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ABSTRACT
Aerospace milestones in human history, including returning to the moon and mannedMartian missions,
have been implemented in recent years. Space exploration has become one of the global common goals, and
to ensure the survival and development of human beings in the extraterrestrial extreme environment has
been becoming the basic ability and technology of manned space exploration. For the purpose of fulfilling
the goal of extraterrestrial survival, researchers in Nanjing University and the China Academy of Space
Technology proposed extraterrestrial artificial photosynthesis (EAP) technology. By simulating the natural
photosynthesis of green plants on the Earth, EAP converts CO2/H2O into fuel and O2 in an in-situ,
accelerated and controllable manner by using waste CO2 in the confined space of spacecraft, or abundant
CO2 resources in extraterrestrial celestial environments, e.g. Mars.Thus, the material loading of manned
spacecraft can be greatly reduced to support affordable and sustainable deep space exploration. In this
paper, EAP technology is compared with existing methods of converting CO2/H2O into fuel and O2 in the
aerospace field, especially the Sabatier method and Bosch reduction method.The research progress of
possible EAPmaterials for in-situ utilization of extraterrestrial resources are also discussed in depth. Finally,
this review lists the challenges that the EAP process may encounter, which need to be focused on for future
implementation and application. We expect to deepen the understanding of artificial photosynthetic
materials and technologies, and aim to strongly support the development of manned spaceflight.

Keywords: solar energy, extraterrestrial survival, artificial photosynthesis, CO2 reduction, oxygen
evolution

INTRODUCTION
Extraterrestrial survival is a prerequisite for hu-
mankind to achieve long-term space flight, extrater-
restrial residence and immigration, and creates one
of the greatest scientific and technological chal-
lenges of human deep space exploration. During
human extraterrestrial exploration activities, a sus-
tained supply of O2 and fuel is one of the essen-
tial abilities. Extraterrestrial artificial photosynthesis
(EAP), i.e. CO2/H2O conversion into fuel and O2
from human respiration, combustion emissions and
in-situ resources on outer-Earth planets, can greatly
reduce the supply load of spacecraft and space sta-
tions, thus promoting affordable and sustainable
human deep space exploration.

EAP (Fig. 1a) is a simulation of plant photo-
synthesis on Earth. Through photocatalysis [1,2]
(Fig. 1b), photoelectrocatalysis [3,4] (Fig. 1c and d)
or photovoltaic electrocatalysis [5] (Fig. 1e), EAP
uses a controllable and accelerated chemical process
to in-situ convert CO2/H2O into carbon-containing
fuel and O2 by harnessing solar radiation. Com-
pared with traditional CO2/H2O conversion tech-
niques, such as the thermochemical or electrochem-
ical method, EAP technology, which only uses solar
energy and semiconductor materials, is usually car-
ried out without consuming auxiliary energy inputs.
EAP can be applied to in-situ convert CO2 waste
in a confined space, which effectively reduces the
supply demand of human space stations and deep
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space spacecraft, etc. Furthermore, it also makes use
of abundant in-situ resources such as CO2 and H2O
in the extraterrestrial atmospheric environments of
the moon or Mars to meet the material demand.
Through EAP, human beings can survive in extrater-
restrial environments in the long term.

In recent decades, for solving the key problems of
supply demand for human space stations and deep
space exploration, the USA, Japan and other coun-
tries have continuously carried out research on CO2
conversion technology as one of the crucial parts of
in-situ resourceutilization, developeda series ofCO2
conversion systems based on the Sabatier method
[6] and Bosch reduction method [7], and carried
out experimental verification of CO2 reduction and
O2 production on the International Space Station
(ISS) [8,9]. In 2005, the National Aeronautics and
Space Administration (NASA) in the USA pro-
posed the Resource Prospector mission, planning
to carry out in-situ utilization experiments for pro-
ducing O2 from water in lunar surface soil in 2022.
Russia raised a series of plans for lunar exploration
and will launch a lander namedMoon 27 in 2025 for
in-situ lunar resource utilization. However, existing
CO2 conversion devices adopting high-temperature
and high-pressure reaction conditions always have
high energy consumption. On the other hand, the
extraterrestrial microgravity environment obviously
promotes the formation of supersaturated layers of
dissolved gas molecules near the electrode surface.
These layers accelerate the formation and evolution
of bubbles at the interface between electrode and
electrolyte, and hinder the material transport rate at
the microscopic scale [10–12]. The electrode reac-
tion kinetics are thus significantly reduced, result-
ing in less than one-third of the working efficiency
on the Earth. Furthermore, due to the lack of ex-
perimental data and related theoretical research, key
scientific and technical challenges, such as in-situ
preparation of photoelectrocatalytic materials, the
heterogeneous catalytic process and the working pa-
rameters of materials and systems, have becomema-
jor problems in CO2 conversion.

The ability to harvest light energy through arti-
ficial photosynthesis may create an essential foun-
dation for technologies used in many areas, such as
global carbon neutralization [13].Thus, it is reason-
able to expect the further development of EAP for
human extraterrestrial survival. With regard to this,
one example is demonstrated by an EAP device, de-
veloped by Qian Xuesen Laboratory of Space Tech-
nology, which reduces CO2 with water into a car-
bonaceous compound and produces O2. The feasi-
bility of the reactor in CO2/H2O photo-conversion
into carbonaceous compound and O2 was verified
by ground experiment, whichmay provide a theoret-
ical and practical foundation for subsequent device

optimization, carbon dioxide conversion into vari-
able hydrocarbon products with high selectivity, and
in-orbit testing of artificial photosynthesis devices
[14].

The research into artificial photosynthesis began
in 1972 when Honda and Fujishima reported that
H2 was produced by photolysis of water over tita-
nium dioxide electrodes under ultraviolet light [4].
Then during the following few decades, numerous
scientists carried out a series of research works on
this specific area. In 2001, Zhigang Zou proposed a
new theory and method to regulate the band struc-
ture of photocatalytic materials, and broadened the
response range of photocatalytic materials. He re-
alized visible-light-induced complete water decom-
position [2] and CO2 reduction [15] under visi-
ble light, thus developing a new-generation visible-
light-responsive photocatalytic material. In 2015,
NASA started to focus on artificial photosynthesis
and proposed the concept of microbial-assisted ar-
tificial photosynthesis. In 2016, Daniel G. Nocera
devised a biocompatible-inorganic catalyst system
to decompose water to get H2 and O2 at low volt-
ages [16] (Fig. 1f). He utilized low concentrations
of CO2 in the presence of O2 and H2 to gener-
ate biomass, fuel or chemical products. A 10% en-
ergy efficiency of CO2 reduction could be obtained
when coupling this device with a photovoltaic sys-
tem. Peidong Yang combined light-absorbing semi-
conductor nanomaterials with bacteria to produce
biological-inorganic hybrid systems forCO2 fixation
[17,18] (Fig. 1g and h). In 2017, NanjingUniversity
and Qian Xuesen Laboratory at the China Academy
of Space Technology carried out research into EAP
materials and systems for the first time, aiming to re-
solve the requirementswith regard to basicmaterials
and energy during human extraterrestrial survival,
and they have preliminarily completed the verifica-
tion ofmaterials and systems.This research progress
provides the technical foundation for human sur-
vival during spaceflight missions and deep space ex-
ploration.

EXTRATERRESTRIAL ENVIRONMENTAL
IMPACT
Space exploration activities are faced with various
special environments, such as microgravity, strong
radiation, extreme temperature and high vacuum,
which bring about a series of challenges for realizing
CO2/H2O conversion in outer space. Only through
long-term and effective experiments, combinedwith
ground simulation and in-orbit verification, can we
investigate the mechanistic and process influences
of outer space on EAP in the process of space ex-
ploration. However, it can be speculated that the
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Figure 1. Mechanism schemes of (a) EAP, (b) photocatalysis, (c and d) photoelectrocatalysis and (e) photovoltaic
electrocatalysis. (f) A biocompatible inorganic water-splitting catalyst system (adapted from ref. [16] with permis-
sion from American Association for the Advancement of Science (AAAS)). (g) Scheme of CO2 reduction of the bacte-
ria/semiconductor hybrid artificial photosynthetic system (adapted from ref. [17] with permission from AAAS). (h) Illus-
trations of a nanowire-bacteria hybrid system and the reaction mechanism (adapted from ref. [18] with permission from
Elsevier).

external factors that mainly affect CO2 and H2O
conversion may be, and are not limited to, the fol-
lowing aspects:

(i) Microgravity. Under microgravity, the key
problems of bubble formation, evolution
and detachment at the reaction interface
need to be solved urgently.

(ii) Cosmic radiation. Materials, especially
semiconductors, on the lunar surface or
in Earth orbit would be strongly affected

by the impact of rays or particles such as
electrons, protons, heavy ions and plasma.
Material properties will be changed by
electromagnetic radiation and charged par-
ticles, including X-rays, electrons, protons
and heavy ions, mainly due to the internal
interactions in materials during the bom-
bardment caused by cosmic rays or high
energy particles. These internal interactions
are divided into coulomb interactions and
electromagnetic effects.
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Coulomb interactions include three
cases: Coulomb scattering, bremsstrahlung
and inelastic collision between particles
and electrons. Coulomb scattering refers
to the elastic collision process in which
charged particles are incident to mat-
ter, then deflected and dispersed by the
Coulomb electric field force of the atomic
nucleus. When materials are incident by
high-energy electrons, the high-speed
electron suddenly slows down and produces
the bremsstrahlung, which is an impor-
tant process for charged particles to act
on materials in space. When particles or
electrons inelastically collide with material,
the electron in the material is ionized or
excited from the outer layer to the inner
layer, causing primary ionization to produce
a large number of secondary electrons. The
total kinetic energy before and after collision
is not equal.

Electromagnetic interaction mainly
refers to the interaction between high-
energy rays and materials. The whole, or
part, of the initial energy of the high-energy
ray can be transferred to electrons in thema-
terials, and the incident particles disappear
or scatter. Electromagnetic effects include
the photoelectric effect, electron pair effect
and Compton effect.The dominant effect of
electromagnetic action is related to photon
energy and atomic coefficient of absorbing
material.

After the incident particles enter the ma-
terial, the energy of the incident particles
decreases and the velocity slows down. Fi-
nally, the incident particles are blocked or
scattered. The charged particles enter the
material and lose energy through two ways:
the displacement effect and ionization effect.
Thedisplacement effect iswhenchargedpar-
ticles collidewith the nucleus,making atoms
leave their original positions; or the incident
particles fill in the lattice gaps to form va-
cancies and interstitial atoms, leading to the
corresponding changes in material structure
and properties. Collision between incident
high-energy particles and material atoms is
the main source of energy loss. Further, a
large number of recoil atoms are produced
after collision, and the secondary reactions
of recoil atoms with the surrounding atoms
forma largenumberofFrenkel defects.Most
of these defects are semi-permanent, lead-
ing to great damage to semiconductor ma-
terials and devices. The ionization effect is
when the radiation of charged particles with

a certain energy excites electrons outside the
nucleus of materials to form free electrons.
Material atoms thus become positive ions,
forming electron-hole pairs.When electrons
transition from valence band to conduction
band, the electrical, chemical, physical and
mechanical properties of materials can be
affected. Small-dose and long-term steady-
state radiation in space often leads to a cu-
mulative ionization damage effect.

(iii) Extreme temperature. Extraterrestrial space,
including the lunar surface, produces a huge
temperature difference between day and
night. During daytime, when the sun shines
vertically, the temperature rises as high as
127oC; at night, the temperature can be
as low as −183oC. As water evaporates
or freezes easily, this poses a great chal-
lenge to CO2 reduction in aqueous systems.
Furthermore, the thermal expansion and
contraction caused by temperature switch-
ing generally accelerates the fatigue and ag-
ing of materials, which brings a series of
system durability and reliability problems.

In addition, there are other problems caused by
the atmospheric pressure and special atmospheric
environments of extraterrestrial planets, although
some of them, e.g. extreme temperatures and ultra-
vacuums, can be resolved by aerospace engineering
methods. For example, the Environmental Control
and Life Support System (ECLSS) used on the ISS
by NASA can maintain the space capsule pressure,
temperature and humidity. Extreme conditions have
brought great challenges for researchers in selecting
and designing materials, and it will also become dif-
ficulties in our research of extraterrestrial artificial
photosynthsis.

RECENT PROGRESS ON
EXTRATERRESTRIAL CO2 AND H2O
CONVERSION FOR SPACECRAFT
Since the 1960s, the Sabatier method [6] and Bosch
reduction method [7] have been the main ap-
proaches in CO2 reduction technology. H2O elec-
trolysis for H2 and O2 has also been widely antici-
pated [19]. Recently, the EAP technology proposed
by Nanjing University and Qian Xuesen Laboratory
realized CO2/H2O photo-conversion under mild
conditions with low energy consumption (Fig. 2a
and b).

For solving the key problems of manned space
stations and deep space exploration, the USA and
other countries carried out research on CO2 and
H2O conversion based on traditional ground tech-
nology, e.g. by using H2O electrolysis to supply
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O2 for astronauts in the ISS. To realize the recy-
cling of CO2 released by astronauts, NASA and
Japan Aerospace Exploration Agency (JAXA) have
developed a set of CO2 reduction and O2 evolu-
tion devices, in which CO2 reduction is obtained
by converting CO2 and H2 into methane with H2
obtained by H2O electrolysis. The Sabatier reac-
tor contains a gas-solid two-phase process with a
core unit temperature of 250–450oC and a min-
imum gas pressure of 55 kPa. The mass of the
ground experimental unit is around 41 kg and
the total power is >100 W. The in-orbit test was
completed for this system in October 2010 (Fig. 2c
and d) [6,20]. The water electrolyzer developed by
JAXA has also been tested in orbit [8,9]. This de-
vice was obtained bymodifying themore technically
mature proton exchangemembrane electrolytic cell,
which consists of an electrolytic unit and a gas-liquid
separation unit [9,21] (Fig. 2e and f). In the ISS,
a combination of the above two devices was tested
to support the ECLSS to convert CO2 into O2 and
methane by in-orbit reaction (Fig. 2g) [9]. JAXA
researchers used parabolic flight and drop tower
tests to make a series of research and improvement
works on the water electrolysis device, including
tests on the working temperature of the electrolytic
cells, the pressure of the gas-liquid separation mem-
branes, the electrolyte component, and the work-
ing voltage and current. However, even after vari-
ous optimizations, the water electrolytic device’s ef-
ficiency under microgravity was less than a third of
that under usual gravity environments. The super-
saturated layers of dissolved gas molecules formed
by the aggregation of over-dissolved gas on the elec-
trode highly hindered the transport rate and reac-
tion efficiency of electrolyte [10] (Fig. 2h and i).
Matsushima et al. found that the interactionbetween
electrodes and electrolytes in the microgravity en-
vironment has a significant impact on the forma-
tion and evolution of bubbles, and the electrolytic
performance [12]. In order to improve the ma-
terial transport rate and reaction efficiency under
microgravity, Nanjing University and Qian Xuesen
Laboratory used liquid shearing force to compel the
generated gas from the electrode surface, to prevent
bubble gathering near the electrode surface under
microgravity conditions [14].

For the more challenging manned deep space
exploration missions, the USA first proposed
the scheme of producing O2 and fuel by using
in-situ resources such as water and carbon dioxide
on the moon or Mars. NASA proposed a Mars
in-situ-propellant-production precursor (MIP)
plan in 2001 to deoxidize carbon dioxide into O2
using high-temperature electrolysis (Fig. 2j) [22].
In 2013, NASA also proposed a Mars in-situ re-
source utilization landing mission, MARCO POLO

[23], which would utilize Mars’s atmospheric and
soil resources to produce H2, O2 and CH4 by the
Sabatier method and water electrolytic technology.
They further proposed the Mars Oxygen ISRU
Experiment (MOXIE) load in 2014 to deoxidize
carbon dioxide in the Martian atmosphere to
generate O2 with a solid oxide electrolytic cell at
800oC to achieve 10 g h–1 O2 production (Fig. 2k)
[24]. The load project was launched in 2020, with
about 2 h of experiments on Mars. If this in-situ
resource utilization technology is validated, NASA
will plan to follow up with a 100-fold magnificated
scale device to support the 2033 manned Mars
mission. In 2018, NASA supported a plan named
the CO2 Conversion Challenge to develop novel
synthesis technologies that use carbon dioxide to
generate molecules that can be used to manufacture
a variety of products. However, the selected projects
have remained at the laboratory stage and do not
show feasibility for application to spacecraft. The
USA is extracting O2 from the Martian atmosphere
as part of the ‘Mars 2020’ rover project (Fig. 2l)
[24]. Generally, the American space mission in
CO2 utilization and transformation mainly uses
the relatively mature thermal or electrical chemical
conversion technology found in industry. Although
the technical route has high maturity and stabil-
ity, it needs to be carried out under extremely
high temperature conditions (900–1600oC),
with harsh operating conditions and large energy
consumption, which is not conducive to manned
deep space exploration. In 2020, Qian Xuesen
Laboratory developed a demo of an EAP device
for reducing carbon dioxide with water into car-
bonaceous compound and producing O2 [14].
The feasibility of the reactor in reducing carbon
dioxide to O2 and carbonaceous compound was
verified by ground experiment, which may provide a
theoretical and practical foundation for subsequent
device optimization, carbon dioxide conversion to
variable hydrocarbon products with high selectivity,
and on-orbit testing of artificial photosynthesis
devices.

MATERIALS FOR EAP
Even on the moon or Mars, the energy provided by
the sun is considerable. The light intensity on the
moon approximates 1.4 times that of the Earth. Re-
cent research shows that the permanent light area
on the moon is adjacent to the ice area, which
may be an ideal place for human beings to set up
bases on the moon [25]. Solar power on Mars’s
surface is nearly 40% of that found on Earth. Be-
cause there is no atmospheric absorption, the so-
lar spectrum on the surface of the moon is similar
to that in Earth orbit, which is about equal to AM0
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(1366.1 Wm–2). The transmitted sunlight wave-
length on the surface of Mars increases with the in-
crease of solar zenith angle and optical depth, and
the energy at shorter wavelengths is more easily ex-
hausted, because the cross section of dust particles
suspended in the atmosphere at shorter wavelengths
is larger. The 60-degree spectrum of sunlight on the
surface of Mars is reduced to one-sixth of AM0, and
further reduced in thebluepart of the spectrum[26].
The moon has no atmosphere, thus there is no CO2
on themoon. It is conservatively estimated that 0.3%
to 1% of the water on themoon is buried in the form
of ice under 40 cm of dry regolith [27]. On Mars,
95%of the atmosphere (the average pressure is<1%
of one atmosphere) is CO2. It has been estimated
that Martian meteorites contain carbonates in low
abundances (<1vol.%) [28], andcalciumcarbonate
has been identified in the soils at the Mars Phoenix
landing site [29]. Thus, it is important to evaluate
the feasibility of utilizing suchmineralized carbon in

future research. At this stage this review mainly fo-
cuses on the EAP process of CO2/H2O. Moreover,
ground ice and hydration water exist at the near-
surface subsurface of Mars [27]. The above precon-
ditions are propitious to EAP in extraterrestrial envi-
ronments such as the moon andMars.

Most of the practical applications of EAP are
based on photocatalytic materials. Photocatalysts
are an important component to support artificial
photosynthesis.Catalysts suitable forEAPareherein
classified as photocatalysts, photoanodes, photo-
cathodes and photovoltaic-electrochemical cata-
lysts.The evaluation parameters for the performance
assessment of the above catalysts mainly contain
product rate, catalytic current density (for photo-
electrocatalysts), turnover number and turnover fre-
quency (evaluating the activity of catalytic active
sites), quantum yield (assessing the performance
of photocatalysts) and faradaic efficiency (assess-
ing the selectivity for photoelectrocatalysts). In the
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following text, we will mainly analyze photocat-
alytic/photoelectrocatalytic materials for EAP.

EAP processes mainly involve the conversion
of CO2 and H2O into hydrocarbon fuel and
O2, and water splitting to produce H2 and O2.
CO2/H2O photo-conversion involves two parts
of the half reaction, including CO2 reduction by
photo-generated electrons, and H2O oxidation by
photo-generated holes, respectively. The standard
chemical potentials required in thermodynamics for
these processes are shown in the following reactions
(1–8), respectively:

2H2O + 2e− → H2 (E = 0 V vs. SHE) ,

(1)

2H2O + 4h+ → 4H+ + O2

(E = +1.23 V vs. SHE) , (2)

CO2 + e− → CO2·−

(E = −1.90 V vs. SHE) , (3)

CO2 + 2H+ + 2e− → CO + H2O

(E = −0.53 V vs. SHE) , (4)

CO2 + 2H+ + 2e− → HCOOH

(E = −0.61 V vs. SHE) , (5)

CO2 + 4H+ + 4e− → HCHO + H2O

(E = −0.48 V vs. SHE) , (6)

CO2 + 6H+ + 6e− → CH3OH + H2O

(E = −0.38 V vs. SHE) , (7)

CO2 + 8H+ + 8e− → CH4 + 2H2O

(E = −0.24 V vs. SHE) . (8)

In consideration of the extreme environ-
mental conditions that EAP materials would be
applied in, EAP materials should meet the fol-
lowing requirements: (i) an appropriate band
structure, which is conducive for extraterres-
trial sunlight absorption with different spectra
and higher intensity, and reaches the chemical
potentials needed to achieve the correspond-
ing photo-redox reaction; (ii) adequate sur-
face catalytic active sites to support effective
photo-redox reaction; (iii) fast carrier transport and
separation at the interface; (iv) stable activity under
microgravity; (v) excellent survivability under
intense cosmic radiations; (vi) great capability of
resisting impact during take-off and landing; (vii)

low cost. Additionally, CO2/H2O photocatalysts
require excellence in reactant adsorption, prod-
uct desorption and product selectivity. During
CO2/H2O photo-conversion, H2 production is
the major competitive side reaction. Therefore,
avoiding H2 production is also one of the key points
in improving CO2/H2O photo-conversion. Amajor
way to hinder the H2 production is to adjust the
surface adsorption behavior of protons during the
EAP process. Typical methods [30] include ad-
justing adsorption properties of the catalyst surface
on carbon intermediate species, realizing proper
surface modification and hydrating or alloying the
surface with cocatalysts.

EAP materials for overall
photo-conversion
Most of the reported photocatalytic materials are
thermodynamically unfavorable to complete both
the reductive half reaction (CO2 reduction) and
the oxidative half reaction (O2 production), since
the overall CO2 conversion reaction generally needs
a band gap of over 3.1 eV when taking account
of the CO2 adsorption on the electrode surface
(reaction (3)). Catalysts with suitable band struc-
ture supporting overall CO2/H2O conversion are
mainly TiO2, ZnO, CdS, ZnS, ZnIn2S4, Ta3N5,
TaON, graphitic carbon nitride (g-C3N4), SrTiO3
[31–35] (in which TiO2, ZnO and ZnS can only
use ultraviolet light). SrTiO3 and CdS can theoret-
ically carry out full conversion under visible light,
however, their intrinsic properties are restricted by
low carrier separation rate. Thus, modification by
cocatalysts or construction of composite materials
is needed for the practical application of overall
CO2/H2O conversion. Most of the cocatalysts in
photocatalysis are derived from electrocatalysts.The
role of cocatalysts is to reduce the activation en-
ergy required for surface reactions. Cocatalysts for
oxygen evolution reaction (OER) mainly include
cobalt phosphate (CoPi) [36], iron hydroxide ox-
ide (FeOOH) [37], nickel oxide (NiOx) [38], ceria
(CeOx) [39], RuO2 [40], cobalt oxide (CoOx) [41]
and manganese oxide (MnOx) [42]. Highly active
cocatalysts for CO2 reduction reaction (CO2RR)
primarily contain Au [43], Ag [44], Cu [45], Mn
[46], MoS2 [47] and CdS [48]. Moreover, adjust-
ing the composition and ratio of metals, metallic al-
loy or other composite cocatalysts can be helpful in
improving the selectivity of CO2 reduction products
[49–51].

At present, EAP materials are restricted by the
low efficiency of photo-generated charge separa-
tion, the slow surface reaction rate and the seri-
ous inverse reaction of the products. A variety of
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methods have been developed to regulate the charge
separation and surface reaction performance, as well
as restrain the inverse reaction of the artificial pho-
tosynthetic catalysts, including crystal engineering,
built-in electric field, polarization effect, effective
mass reduction of photo-generated carriers, a single
crystal with low structural defects, molecular com-
posites, the Z-scheme strategy and surface modifi-
cation with cocatalysts. Conformation of solid so-
lution is one of the effective means of regulating
the electronic structure of catalysts and promoting
photosynthetic performance. Zhigang Zou’s group
showed in their theoretical calculation results that
Zn2GeO4 phase transformation from pseudo-cubic
phase into cubic phase can effectively narrow the
band gap. This is because the introduction of s and
p orbitals of Ge enhances the repulsion of p-d (O
2p-Zn 3d) and raises the valence band position,
while the s orbitals of Ge with low energy effectively
lower the conduction band position. The solid so-
lution photocatalysts composed of cubic ZnGa2O4
and pseudo-cubic Zn2GeO4 have light hole effec-
tive mass, and higher hole mobility. A narrow band
gap is beneficial for absorbing sunlight with a wider
wavelength, and high hole mobility is beneficial for
improving the reaction rate of water oxidation.
Therefore, the solid solution photocatalytic mate-
rials show higher photocatalytic performance with
regard to reducing CO2 to hydrocarbon fuel [52].
Based on a similar mechanism, Kazunari Domen’s
group also reported that (Ga1−xZnxN1−xOx) has
excellent performance for visible-light-driven com-
plete water splitting [53].

It is an effective method to separate photo-
generated charges by forming a built-in electric field
on the interface ofmaterials.Commonly, the built-in
electric field exists between two different semicon-
ductor materials or between different phase struc-
tures of the same semiconductor. The electrons and
holes in this type of built-in electric field separate to
opposite directions under the electric field, thus im-
proving the separation efficiency. Zhigang Zou et al.
synthesized a CeO2 octahedral structure with verti-
cal growth of hexahedron prism [54] (Fig. 3a). By
adjusting the length and number of CeO2 prisms
with exposed surface of {1 0 0} facets on octahe-
dron with surface of {1 1 1} facets, the separation
and transmission efficiency of photo-generated car-
riers were improved, leading to the highly improved
efficiency of photocatalytic CO2 reduction to pro-
duce CH4. Theoretical calculation showed that for
CeO2, the effectivemass of electronson{100} facet
ismuch larger than that on{111} facet, while the ef-
fective mass of holes on {1 1 1} facet is larger than
that on {1 0 0} facet. Therefore, photo-generated
electrons easily migrate to the {1 1 1} facets,

while photo-generated holes easily migrate to the
{1 0 0} facets, which is conducive to the sepa-
ration of photo-generated e– and h+. Thus, the
CeO2 homojunction materials achieved the over-
all CO2/H2O photo-conversion efficiency with
0.86 μmol h–1 g–1 CH4 yield, and 0.2% quantum
yield at 380 nm. The O2 yield was also detected in
accord with∼2 : 1 molar ratio to CH4.

Polar semiconductors with asymmetric positive
and negative electron centers can induce the po-
larization effect for effective separation of photo-
generated charges. Zhigang Zou et al. proposed that
single crystals growing along the polarization axis
of a polar semiconductor could maximize the polar-
ization field effect of the polar semiconductor, and
efficiently separate photo-generated charges [55].
Because of the periodic potential field, the photo-
generated charges are separated effectively along
the polarization axis. And the photo-generated elec-
trons are transmitted preferentially along the direc-
tion perpendicular to the polarization axis, form-
ing a specific two-dimensional transport path, which
greatly reduced the e––h+ recombination probabil-
ity.Thus, the activity and selectivity of reducingCO2
to CH4 are greatly improved. Li’s group also found
that the surface electric field induced by intrinsic
polarity of GaN nanoarrays can effectively enhance
carriers’ spatial separation and greatly promote the
photocatalytic overall water splitting. Based on the
photo-generated charge separation effect between
polar andnon-polar surfaces, the quantumefficiency
was improved from 0.9% to 6.9% with the redox co-
catalysts constructed on polar and non-polar sur-
faces, respectively [56].

Carbon dots synthesized by microwave can
quickly extract holes from carbon nitride and pre-
vent the surface adsorption of methanol, which is
beneficial to water oxidation and improves the abil-
ity of selective CO2 reduction to alcohols. Tang and
Guo’s group found that the carbon dots synthesized
by microwave method have unique hole-accepting
properties, which can extend the electron lifetime
of carbon nitride 6-fold [57]. It is thus beneficial
to the stable production of stoichiometric O2 and
methanol fromwater and CO2, respectively.The se-
lectivity of CH3OH is close to 100% and the inher-
ent quantum efficiency is 2.1% under visible light.
This work paves the way for the sustainable pro-
duction of metal-free catalytic methanol, providing
a unique strategy that can efficiently and selectively
reduce CO2 to high-value chemicals via artificial
synthesis.

Nanostructured single-crystal photocatalysts
with few structural defects and the appropriate
cocatalysts were shown to be excellent in overall
solar water splitting. For example, although Ta3N5
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Figure 3. (a) Schematic illustration of CO2 photoreduction into CH4 over hexahedron
prism anchored octahedronal CeO2 (adapted from ref. [54] with permission from ACS
Publications). (b) An overall CO2/H2O photo-conversion system with the CotpyP-loaded
SrTiO3:La,Rh|Au|RuO2-BiVO4:Mo photocatalysts (adapted from ref. [58] with permis-
sion from Springer Nature). (c) Sketch map of Z-scheme model and light-induced
charge transfer path over SiC@MoS2 photocatalyst (adapted from ref. [59] with per-
mission from ACS Publications). (d) CO2/H2O photo-conversion reaction route of the
heterometallic cluster-based organic frame photocatalyst (adapted from ref. [60] with
permission fromWiley-VCH). (e) Diagrammatic sketch of water splitting on Pt nanopar-
ticle (gray) decorated CdS (yellow) (adapted from ref. [31] with permission fromSpringer
Nature).

photocatalysts have excellent visible light absorption
and almost ideal energy band structure, non-single
crystal or haploid Ta3N5 can barely achieve overall
water splitting due to the strong charge recombina-
tion at defects. Domen’s group fabricated Ta3N5
nanorods growing on lattice-matched cubic KTaO3
particles, combined with the Rh/Cr2O3 cocatalyst.
Since the single-crystal Ta3N5 nanorod crystals had
few grain boundaries, the materials presented high
water-splitting efficiency under simulated sunlight
[33].

Molecular composites are also effective photo-
catalyticmaterials for achieving scalable and sustain-
able carbon dioxide reduction. Reisner’s group pre-
pared a photocatalytic sheet by integrating La and
Rh co-doped SrTiO3, Mo-doped BiVO4, phospho-
nated Co(ii) bis(terpyridine) and RuO2 catalysts
onto a gold layer [58] (Fig. 3b).This device achieves
a solar energy conversion (from CO2 to formate)

efficiency of 0.08 ± 0.01% and a selectivity of 97 ±
3%, respectively. When the device was exposed to
simulated sunlight, e––h+ pairs were produced in
bothSrTiO3:La,RhandBiVO4:Mo.Electronswere
transformed from BiVO4:Mo conduction band to
the SrTiO3:La,Rh donor level through the Au layer.
With the aid ofmolecular compounds, e– in SrTiO3:
La,Rh reduced CO2 into HCOO–, simultaneously
h+ in theBiVO4:MooxidizedH2O toO2 withRuO2
cocatalyst for O2 generation.

The Z-scheme heterojunction can be pro-
pitious to the transfer balance of photo-
generated e––h+ pairs. Li’s group realized
the overall CO2/H2O conversion through
marigold-like SiC@MoS2 nanoflower mate-
rials with 323 μL g–1 h–1 methane yield and
620 μL g–1 h–1 O2 release under λ ≥ 420 nm
visible light irradiation. This photocatalytic perfor-
mance can be ascribed to the following aspects:
(i) the direct Z-scheme heterostructure with
negative SiC conduction band for CO2 reduction
and positive MoS2 valence band for O2 evolution,
(ii) the high e– mobility of SiC and high h+ mobility
of MoS2, (iii) the marigold flower-like microstruc-
ture of SiC@MoS2 making the surface of catalyst
completely exposed to reactants and (iv) the gas–
solid reaction beneficial to adsorption/desorption
behavior on the Z-scheme heterostructure surface
[59] (Fig. 3c).

Through reasonable material design, appropriate
doping modification and deposition of cocatalysts,
the feasibility of free charge recombination losses
for efficient overall water splitting can be achieved.
Domen’s group demonstrated overall water split-
ting, evolving H2 and O2 in a 2 : 1 stoichiometric
ratio at an external quantum efficiency up to 96%
(350 nm < λ < 360 nm), using Al doped SrTiO3
photocatalysts [35]. By selectively photo-depositing
the cocatalysts Rh/Cr2O3 for H2 evolution and
cobalt hydroxide oxide (CoOOH) for O2 genera-
tion respectively, the H2 and O2 evolution could be
enhanced separately by anisotropic charge transport
on different crystallographic planes of the catalyst
particles.

A system with clear structure to clarify the re-
lationship between structure and photosynthesis is
very important in promoting the development of
artificial photosynthesis. Lan and Liu synthesized
metal organic framework (MOF) photocatalysts
based on heterometallic Fe2M clusters. The cata-
lysts converted carbon dioxide and water into for-
mate andO2 without additional sacrificial agents and
photosensitizers. Visible light excited heterometal-
lic clusters and photosensitive ligands to produce
photo-generated electron-hole pairs. Low-cost met-
als accepted electrons to reduce carbon dioxide,
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while high-price metals used holes to oxidize water
[60] (Fig. 3d). Lan and Liu’s work proposed a novel
strategy of designing crystalline catalysts for overall
artificial photosynthesis.

The combination of catalysts that are of
nanometer and molecular scale is of great signif-
icance in visible-light-induced overall artificial
photosynthesis. Stolarczyk’s group put forward
the design idea of ‘all in one’. Spatial separation of
oxidation and reduction sites respectively on CdS
nanorods and the co-modification parts of the both
sites, i.e. Pt nanoparticles and Ru(tpy)(bpy)Cl2-
based molecules, was realized [31] (Fig. 3e). Pt
nanoparticles at the tip of CdS nanorods acted as
electron receptors and were responsible for H2
production (20μmol gcat–1 h–1). Ru(tpy)(bpy)Cl2-
based molecular cocatalysts were fixed to the
periphery of CdS nanorods and are responsible
for O2 production (170 μmol gcat–1 h–1). The
catalyst has both reduction and oxidation catalytic
functions, so that visible light can drive the total
water splitting without sacrificial agents.

Generally speaking, in the last decade, great
progress has been made on photocatalytic
CO2RR. The solar energy conversion efficiency of
photocatalytic materials has gradually improved;
the methods to improve the photocatalytic reaction
efficiency tend to be clear; the understanding of
the photocatalytic mechanism has gradually deep-
ened; the characterization methods are developing
rapidly; and photocatalytic materials based on novel
physical mechanisms are emerging. However, in
order to achieve the practical goals of EAP, the
research on CO2RR still needs a leap forward. First
of all, one of the key problems is how to greatly
improve the photocatalytic CO2RR performance.
In addition to the requirement to develop new
materials, how to match the band gap of photo-
catalytic materials with the extraterrestrial solar
spectrum, how to match the conduction/valence
band position of EAP materials with the potential
of reactants, how to reduce electron-hole recombi-
nation and improve quantum efficiency, and how
to improve the stability of photocatalytic materials
are still key scientific issues that must be solved
in this field. Secondly, existing characterization
techniques cannot fully facilitate an understanding
of the catalytic mechanism. Thus, some advanced
in-situ and/or atomic level characterizationmethods
are still required to reveal the key factors affecting
the photocatalytic reaction process. As for realizing
efficient and stable EAP, researchers need to deepen
the understanding of the photocatalytic reaction
mechanism from a macroscopic and qualitative de-
scription to microscopic and quantitative research,
to comprehensively study the process of light ab-
sorption, electron-hole excitation and transport, and

interface dynamics, and to clarify the mechanism of
energy transfer and conversion. These approaches
can guide researchers when it comes to developing
EAP materials with high quantum efficiency, by
breaking through the existing theoretical framework
and actively promoting the cross-integration of
photochemistry and other disciplines.

Photoelectrocatalysis materials for EAP
Photocatalytic overall CO2/H2O conversion ma-
terials are mainly in the form of powders. There
are problems such as the undesirable recombination
of photo-generated electron-hole pairs in the par-
ticles and difficult separation of products from the
system. Thus, photoelectrocatalysis, especially non-
biased photoelectrocatalysis, in which the catalysts
are in the form of film, is more beneficial to the prac-
tical applications of EAP.

Photoelectrochemical artificial photosynthesis is
generally carried out by photoelectrodes composed
of conductive substrates, semiconductors and co-
catalysts in the aqueous environment. In this sys-
tem, the excited photoelectrodes generate electrons
or holes that migrate to the surface of the photo-
cathodes or photoanodes for a reductive or oxida-
tion reaction, respectively. Compared with the fact
that the charge separation driving force of photo-
catalysts is the built-in electric field, charge separa-
tion in photoelectrocatalytic systems is promoted
not only by a built-in electric field but also through
external bias. Therefore, some thermodynamically
insufficient catalytic reactions can be carried out un-
der photoelectrocatalytic systems with proper bias.
In addition, photoelectrocatalysis realizes the spatial
separation of the reduction reaction and oxidation
reaction to avoid the inverse reaction. According to
the module composition of each part of the system,
the photoelectrocatalysis system can be divided into
a photocathode-to-electrode system, photoanode-
to-electrode system, photocathode-photoanode sys-
tem and photovoltaic coupled photoelectrocatalysis
system.

A photocathode usually consists of p-type semi-
conductors. The conductive band of a p-type semi-
conductor bends downward at the interface of
semiconductor and solution. This band bending al-
lows photo-generated electrons to migrate to the
electrode/solution interface and the electrons par-
ticipate in the CO2 reduction reaction to produce
hydrocarbon fuel. According to the thermodynamic
requirements, the main photocathode materials are
Cu2O [49], Cu2ZnSnS4 [50], Co2P and p-Si [51].

Correspondingly, a photoanode usually con-
sists of n-type semiconductors. The valence band
of an n-type semiconductor bends upward at
the semiconductor/solution interface, allowing
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photo-generated holes to transfer to the electrolyte
for O2 evolution. The main photoanode materials
are TiO2, Fe2O3, WO3, ZnO, BiVO4, Ta3N5 and
n-Si [3,61–66].

It is usually difficult to construct a device that has
an individual photoelectrode and can achieve both
CO2 reduction and water oxidation conversion for
overall artificial photosynthesis (Fig. 1d). The con-
struction of a dual photoelectrode system with both
the photocathode and photoanode is beneficial for
realizing the full conversion of artificial photosyn-
thesis without bias. The difference in Fermi level
between two photoelectrodes determines the theo-
retical maximum of the photo-generated voltage be-
tween them [58,59], which should be larger than the
thermodynamic and kinetic requirements.

The photovoltaic coupling system is also used
to couple photovoltaic cells to the photoelec-
trocatalytic system to make effective artificial
photosynthetic systems, in which the photovoltaic
cell provides bias to assist in driving electrocatalytic
reactions.This kind of system includes photovoltaic-
photocathode, photovoltaic-photoanode and
photovoltaic-electrocatalytic coupling systems
(Fig. 1e).

Asmentioned above, the photocathode catalysts,
photoanode catalysts and photovoltaic electrodes
together form the most important material basis in
photo-electrocatalytic systems for EAP.Thus, the re-
search progress of photocathode catalysts, photoan-
ode catalysts and photovoltaic electrodes appropri-
ate for EAP will be discussed as follows.

Photocathode materials
Numerous p-type semiconductors have been ex-
ploited and investigated for photocathodes, includ-
ing p-type silicon [67], oxides [68–73], sulfides
[74], phosphides [67] and selenides [75]. Tel-
lurides [76] have been investigated for CO2 re-
duction or H2O reduction. In addition, profiting
from remarkable CO2/H2O molecular adsorption
and activation, cocatalysts (e.g. Pd, Au, Ag and
Cu) [77] usually serve as photocathodes. However,
their performance is still limited by high overpoten-
tial, low selectivity and long-term operational insta-
bility [78]. Rational design is needed to optimize
the material interface to achieve efficient charge
transfer at low overpotential while maintaining high
selectivity.

P-Si is one of the most popular materials for
photocathodes, not only because of its high earth
reservation, but more importantly, Si has a proper
valence band position, with a 1.1 eV band gap.
However, its CO2 reduction activity is low, and
it lacks a suitable cocatalyst to improve the effect.

For planar Si electrodes, the overpotential of CO2
reduction on the surface is mainly reduced by load-
ing metal cocatalysts [79,80]. Recently, the loading
of non-noble metal cocatalysts such as MoS2 [81]
reduced graphene oxide (rGO) [82],NiOx [83] and
Al2O3 [84] has been found to further improve the
stability of Si in the water decomposition process of
photoelectrochemical cells (PECs). For example,
Bench et al. deposited a MoS2 thin layer on the
surface of an Si photocathode with n+p planar
structure, and the photocathode could be stable in
electrolyte for >100 h [81]. Si nanowires are also
widely used in the construction of photocathodes.
The main reason is that Si is a typical indirect band
gap semiconductor, and its high light absorption
efficiency can be ensured when the penetration
depth of light reaches 200 μm. The nanowire
structure can reduce the migration distance of
minority carriers, and multiple reflections of light
can ensure the effective absorption of light by Si
[85]. Photolithography technology was used to etch
and form Si nanopillar arrays on Si wafers, which
increased the contact area between photocathode
and electrolyte. After Mo3S4 nanoclusters were
deposited on the surface of p-Si, the light absorption
range of the material was widened to over 620 nm,
and reached a highly increased current density [86].
Recently, Chen et al. modified MoS2 with band
gap position matching p-Si arrays as the cocatalyst,
and used it to collect photo-generated electrons to
reduce carrier recombination. Therefore, the initial
H2 evolution potential of an Si@MoS2 photocath-
ode is positively shifted to 0.122 V vs. reversible
hydrogen electrode (RHE).The researchers further
doped MoS2 with metal atoms to construct an
Si@MMoSx (M= Fe, Co, Ni) photocathode. It was
found that the initial H2 evolution potential of the
material moved positively to 0.192 V vs. RHE after
Co doping, and the current density at 0 V vs. RHE
reached −17.2 mA cm–2 [87]. Jin et al. supported
a transparent NiCoSex thin layer on the surface
of a bamboo-shoot-like Si nano-array by photo-
assisted electrodeposition (Fig. 4a) [88]. Under
100 mW cm–2 sunlight intensity, the current
density of the catalyst at 0 V vs. RHE reached
−37.5 mA cm–2. In addition, Hu Xile’s research
group combined Mo2C with amorphous Si and
tested it as photocathode in 1 M KOH and 0.1 M
H2SO4. The stable photocurrent density of this ma-
terial in both electrolytes can reach −11 mA cm–2.
This is the first time that the Si-based photocathode
has been used in strong alkaline electrolyte, and
is also the Si-based photocathode material with
the widest pH range so far [89]. Besides, n-type
doping on the surface can control the band bending
of p-Si and form an n+p depletion layer, thus
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increasing the photovoltage of the p-Si photocath-
ode. However, the direct contact between n+p-Si
and metal catalysts generally causes serious surface
recombination and reduced photovoltage. Inserting
a metal oxide layer between the Si and catalysts
to form a heterojunction can effectively adjust
the charge transfer from semiconductor to cocat-
alysts. CO2 reduction in a silicon photocathode
was reported to be realized by depositing TiO2
through p+ implantation and n+ implantation
on the illumination side, and then loading the
Ag/dendritic Cu catalyst. A self-powered CO2 re-
duction device is formed by tandemly coupling the
silicon photocathode with two series of translucent
CH3NH3PbI3 perovskite solar cells, and the
conversion efficiency from sunlight to hydro-
carbon and oxygen-containing compounds is
1.5%. Under simulated sunlight conditions, the
efficiency of photocathode to hydrocarbons and
oxygenated compounds (mainly ethylene, ethanol
and propanol) is kept above 60%, which can last for
more than several days (Fig. 4b) [90].

Metal oxide semiconductors (such as binary ox-
ideCu2O(2.0 eV)) and ternary oxides (for instance,
CaFe2O4 (1.9 eV), CuNb3O8 (1.5 eV), CuFeO2
(1.5 eV) and LaFeO3) are typical p-type semicon-
ductors due to metal vacancies in the structure.
Metal oxide semiconductors are extensively utilized
for the design and synthesis of photocathode ma-
terials because of their easy preparation and low
cost. However, their unsatisfactory optical absorp-
tion coefficient, carrier mobility and stability make
the energy conversion efficiency of oxide photocath-
odes relatively low [68–73]. Cu2O is a typical rep-
resentative of this type of material and considered
as a promising photocathode material to replace Si
[91–93]. However, poor stability is the main prob-
lem for Cu2O-based photocathodes (Fig. 4c) [94].
Grätzel’s group has done a series of work to im-
prove the stability of Cu2O-based photocathodes.
They used MoS2+x film as a hydrogen evolution re-
action (HER) catalyst on the TiO2-protected Cu2O
photocathode, and the current density of the com-
posite electrode could reach −5.7 mA cm–2 (0 V
vs. RHE) [95]. After that, they deposited a double
layer Al :ZnO/TiO2 film on the Cu2O surface and
its improved activity was mainly attributed to the
matched conduction band position of Cu2O, ZnO
and TiO2, leading to quick electron migration from
electrode to electrolyte [96]. As the best-performing
oxide photocathode, the Cu2O photocathode’s ac-
tivity surpasses that of many photocathodes after
continuous research and development. However,
Cu2Ophotocathodes employingAuas theback con-
tact generally caused considerable e––h+ recombi-
nation. By employing CuSCN as the h+ transport

material, h+ transport between Cu2O and CuSCN
is expedited by band-tail states, delivering a 4.55%
solar-to-hydrogen (STH) efficiency (Fig. 4d) [97].

p-NiO is also a type of electrode material for
CO2 reduction PECs. DuChene et al. investigated
the light-induced modulation of catalytic selectiv-
ity over Cu/p-type NiO photocathodes. Accord-
ing to their analysis, the optical excited hot e– of
Cu nanoparticles were mainly used for CO2 re-
duction, while hot h+ injection from Cu nanopar-
ticles into p-type NiO leads to charge separation.
Thus, the optical excitation of plasmonic Cu/p-type
NiO photocathodes enhanced CO2 reduction and
inhibited H2 evolution, driving increased produc-
tion of CO and HCOOH. This work demonstrated
a plasmon-driven photocathode for CO2 reduction
PECs (Fig. 4e) [98].

CuInxGa1−xSe2 (CIGS, 1.0–1.68 eV) and
Cu2ZnSnS4 (CZTS, 1.0–1.5 eV) perform outstand-
ingly in the field of solar cells due to their high light
absorption coefficient (∼105 cm–1) and adjustable
direct band gap. The modulation of chemical
composition (I = Cu, Ag; II = Al, In, Ga; VI = S,
Se, Te) makes the band gap of such a semicon-
ductor adjustable within 1.0–2.4 eV. Furthermore,
because of the inherent metal defects (such as Cu
vacancy), this type of semiconductors are typical
p-type semiconductors, which can be used as a
photocathode material. CIGS photocathodes with
high current density, such as CuGaSe2 (1.7 eV),
CuGa3Se5 (1.8 eV) and CuInS2 (1.5 eV), have
also been reported in recent years. However, the
lattice mismatch at the interface limits the energy
conversion efficiency of this kind of material. CdS
film prepared by chemical bath deposition (CBD)
is one of the best n-type semiconductors reported to
compound CIGS to form a p–n junction. However,
these materials were difficult in terms of application
because of their slow surface reaction process and
poor stability in aqueous solution [99]. Therefore,
depositing a protective layer on the surface is the
most important means to solve the above problems.
Sb2Se3 can also be a promising material for artificial
photosynthesis. Yang et al. reported an Sb2Se3
photocathode material with low cost, small band
gap and good photoelectric properties and photo-
corrosion stability, which also showed a high current
density of almost 30 mA cm–2 at 0 V vs. RHE. The
optimized Sb2Se3 photocathode achieved 1.5%
solar-to-hydrogen efficiency for unassisted water
splitting under the condition of 1 sun simulation
when combined with a BiVO4 photoanode, and the
stability exceeded 10 hours (Fig. 4f) [100].

Some traditional cocatalysts (like Ag) are great
electrocatalysts for CO2-to-CO conversion. How-
ever, high overpotential limits the efficiency and
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Figure 4. (a) Schematic diagram of the construction process of the p-Si/NiCoSex photocathode (adapted from ref. [88] with
permission from the Royal Society of Chemistry). (b) Left: schematic of the Si/TiO2/Ag/Cu photocathode. Right: schematic of
the membrane-separated photoelectrochemical cell (PEC) for overall CO2/H2O conversion (adapted from ref. [90] with permis-
sion from the Royal Society of Chemistry). (c) Diagrammatic sketch of the Cu2O nanofiber electrode with a Cu2O underlayer
and a TiO2 passivation layer and its CO2 photo-reduction performance (adapted from ref. [94] with permission from ACS
Publications). (d) A photovoltaic (PV)-PEC system based on CuSCN/Cu2O photocathode and perovskite solar cell/IrOx anode
for overall H2O splitting (adapted from ref. [97] with permission from Springer Nature). (e) Plasmonic Cu/p-NiO photocath-
odes for CO2/H2O conversion (adapted from ref. [98] with permission from ACS Publications). (f) Scheme of the NiFeOx/Mo:
BiVO4/FTO||Pt/TiO2/CdS/Sb2Se3/Au/FTO cell for total water splitting (adapted from ref. [100] with permission from Springer
Nature). (g) Spatial decoupling of CO2 reduction from light absorption and charge separation over CuFe@GaN NWs/Si
(adapted from ref. [101] with permission from the National Academy of Sciences, USA). (h) Schematic diagram of selec-
tive CO2-to-syngas on AgP2 (211) (adapted from ref. [102] with permission from Springer Nature).
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the lack of efficient and highly selective cocata-
lysts restricts the PEC performance of photocath-
ode catalysts. To solve the problem of unsatis-
fied efficiency resulted from high overpotential, a
few ingenious cocatalysts have been designed and
present a promising avenue for photocathode cat-
alysts, such as CuFe alloy and AgP2. The designed
CuFe was reported to exhibit a −38.3 mA cm–2

current density with CH4 faradaic efficiency up to
51%, resulting in a 2176 h–1 turnover frequency
using silicon as photocathode under one sun illu-
mination (AM 1.5G) (Fig. 4g) [101]. Integrating
AgP2 nanocrystal cocatalysts on n+p-Si to construct
an n+p-Si/Al2O3/AgP2 hybrid photocathode and
separating the n+p-Si and AgP2 by the Al2O3 layer
led to a highly improved CO2 conversion efficiency.
Compared with the Ag cocatalyst, the overpotential
of AgP2 nanocrystals for CO2 reduction to CO is re-
duced by 0.3V, and themaximum faradaic efficiency
is 82% (Fig. 4h) [102].

Photoanode materials
Generally, the anodic reaction is an OER in a PEC,
which is a vital reaction in extraterrestrial space for
human respiration. The photoanode OER is a four-
electron transfer process with slow reaction kinet-
ics, which is the rate control step of the artificial
synthesis process. Therefore, photoanode materials
with high activity and stability are indispensable in
improving the energy conversion efficiency of PEC
systems for EAP. Numerous n-type semiconduc-
tors have been exploited and investigated, including
n-type silicon [66], oxides [61–64], nitrides [103]
and sulfides [104], as photoanodes for O2 pro-
duction. In addition, finely dispersed cocatalyst
nanoparticles (e.g. Co [61], Fe [66]), phosphides
[105] and hydroxyapatite [106], or conformal thin
layers of cocatalysts (e.g. oxyhydroxide, sulfides)
[107] on the photoanode surface are also an effec-
tive approach for remarkableO2 generation. Among
the diverse catalysts, TiO2,WO3, Fe2O3 and BiVO4
with befitting band structure and plummy stability
of aqueous solution, are good n-type semiconduc-
torphotoanodematerials forO2 production through
water oxidation [3,61–63]. At present, the O2 pro-
duction of unmodified individual photoanodemate-
rials still needs to be improved, mainly due to poor
surface reaction kinetics and weak carrier separa-
tion and transport. Many studies have improved the
above problems by surface modification or defect
regulation, design of heterojunction, rational design
of cocatalyst, and so forth.

Recent research progress on the study of TiO2
and BiVO4 photoanodes is introduced below.
Surface modification and heterojunction con-
struction have been used for improving TiO2

photoanode performance. The Ti-OH surface
states produced by electrochemical doping on
the photoanode of TiO2 nanotubes, leading to
charge-separation-efficiency increase, contributes
to the water oxidation [108]. Heterojunction
construction of the g-C3N4 film on the TiO2
nanorod array exhibits obvious advantages in PEC
performance (Fig. 5a) [103].

Thedesignof heterojunction andoxygen vacancy
defects is demonstrated to be a synergeticmethod of
producing a high performance in photoanodes. In-
tegration of FexS and the synchronous generation
of interfacial oxygen vacancies (VO) synergistically
reduced the carrier recombination, increased the
number of active sites and facilitated the participa-
tion of photo-generated holes in water oxidation for
the Fe2O3 photoanode (Fig. 5b) [104]. Lianzhou
Wang et al. reported a synergetic BiVO4 film rich
in in-situ-formed oxygen vacancy defects converted
from Bi2S3 precursor films through a sulfur oxida-
tion method, in which the electron-hole separation
rate of the bulk phase was significantly improved.
NiFeOx O2-evolution cocatalysts were supported
on the photocatalyst surface to facilitate surface O2
evolution.A5.54mAcm–2 photocurrentdensitywas
obtained under 1.23 V vs. RHE and simulated sun-
light (AM 1.5), with a stability over 80 h. A 6.24 mA
cm–2 photocurrent density can be obtained by stack-
ing two BiVO4/NiFeOx electrodes, and the photo-
electric conversion efficiency reaches 2.76% [109].
Bi et al. also enhanced the O2 production activity of
the BiVO4 photoanode under a similar mechanism
by depositing a 2 nm β-FeOOH film with abundant
oxygen vacancies (Fig. 5c) [110].

In addition, for most of the photoanode materi-
als, ingenuity in cocatalyst design has been proven
to ameliorate the OER. The selective growth of
FeNi cocatalysts on the BiVO4 photoanode sur-
face obviously raised the photocurrent density to
5.8 mA cm–2 under 1.23 V vs. RHE and simulated
sunlight (AM1.5) (Fig. 5d) [111].The selective for-
mation of interfacial bonds between Fe, Ni in FeNi
cocatalysts andBi,Von the surface of theBiVO4, im-
plied that after optical excitation, Fe-O-Bi interface
bonding can effectively transfer the photo-induced
holes from BiVO4 to Fe active sites. The photo-
induced electronic injection will be delivered from
Ni atoms to V sites through the Ni-O-V, thus ef-
fectively avoiding the V5+ ion dissolution. The in-
troduction of Fe species can significantly improve
its water-oxidation activity, while Ni can effectively
enhance its photoelectric catalytic stability. Insert-
ing black phosphorene (BP) between the OER co-
catalyst (NiOOH, MnOx or CoOOH) and BiVO4
was reported to improve the PEC performance by
1.2–1.6-fold [112], and a 4.48 mA cm–2 photocur-
rent density at 1.23 V vs. RHE was achieved by
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Figure 5. (a) Schematic of the energy diagrams and PEC system of the TiO2@g-C3N4 (adapted from ref. [103] with permis-
sion from the Royal Society of Chemistry). (b) Diagram of the construction of Fe2O3/interfacial VO/FexS photoanode and its
catalytic mechanism (adapted from ref. [104] with permission from the Royal Society of Chemistry). (c) Illustration of charge
transfer during the catalytic process on β-FeOOH/BiVO4 photoanode (adapted from ref. [110] with permission from Wiley-
VCH). (d) Catalytic mechanism on BiVO4/FexNi1−xOOH photoanode (adapted from ref. [111] with permission fromWiley-VCH).
(e) Mechanism of solar H2O splitting over BiVO4/AgOx/NiOx photoanode (adapted from ref. [113] with permission from the
Royal Society of Chemistry).

the NiOOH/BP/BiVO4 photoanode. The intrinsic
p-type BP can enhance h+ extraction and the h+

trapping lifetime on the BiVO4 surface, while the
OER cocatalyst overlayer can suppress catalyst self-
oxidation for achieving a high durability. This re-
search presents an advantageous nexus between co-
catalyst and semiconductor. AgOx/NiOx composite
cocatalysts can be exploited to hoist the H2O oxi-
dation kinetics, as well as the carrier separation of
BiVO4 photoanodes, because of the high-valence-
state stabilization of the metal ions, the formation
of H2O oxidation active sites and the extension of
the band bending region induced by AgOx/NiOx
(Fig. 5e) [113].

Photovoltaic (photo)electrocatalytic
materials
Compared with powder photocatalysis, photoelec-
trocatalysis constructs the macro-space separation
of oxidation and reduction half reactions, which is
beneficial to the separation of catalytic products.

However, for higher catalytic performance, photo-
electrocatalysis depends on the input of external
electric energy. Recently, photovoltaic cells have
been applied for photoelectric conversion, and the
photovoltaic-electrocatalytic CO2/H2O conversion
technology has also been greatly developed. Pho-
tovoltaic (photo)electrocatalytic overall CO2/H2O
conversion with high efficiency provides an effective
avenue for storing solar energy, which can greatly
benefit EAP.

Solar cells are mainly categorized into silicon-
based, III–V-based or perovskite-based photo-
voltaic electrocatalytic devices [114]. As high
operational current densities are demanded in
photovoltaic electrocatalytic devices, high-quality
electrocatalysts (e.g. Au, Pt, IrOx) are preferred.
Commercial noble-metal-based electrodes such as
IrO2 (for O2 evolution) and Au (for CO2 reduc-
tion) [115] were successfully used for overcoming
the sluggish kinetics of CO2 reduction and O2
evolution, respectively, which hinder the extensive
implementation of overall CO2/H2O conversion.
However, themoderate performance limits the total
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Figure 6. (a) Schematic and photograph of the redox-medium-assisted CO2 photo-
voltaic electrocatalytic reduction system containing a nickel-iron hydroxide electrode
and a zinc/zincate redox with a gold nanocatalyst (adapted from ref. [116] with per-
mission from Springer Nature). (b) Illustration of a WO3 (photoanode)||CuxO (photo-
cathode) system coupling with a dye-sensitized solar cell (adapted from ref. [117] with
permission from Elsevier). (c) Schematic view of the dendritic nanostructured CuO ma-
terial before (top) and after (bottom) CO2 photovoltaic electrocatalytic reduction in
0.1 M CsHCO3 (adapted from ref. [118] with permission from the National Academy
of Sciences, USA). (d) Illustration of the solar-driven overall CO2 splitting system with
Co2FeO4 nanoarrays both as anode and cathode (adapted from ref. [119] with permis-
sion fromWiley-VCH). (e) Schematic illustration of the BiVO4/perovskite/3D TiN-ClFDH
biocatalytic tandem PEC system for unbiased, solar-driven formate production (adapted
from ref. [120] with permission from Wiley-VCH).

efficiency, and resource scarcity increases the cost.
Therefore, taking further consideration of economy,
resource abundance and high product selectivity,
more cost-effective materials, such as Fe, Ni, Zn, W,
Cu, Co or Ti-based materials, are research hotspots.
The products of artificial photosynthesis are de-
veloped gradually to obtain non-toxic fuels rather
than CO.

Recently, Zheng et al. constructed a GaAs solar
cell with a nickel-iron hydroxide electrode for H2O
oxidation, and Au nanocatalysts to reduce CO2
to CO, between which a Zn/Zn2+ redox medium
was used for optimized charge transfer. This redox
medium auxiliary system can achieve 15.6% solar

energy-carbon monoxide photoelectric conver-
sion efficiency and 63% electric energy efficiency
under one sun intensity (Fig. 6a) [116]. Park et
al. constructed a WO3 photoanode and CuxO
photocathode system coupled with a dye-sensitized
solar cell for driving CO2 reduction on CuxO and
water oxidation on WO3 with zero external bias. In
this dual-light-absorbing cell, the solar-to-chemical
energy efficiency of CO2 reduction for CO is 2.5%,
while it is 0.7% for H2 and 0.25% for HCOOH,
respectively (Fig. 6b) [117]. By using Cu-based
catalysts at both anode and cathode coupled with
a perovskite photovoltaic mini-module, Fontecave
et al. reported a 21% energy efficiency and a 2.3%
solar-to-hydrocarbon efficiency of CO2 reduction
to CH2=CH2 and CH3CH3 (Fig. 6c) [118]. By
using Co2FeO4 nanosheet arrays for both cath-
ode and anode, driven by a GaInP2/GaAs/Ge
photovoltaic cell, Cao et al. showed a com-
plete overall CO2/H2O conversion system with
13.1 mA cm–2 photocurrent density, corresponding
to 15.5% solar-to-CO efficiency (Fig. 6d) [119].
The dual functional attributes can be attributed to
the formation of ∗COOH and ∗O intermediates
that originated from the Co sites in Co2FeO4. Lee
et al. reported an enzyme—W-containing formate
dehydrogenase (FDH) from Clostridium ljungdahlii
(ClFDH)-conjugated direct electron transfer-type
biocathode based on TiN nanoshell—and applied
it to a PV-PEC system with free bias, which showed
promising and stable solar-drivenCO2-to-HCOOH
conversion at a rate of 0.78 μmol h–1 for 24 h and a
77.3% faraday efficiency (Fig. 6e) [120].

Although the research history of the photoelec-
trocatalytic CO2 reduction reaction has been devel-
oped over tens of years with great progress, there are
still many problems and challenges. Because of the
low catalytic efficiency, it is far from meeting the re-
quirements of EAP application:

(i) The selectivity of high carbon products is
still very low. In CO2RR, although the fara-
day efficiency of CO and HCOOH can
reach >90%, the highest faraday efficien-
cies of other reduction products, which
are much more desired for EAP technol-
ogy, such as CH4, CH3OH, C2H5OH,
CH3COOH andC2H4, are only at the level
of∼50%.

(ii) The catalysts have poor stability. Stability is
an important parameter to characterize the
advantages and disadvantages of a catalyst
material, and it is also a problem that must
be overcome to realize EAP in harsh ex-
traterrestrial environments. Although some
catalytic materials remain stable for hun-
dreds of hours, they are still far from the
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EAP goals. In the field of photoelectrocatal-
ysis especially, due to the complex structure
of photocatalysts/cocatalysts, high-energy
radiation corrosion and other factors, the
stability of photoelectrocatalytic CO2RR is
a great challenge to overcome.

(iii) The reaction process of (photo)
electrocatalytic CO2RR requires a deeper
understanding. Light absorption, charge
separation and interfacial reaction in
the process of (photo)electrocatalytic
CO2RR not only have differences on the
time scale, but are also often localized
at the atomic or molecular level on the
spatial scale. Therefore, for observing the
(photo)electrocatalytic CO2RR process
in order to provide a reference for future
theoretical analysis, transient, microregion
and in-situ analysis methods should be
utilized and developed.

With regard to the selection of the most suitable
EAP technology, photocatalysis, photoelectro-
catalysis and photovoltaic electrocatalysis have
their individual advantages and disadvantages.
EAP based on photocatalysis without an external
complex device system is portable and easy to
work, and therefore more adaptable to the complex
extraterrestrial environment. However, its low
reaction efficiency leads to low concentration of
the products, with difficulties in separation and
enrichment for CO2RR and OER products. Photo-
electrocatalysis with two-electrode systems has the
obvious advantage of efficient product separation.
However, the very low stability of semiconductor
photoelectrocatalysts under high-energy radiation
makes the photoelectrocatalytic process difficult to
adopt currently. In comparison, the photovoltaic
coupled with electrocatalysis process can realize
energy storage by separating photoelectric conver-
sion and energy-to-chemical conversion, thus being
more suitable for application in the extraterrestrial
environment in recent times. With the further de-
velopment of semiconductor/cocatalyst materials,
we believe that composite technology with two or
more systems will be the trend of EAP applications.
More specific and detailed information for each
system can be seen in Table 1.

CONCLUSION AND PERSPECTIVE
In summary, the development of EAP materials is
highly prospected. Looking at the future of space sci-
ence and technology, how to achieve extraterrestrial
survival and affordable and sustainable deep space
exploration through EAP technology under extreme
conditions, has become the common pursuit of hu-

manity. On this frontier, there are still a series of
concomitant scientific problems, such as low con-
centrations of CO2/H2O, different solar radiation
intensities, ultrahigh gravity or microgravity, ex-
treme temperatures, intense cosmic radiation, ex-
treme pressure and ultimate vacuums.The problems
that urgently need to be resolved are listed below:

(i) CO2/H2Ophoto-conversionmaterials with
normal working ability at low atmospheric
density are the linchpin for EAP. At present,
research into CO2/H2O photo-conversion
mainly focuses on atmospheric conditions
with a high concentration of, or pure, CO2.
However, the concentration of CO2 orH2O
in the extraterrestrial environment or the en-
closed space inside the capsule is usually at
an ultralow level or unstable state. There-
fore, how to realize the enrichment and fur-
ther utilization of CO2 is one of the critical
problems. Development of artificial photo-
synthetical materials in low CO2 concentra-
tion environments or CO2 collection tech-
nology may be considered as the solutions.

(ii) It is necessary to develop a photocatalytic
material system suitable for withstanding
different solar radiation intensities, strong
cosmic radiation and Frenkel defects under
extraterrestrial conditions. Due to the differ-
ence in solar radiation intensity and spec-
tral distributionbetweenouter space and the
Earth’s surface, photocatalytic materials de-
veloped for the solar spectral conditions on
Earth may not work effectively and stably in
the outer space environment. Therefore, it
is necessary to develop new artificial photo-
synthetic materials suitable for cosmic radi-
ation with a long working life, high stability,
wide spectrum and responsiveness to AM0
spectra, to meet the requirements of long-
term space exploration tasks. Ceramics or
composites can be selected to achieve ther-
mostability and thermal shock resistance.
Metal oxides such as PbO, BaO and Bi2O3
with a high atomic number, or rare metallic
elements, canbe added to thematerial for ra-
diation resistance [121].

(iii) Research into the effects of extreme tem-
perature, ultra-vacuum and microgravity
on the photochemical reaction, as well
as multi-photon processes in the photo-
chemical reaction, will give clues as to how
to plan the EAP process. The increase of
interfacial resistance (ohmic drop) caused
by bubbles produced in the photocatalytic
process will severely affect the surface
coverage of electrodes. The mass transfer
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process under microgravity will become
more difficult, greatly reducing the energy
efficiency of the system. Supersaturated gas
layers formed by gas reactants and products
gathered near the three-phase interfaces of
electrodes have a very important negative
influence on the reaction process, material
transport and reaction efficiency.Therefore,
it is necessary to deeply explore the diffusion
and transfer process of reaction media in
electrolyte under microgravity, as well as
the key mechanisms of bubble nucleation,
growth, interface separation, gas-liquid
two-phase flow and gas-liquid separation
and their influence on photocatalytic
processes. In addition, the state-of-the-art
technologies of ECLSS architecture as
a subsystem typical of a crewed space
vehicle, which provides all the necessary
conditions, can be used for the control of
steady temperature and pressure inside
the space capsule to support the artificial
photosynthetic material, devices or systems.

(iv) The photo/thermo/electric coupling
catalysis mechanism needs to be deeply
understood and realized by utilizing the full
spectrum of solar energy, 99.9% of which is
in the infrared region (43%), visible region
(50%) and ultraviolet region (7%). The
band gap of existing photocatalytic mate-
rials is extensively large, and most of them
absorb the ultraviolet or near-ultraviolet
spectrum. As a result, the utilization rate
of solar energy is not high and the overall
efficiency of photocatalysis is relatively low.
It is necessary to explore the mechanism
of solar photo/thermo/electric coupling
catalysis, develop a composite photocat-
alytic system with multi-spectral absorption
and full-spectral utilization, and improve
the reaction rate of photosynthesis and
photochemical conversion efficiency.

(v) Recently, many new artificial photo-
synthesis processes by microorganism/
semiconductor composite systems have
been developed. The core problem of the
artificial photosynthesis system based on
microorganisms is the interaction between
microorganisms and inorganic materials,
the key of which lies in the transfer of
energy and charge at the interface. The
interface interaction not only affects the
expression of microorganisms, but also has
an important impact on the properties of
materials. Therefore, it is very important to
improve the solar energy to chemical energy
conversion efficiency of artificial photosyn-

thesis systems based on microorganisms by
increasing the interface charge transfer rate.

(vi) Advanced in-situ and atomic-scale analysis,
and computational simulation techniques
will play an important role in EAP.Through
advanced in-situmicro-analysis and compu-
tational simulation, scientists can fully un-
derstand the complex reaction process and
intermediate products in CO2/H2O photo-
conversion, and thus help overcome the
obstacles in energy efficiency, reaction selec-
tivity and total conversion rate.

How to convert CO2 from human respiration
into O2? How to use CO2/H2O on Mars or in
other extraterrestrial atmospheric environments to
generate O2 and fuel? These are the core missions
of human beings with regard to achieving extrater-
restrial survival and sustainable exploration. In re-
cent years, driven by sustainable development on
Earth, the technology of artificial photosynthesis has
rapidly developed. In space exploration activities,
it will become a core ability to in-situ transform
CO2/H2O at room temperature into the basic ma-
terial needed for human beings to survive outside
the Earth. Chinese scientists put forward the con-
cept of EAP, took the lead in developing artificial
photosynthesis devices and space experiments that
will greatly promote the development of this field,
and will guide research in the fields of materials,
physics, chemistry, energy, aerospace science and
technology.
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