
AG, Oberkochen, Germany).

Repeat characterization. We took both structural- and homology-based approaches to repeat charac-
terization following Campbell et al.102. As long terminal repeat retrotransposons (LTR RTs) comprise a sizable 
proportion of most plant genomes, a variety of tools was used to characterize these repeats in the CFern v1.1A 
assembly. Recent LTR RTs were collected based on 90% LTR similarity using LTRharvest (parameters: -minlenltr 
100 -maxlenltr 6000 -mindistltr 1500 -maxdistltr 25000 -mintsd 5 -maxtsd 5 -motif tgca -similar 90 -vic 10)103 
from the GenomeTools package104. LTRdigest was then used to find elements with poly purine tracts (PPT) or 
primer binding sites (PBS) using the Genomic tRNA database105. Those elements were identified and further 
filtered for false positive elements by removing gappy elements (>50 Ns), recent gene duplications where the 
flanking regions of the LTRs are alignable, and nested RT insertions using custom scripts. LTR RTs with nested 
DNA transposons were also identified by searching DNA transposase protein sequences with BLASTx106. LTR RT 
exemplars were then identified based on 80% identity and 90% coverage from the filtered elements based on the 
internal sequences of the LTR RTs and then based on the LTR sequences. Older LTR RTs were similarly collected 
but with 75% similarity among the LTR sequences and lacking the TGCA motif. To exclude more recent LTR RTs 
from the older LTR RT library, the younger LTR RT exemplars were used to mask and exclude elements found in 
the older LTR RT library with RepeatMasker107. The two LTR RT libraries were combined (allLTR.lib) and used as 
the reference library to mask the CFern v1.1A assembly with RepeatMasker107.

The unmasked remainder of the assembly was inputted into RepeatModeler to identify repeat families de 
novo108. The RepeatModeler library and LTR RT library were combined, and unidentified repeats were searched 
against a transposase database107,109 using BLASTx and identified to superfamily when possible106. To ensure 
that fragmented plant genes were not included in the final repeat library, we queried all of our repeats with the 
SwissProt plant protein110 and NCBI RefSeq plant protein databases using BLASTx106. With our clean, final repeat 
library, we used RepeatMasker to quantify the repeat elements throughout CFern v1.1A.

To make direct comparisons with other plant genome assemblies of varying sizes, qualities, and lineages, 
we followed the same repeat annotation protocol for the genomes of Amborella trichopoda16, a monocot (Zea 
mays)60, a liverwort (Marchantia polymorpha)61, a lycophyte (Selaginella moellendorffii)62, a conifer (Picea abies)8, 
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and a moss (Physcomitrella patens)63. We also ran the same protocol on the BAC.SubSample assembly. To remove 
assembly biases, we used RepeatExplorer 2111 on cleaned reads for the above-mentioned taxa, with the excep-
tion of Selaginella which only used Sanger sequencing. Raw reads were downloaded from the NCBI Sequence 
Read Archive and EMBL European Nucleotide Archive, cleaned and reduced to 0.5X coverage of their respective 
genomes, then run in RepeatExplorer2111 via the Elixir CZ Galaxy portal under default parameters against the 
Viridiplantae version 3.0 transposable element protein domain database.

Dating repeat insertion events. We used the highly accurate but conservative LTR_Retriever package65 to 
identify full-length LTR RTs and date their insertion using both the CFern v1.1A and BAC.SubSample assemblies. 
We provided candidate LTR RTs from LTR_harvest and LTR_finder using a 90% similarity minimum threshold 
between LTRs and the presence of the TGCA motifs. The candidate LTR RTs were filtered, removing non-LTR 
RT repeat elements or those with large amounts of tandem repeats or gaps. Especially in fragmented genome 
assemblies, such as the CFern v1.1A, these requirements hugely reduce the number of LTR RT candidates but 
ensure that only full-length LTR RTs are analyzed. Following filtering, the long terminal repeat regions of each 
transposable element were aligned, and the Jukes-Cantor model was used to estimate the divergence time of the 
two LTR regions. We used a mutation rate of 6.5 × 10−9 per site per year to estimate the years since insertion16. 
This mutation rate is half that  of rice36 and is a general estimate; therefore, the insertion times should only be used 
in reference to the relative timing of insertion, rather than as exact dates.

Data availability
All of the raw reads and associated genomic and transcriptomic assemblies can be found in the NCBI BioProjects 
under PRJNA511033. All of the tissue used for sequencing came from one doubled haploid genotype (Voucher: 
M. Whitten #5841, University of Florida Herbarium, FLAS).
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