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Chimeric antigen receptor (CAR) T cell therapy is a remarkably effective
immunotherapy that relies on in vivo expansion of engineered CAR T cells,
after lymphodepletion (LD) by chemotherapy. The quantitative laws under-
lying this expansion and subsequent tumour eradication remain unknown.
We develop a mathematical model of T cell–tumour cell interactions and
demonstrate that expansion can be explained by immune reconstitution
dynamics after LD and competition among T cells. CAR T cells rapidly
grow and engage tumour cells but experience an emerging growth rate dis-
advantage compared to normal T cells. Since tumour eradication is
deterministically unstable in our model, we define cure as a stochastic event,
which, even when likely, can occur at variable times. However, we show
that variability in timing is largely determined by patient variability. While
cure events impacted by these fluctuations occur early and are narrowly dis-
tributed, progression events occur late and are more widely distributed in
time. We parameterized our model using population-level CAR T cell and
tumour data over time and compare our predictionswith progression-free sur-
vival rates.We find that therapy could be improved byoptimizing the tumour-
killing rate and the CART cells’ ability to adapt, as quantified by their carrying
capacity. Our tumour extinction model can be leveraged to examine why
therapy works in some patients but not others, and to better understand the
interplay of deterministic and stochastic effects on outcomes. For example,
our model implies that LD before a second CAR T injection is necessary.
1. Introduction
In2017, non-Hodgkin lymphomawas themost commonhaematologicmalignancy
in the US with 72 000 new cases (4.3% of all cancer) and 20 000 deaths (3.4% of all
cancer deaths) [1]. Large B cell lymphoma (LBCL) is the most common subtype of
non-Hodgkin lymphoma. LBCL arises in the B cell lineage for which the trans-
membrane protein CD19 is a specific marker. Historically, LBCL patients that did
not respond to chemotherapy have a median overall survival of under seven
months [2]. Thesepatients couldbenefit fromautologous chimeric antigen receptor
(CAR) T cell therapy that uses genetically engineeredT cells specifically re-targeted
to CD19 [3]. A pivotal, multi-centre, phase 1–2 trial of the CAR T cell drug axicab-
tagene ciloleucel (axi-cel; n = 101 patients treated) was ZUMA-1 [4,5]. Overall
response rate and complete response rate in ZUMA-1 were 82% and 54%. The
respective responses to standard chemotherapy are 26% and 7% [2]. While many
LBCL patients treated with this cellular therapy have seen a temporary reduction
in tumour burden, about 60% eventually progress. A complete understanding of
why these patients progress is lacking.

Cellular immunotherapies, such as CAR T cell therapy, encompass a new
frontier for predictive mathematical biological modelling [6–9]. One of the
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first goals of this new field is to describe and predict CAR T
cell expansion and decay after administration. Recent works
used an empirical time-dependent modelling approach and
compartment modelling [6] to describe the complicated tem-
poral kinetics of the CAR T cell drug tisagenlecleucel [10].
Others sought to quantify ecological dynamics of CAR T
cells to explain expansion and exhaustion [8], and signal-
ling-induced cell state variability [9], both using in vitro
data. Current modelling has not considered interactions
between CAR and normal T cells, nor paid much attention
to feedback between tumour and CAR T cells [11–13].

Here, we seek to better understand T and CAR T cell
dynamics, and the resulting tumour cell dynamics in vivo
using mathematical modelling. We bin the potentially differ-
ent CAR T cell phenotypes together [14,15], and model
selection in the T cell homeostatic niche by including
normal T cells. Tumour dynamics can be stochastic due to
low cell counts. Our framework explains the overall CAR kin-
etics and reveals that stochastic dynamics in small tumours
match clinical progression.
0210229
2. Methods
We model dynamics and interactions among normal T cells, CAR
T cells and tumour cells. The model considers three cell popu-
lations in the form of continuous-time birth and death stochastic
processes and their deterministic mean-field equations: normal T
cells, N, CAR T cells, C, both given in cells µl−1, and antigen-
presenting tumour cells, B, given in ml. These measurements can
be converted to cell counts. A more detailed overview of the
methods can be found in the electronic supplementary material,
sections 1 and 2.

We define the following two scenarios. Complete response
(CR) is achieved when the tumour is eradicated. Progressive
disease (PD) is counted when the tumour has reached 120% of
its initial size. Note that the clinical definition of progression
typically is less quantitatively tractable [16], as clinical pro-
gression can occur whenever the disease worsens in relation to
its nadir size, which could be markedly less than the value at
baseline [17].

We consider the case of lymphodepleting chemotherapy
prior to infusion of autologous CAR T cells. We set time to 0 at
the time of CAR infusion. Normal and CAR T cell populations
then grow towards their respective carrying capacities but influ-
ence each other. This mutual influence gives rise to selection.

We exclude possible influences by other sources of CD19,
such as normal B cells, based on the following observations.
Patients have effectively zero normal B cells following lympho-
depleting chemotherapy and prior/concurrent to CAR T cell
infusion. Furthermore, the reconstitution of normal B cells is
extremely slow, such that only 50% of patients have recovered
any normal B cells by 1 year after therapy. While it is possible
that normal B cells activate CD19 directed CAR T cells, at this
scale the dynamics of CAR T are probably not impacted by
normal B cells. Thus, in the patient population we are interested
in, normal sources of CD19 do not seem to play a significant role.
Meanwhile, the tumour cell population B grows autonomously
at a net growth rate rB and experiences tumour killing at rate
γB, proportional to the number of CAR T cells.

These biological mechanisms could manifest themselves in
multiple ways in a mathematical model. A carrying capacity
for T cells could emerge due to predation, resource or spatial
limitations, birth and death rate balance through exogeneous
effects (e.g. paracrine signalling [18]), or any combination of
the above. We investigated different functional forms (a general-
ized logistic, Gompertz, and an explicit interaction model,
discussed in the electronic supplementary material, section 3).
Using an information criterion, we elected to use a Gompertz
model approach. The corresponding dynamical system in the
mean-field limit is

dN
dt

¼ �rN N ln
N þ C
KN

� �
, ð2:1Þ

dC
dt

¼ �rC(T) C ln
N þ C
KC

� �
ð2:2Þ

and
dB
dt

¼ rBB� gB B
C

kB þ C
: ð2:3Þ

Here T =N +C is the total lymphocyte count, and
rC(T) ¼ rC þ b(T � KN)

2=ða T2 þ (T � KN)
2Þ, where ρC is a back-

ground expansion rate and the second term reflects that growth
can be muted when the overall (largely normal) T cell population
reaches capacity, modulated by the two parameters a and b.
We introduced feedback of total lymphocyte count on CAR expan-
sion because the CAR T cell population expands at a faster rate
initially and contracts slower after peak, which has been a chal-
lenge in several of the recent quantitative modelling approaches
[6,11]. A generalized logistic or Gompertz form cannot alone cap-
ture this behaviour. Thus, we chose to include additional feedback
into the intrinsic growth rate function ρC, which becomes a func-
tion of the total T cell count T, the tumour mass B, or both
(see electronic supplementary material, section 3). For a deeper
discussion on the assumptions and details of the system of
equations (2.1)–(2.3), which can be based on a stochastic birth
and death process, see the electronic supplementary material, sec-
tion 3, where we also present a linear stability analysis. Figure 1a
shows a schematic of the dynamical system. Figure 1b shows the
associated cellular events, which can be interpreted deterministi-
cally or stochastically. The deterministic system’s qualitative
behaviour aligns with clinical observations (figure 1d–f ).

Tumour killing by CAR T cells is modelled as a result of con-
tact, thus is proportional to B ×C and includes a saturation factor,
motivated by the assumption that there exists an upper limit at
which CAR T cells can interact and kill the tumour cells.

Altogether, these assumptions lead to seven parameters to be
fitted by optimization, based on 11 data points from clinical
observations—five for CAR T and five for absolute lymphocyte
count (ALC), excluding the initial conditions, and one measure-
ment for the tumour state at day 30 (for further details see
electronic supplementary material, section 4).
3. Results
We calibrated the deterministic model using clinical data
(figure 2a,b; electronic supplementary material, sections 2
and 4), which led to the parameters in table 1. To recapitulate
and predict progression-free survival over time, we employed
the corresponding stochastic formulation (electronic supple-
mentary material, section 5), which is able to capture
dynamics of small tumour populations near extinction.
(a) Parameter sensitivity and identifiability
We conducted a local sensitivity and identifiability analysis
[21–23] of the fitted parameters. The resulting ranking of
parameters highlights that the carrying capacities of the CAR
and normal T cells, respectively, and the maximal tumour-
killing rate were most sensitive (figure 2c). Note here that low
sensitivity of a parameter does not imply that the model is
not sensitive to these parameters. We performed an identifia-
bility analysis, with a threshold value of 0.9, to indicate
non-identifiability between parameters pairs. Strong Pearson
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Figure 1. Overview of cellular interactions, kinetics, data integration and qualitative dynamics. (a) Model schematic of three cell compartments: CAR T cells, C,
proliferate and interact with resident (normal) lymphocytes, N (depleted by lymphodepleting chemotherapy). CAR T cells also engage in killing CD19+ tumour and
other B cells. (b) The system can be described by four cellular kinetic reactions, with density-dependent feedback (differences in carrying capacities) in the net
expansion rates: RX = rX ln(KX/(N + C )), where X stands for N or C. The deterministic, large population size limit of these dynamics is given by equations
(2.1)–(2.3). (c) Schematic of data integration to parametrize the mathematical model; we used longitudinal data of peripheral absolute lymphocyte count
(ALC), peripheral CAR+ cell counts per µL, and the tumour volume-changes as estimated from patients of the ZUMA-1 trial with complete response (CR) or pro-
gressive disease (PD). We assumed that, at days 30, 60 or 90, CRs had no detectable tumour mass, and that PDs had 1.2 times their initial tumour size. Median
initial tumour mass was 94.86 ml. The qualitative dynamics of the system, given by equations (2.1)–(2.3): no response to CAR therapy (d ), transient response
followed by progression/relapse (e) and long-term response (tumour appears to be eradicated) ( f ). These illustrative examples are not to scale.
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correlations between kB and rB (0.94), and between kB and γB
(−0.96) were observed (figure 2d inset), which suggests that
these pairs are not identifiable. All other pairs were below the
threshold and can be considered identifiable. The sensitivity
ranking suggests that the most promising avenues to improve
CAR T cell therapy should focus on improving adaptability
(carrying capacity) and efficacy (tumour-killing rate) of the
engineered CAR T cell product.

(b) Immune reconstitution and return to homeostasis
during chimeric antigen receptor T cell therapy
follows a Gompertz growth law

We initially hypothesized that immune reconstitution follows
a generalized logistic growth equation of the form x

0
(t) =

rx(1− (x/k)c) [24]. This approach contains the standard logistic
model (c = 1) and leads to Gompertz growth in the limits c→ 0,
r→∞. Our nonlinear optimization routine for data fitting
(see electronic supplementary material, section 3) selected
Gompertz as the best approach for immune reconstitution
dynamics (figure 2a). The optimizer was selecting r at the
edge of the upper boundary of its optimization region, while
selecting c at the lowest possible (positive) value. We
concluded that immune reconstitution follows Gompertz
growth, x0(t) =−rxln[x/k].
(c) Chimeric antigen receptor T cell kinetics can be
explained by increased growth rate and lower
carrying capacity

We hypothesized that CART cells become maladapted during
the manufacturing process, lowering their carrying capacity.
After lymphodepletion, a complex signalling cascade occurs
that results in immune reconstitution towards homeostatic
levels [19], driven by stem and progenitor cells [25,26]. Both
normal T cells (figure 2a) and CAR T cells (figure 2b) use the
changing environment to proliferate and expand, but only
normal cells can be reconstituted from stem cells. Although
we do not model these signals explicitly, the system’s behav-
iour can be observed through the interplay of the normal and
CAR T cells. As a result, CAR T cells are outcompeted by
normal T cells [27] in the long term, resulting in lower carrying
capacity. An alternative hypothesis that could explain the kin-
etics would be predation of CAR T cells by normal T cells. We
examined and ultimately discarded this alternative hypothesis
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Figure 2. Comparison of model fits and data in the T cell compartments, stochastic dynamics in the tumour cell compartment. (a) ALC was used to parameterize
normal T cell dynamics, equation (2.1), using ALC-CAR from peripheral blood to estimate normal T cell counts N. (b) CAR positive T cell dynamics, equation (2.2),
were parameterized using ZUMA-1 trial data of median peripheral CAR counts, to fit peak and decay of CAR. Nonlinear optimization for data fitting explained in the
electronic supplementary material, section 4. (c) Parameters ranked by local relative sensitivity measure (electronic supplementary material, section 4). Inset:
parameter correlation matrix (Pearson correlation, see electronic supplementary material). (d ) Two example trajectories of tumour burden over time, using identical
parameters and initial conditions for the hybrid deterministic-stochastic process in the tumour compartment. Both examples enter the stochastic region (less than
100 tumour cells), but one escapes leading to progression. All parameter values and initial conditions used are given in table 1. Hybrid model simulation procedure
described in the electronic supplementary material, section 5. (Online version in colour.)

Table 1. Parameter and initial condition values as identified by our machine learning procedure and from the literature (also see electronic supplementary
material, section 4). The CAR T cell growth rate function is rC, which depends on parameters ρC, a, b.

biological parameter symbol fitted value quartile range ref.

normal T cell carrying capacity KN 2.50 × 1011 cells n/a [19]

CAR T cell carrying capacity KC 6.96 × 1010 cells [6.15, 9.65] × 1010 cells this work

normal T cell net growth rate rN 1.70 × 10−1 day−1 [1.65, 1.70] × 10−1 day−1 this work

baseline CAR T net growth rate ρC 2.51 × 10−2 day−1 [2.08, 3.54] × 10−2 day−1 this work

signalling inefficiency factor in rC a 4.23 × 10−1 [1.00, 3.02] × 10−1 this work

immune reconstitution impact in rC b 5.25 × 10−1 day−1 [4.67, 5.22] × 10−1 day−1 this work

tumour net growth rate rB (1− 50) × 10−2 day−1 n/a [20]

tumour-killing rate (by effector CAR) γB 1.15 × 100 day−1 [0.64, 1.35] × 100 day−1 this work

killing rate saturation parameter kB 2.024 × 109 cells [1.40, 3.125] × 109 cells this work

initial median normal T cell number N(t = 0) 3.00 × 109 cells n/a [5]

initial CAR T cell number C(0) 1.80 × 108 cells n/a [5]

initial median tumour cell number B(0) 9.486 × 1010 cells n/a [5]
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after statistical examination (see electronic supplementary
material, section 3).

CAR T cell persistence, at least for some time, could result
from CAR T effector memory cells [6]. Currently, it is unclear
whether CAR T persistence plays a role in LBCL treatment
[4]; remarkably, cure is possiblewithout CART cell persistence.
The decline over time of CART cells may occur on a time frame
longer than the expected survival time, even in patients



royalsocietypublishing.org/journal/rspb
Proc.R.

5
with tumour extinction. Therefore, the clinical definition of
(temporal) CAR T persistence may be captured by our model.

CARTexpansion occurs rapidlywithin the first twoweeks.
By contrast, CART cells decay on amuch slower time scale. For
instance, the median patient still retains levels comparable to
their value at infusion by day 90. Hence, other functional
dependencies need to be placed on the CAR T cell growth
rate (equation (2.2)). The baseline rate ρC sets the time scale at
which birth and death events occur on average in the CAR T
cell population. These birth and death rates depend on signals
provided by all T cells, which change during therapy as the
immune system returns to homeostatic levels. Hence, we
expect the overall CAR T cell turnover rate to change during
the course of reconstitution. The dependence on the total lym-
phocyte count T describes these nonlinear dynamics as the
total T cell count approaches a carrying capacity, T→KN.
 Soc.B

288:20210229
(d) Stochastic tumour extinction
As a consequence of CAR T cell impairment in renewal
capacity, tumour eradication is deterministically unstable and
not a long-term outcome (see electronic supplementary
material, section 3). However, tumour mass often shrinks at
least for some time during treatment and can temporarily be
brought down to very low levels [4], leading to possible sto-
chastic extinction (figure 2d). We predict that if cure occurs, it
does so via a stochastic event in which the malignant B cells
are driven to extinction [28]. This stochastic approach leads to
the question of whether parameter variability (e.g. patient
variability), or stochasticity of the underlying process, or
both, are responsible for the broad distributions of the times
to cure or progression and probability of cure. Of those
ZUMA-1 patients that were treated at Moffitt, we assessed
the variability in CAR T cell kinetics, although not all patients
had all time points available (figure 3a). The Moffitt ZUMA-1
patient cohort’s (overall n = 23 patients) variabilty in CAR T
count (cells µl−1) were 27.5 (IQR: 16.5,57.5; n = 19), 9.1 (IQR:
3.8,31.1; n = 23), 2.1 (IQR: 0.6,6.1; n = 22) and 0.1 (IQR:
0.01,0.4; n = 22) at days 7, 14, 28 and 90, respectively.
(e) Probability and time to progression
To evaluate our model parameterization, we compared the
overall progression-free survival (PFS) curve for all patients in
the ZUMA-1 [5] trial to a virtual cohort of 1000 simulated
patients with varying tumour growth rates (figure 3b).
Although we had not used progression-free survival as a goal
function to find suitablemodel parameters (Methods, electronic
supplementary material, section 4), our stochastic model
recapitulates PFS of the ZUMA-1 trial for reasonable tumour
growth rate values, using a hybrid deterministic–stochastic
numerical approach (electronic supplementary material,
section 5) in which the system is simulated deterministically
if the tumour is above a threshold value, and the tumour is
simulated stochastically once below this threshold (the out-
comes were very weakly impacted by choice of threshold; see
electronic supplementary material). As a result, a probability
of tumour extinction can be calculated numerically as a function
of specific model parameters for a fixed point in time or overall.
Treatment success (probability of tumour extinction) critically
depends on the ability of the CAR T to survive (figure 3c),
and on the effectiveness of lymphodepletion that reduce
absolute lymphocyte counts (figure 3d).
( f ) Variability in outcomes
A natural question involves whether overall variability in
timing to cure or progression is shaped by patient variability
(implemented using a hyperparameter that perturbs the par-
ameters, see electronic supplementary material, section 5.3)
in contrast with model stochastic effects. We performed
additional stochastic simulations of tumour extinction
(electronic supplementary material, section 5.4) under con-
trolled parameter variation. We found that the probability of
cure changes with overall parameter variability (figure 3e).
Similarly, the time to cure distribution for a specific set of
parameters widens with increasing parameter variability
(figure 3f ). Thus, variation in patient-specific conditions and
parameter values could be the main determinant of observed
variability in timing of cure or progression.

Most stochastic simulations resulted in cure between days
20 and 80. We rarely found late cure events up to day 140
(figure 4a). Meanwhile, progression times were distributed
over a broader range. Typical progression times, as defined
in our model as 120% of initial tumour burden, occur any-
where between days 200 and 500 (figure 4b). These large
differences in time scales occur because cure, as a stochastic
tumour extinction event, is much more likely to occur
before CAR T cells begin to decline, typically after day 14.

(g) Necessity of lymphodepletion
In the context of timing of events, ourmodel can beuseful to test
new treatment strategies in silico, to inform clinical trial design.
For example, we used our model to inform the timing of a
second infusion, with or without additional lymphodepletion
(electronic supplementary material, section 6) [11]. To improve
outcomes with a second infusion, lymphodepletion that resets
the T cells is necessary. This suggests that a second, lower
dose lymphodepletion alone might be sufficient, provided it
does not kill all CAR T cell but lowers overall T cell density
sufficiently. The temporal suppression of normal lymphocytes
is a key driver ofCARexpansion,which, togetherwith transient
tumour burden data, could be leveraged to further evaluate the
benefit of second interventions.
4. Discussion
Here, we propose a modelling framework for the analysis
and prediction of cellular kinetics during CAR T cell therapy.
We focus on normal T cells, CAR T cells and tumour cells and
find that CAR expansion and decay can be explained via
competitive growth in the context of immune reconstitution,
which is a consequence of the lymphodepletion prior to
therapy. A ramification of the model is that cure must be a
stochastic event. However, the likelihood of cure is largely
determined by specific parameters and tumour fluctuations
play a minor role in the variability of clinical outcomes.
These insights can be leveraged to better understand why
therapy works for some but not all, and how it can
be improved.

We posited four potential drivers of patient outcomes: the
effects of normal T cell dynamics on CAR T cells, CAR T cell
expansion (peak), CAR T cell durability (slow decay) and
tumour-killing rate. To better understand these processes, we
developed acell population-ecological framework that describes
the kinetics of normal T, CARTand tumour cells.We performed
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parameter sensitivity and correlation analyses, and calculated
probability of cure and PFS from stochastic simulations.

We do not make patient-specific, personalized predic-
tions, for which a more comprehensive dataset would be
needed [29], matching multiple longitudinal data from the
same patient. Instead, we give proof-of-principle that the
integration of longitudinal lymphocyte counts with CAR T
cell counts and changes in tumour burden can be very
useful to predictively model the cell population dynamics
that likely determine clinical outcomes.

Our model confirms the hypothesis that sufficient
lymphodepletion is an important factor in determining
durable response. Improving the adaptation of CAR T cells
to expand more and survive longer in vivo could result
in increased likelihood and duration of response. Future
modelling should investigate other available signals, such
as the dynamics and upregulation of homeostatic and
inflammatory cytokines.

The emergence of Gompertz growth of T cells is an inter-
esting result of our analysis. A possible explanation can be
found in recent work [30], which employed techniques
from statistical mechanics to explain the emergence of
well-known tumour growth laws. In particular, Gompertz
emerged via a reduction in available microstates (e.g. cellular
phenotypes), causing a characteristic slowdown of the overall
population expansion. Our results suggest that this phenom-
enon could play a role during immune reconstitution. After
rapid expansion, the immune compartment engages in nega-
tive selection to keep a flexible adaptive immune system
ready to engage pathogens. Therefore, by analogy to the
reduction of available microstates, the T cell population
approaches a carrying capacity via Gompertz-like growth.
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We made several assumptions to approach the broader
biological context of CAR T cell therapy. First, we assumed
that immune reconstitution varies minimally across patients.
The interplay between normal and CAR T competition in
individual patients should be addressed in future studies
that track both simultaneously, which could also reveal
whether the slope of ALC is predictive of CAR expansion
and efficacy.

Second, our model assumes that tumour cell proliferation
is independent of tumour burden. However, the tumour
growth rate might decrease with tumour burden. In this
context, one could explore other sources of tumour burden
variability that originate from a logistic dependence of pro-
liferation on tumour volume, called proliferation-saturation
[31,32], which points to the need for higher temporal
resolution of tumour data.

Third, our probabilistic measure of PFS did not include
the evolution of resistance to CAR T cell therapy by immuno-
logic, genetic or epigenetic escape [33], which would add an
additional probabilistic modelling layer.

Fourth, normal CD19+ B cells are at negligible levels in
the weeks following lymphodepletion. These levels are low
until 4–6 months post infusion, implying that their presence
is minimal, although they are potential sources of target anti-
gen. Further, the detection of normal CD19+ B cells in
circulation long after CAR T is evidence that functional
CAR T cells no longer persist in the host. It is unclear whether
B cells themselves could be responsible for continued CAR T
persistence. Thus, we assume that non-tumour sources of
CD19 do not play a role during the activity of CAR T cells.

Fifth, the functional form for the tumour-killing rate was
justified in preliminary analysis and by considering the fact
that there should be an upper limit on the number of CAR
T cells that can surround a given tumour cell. We expect an
upper limit on the rate of killing. However, an analogous
argument could be made for tumour influence, leading
to the following alternative forms of the killing term:
gBB C=ðkB þ fBþ CÞ or gBðB=kB þ BÞðC=kC þ CÞ. Given the
lack of temporal data (especially for the tumour), we elected
the simpler form in equation (2.3).

We focused on the treatment of LBCL, but our approach
could also be applied to CAR T cell treatment of chronic lym-
phocytic leukaemia (CLL) [34,35] (investigational), or acute
lymphocytic leukaemia (ALL) [36] and mantle cell lym-
phoma [37], the other approved indications for CAR T cell
therapy. Quantitative systems pharmacological (QSP) model-
ling of CAR T cell kinetics to treat ALL has been conducted
recently to describe kinetics independently of tumour or
normal T cell dynamics [6,38], to study the effects of
additional prophylactic interventions [6], or to include cyto-
kine kinetics [38]. Our model can be interpreted such that
long-term CAR T cell survival, possibly necessary to cure
ALL, would require a significant slowdown of CAR T cell
turnover, or an additional memory compartment. There is
not enough longitudinal data in LBCL at this point to
model additional CAR T compartments. As such, our
model has markedly fewer parameters (two from literature,
seven fitted) than several of the recently developed QSP
approaches (around 20 parameters) [11].

Our definition of progression predicts progression events
later than those observed in some patients per clinical defi-
nition [4,17]. This discrepancy indicates that there is
additional, unresolved patient heterogeneity, potentially in
the form of differences in naive and memory cells in the
CAR T cell product at day 0, further highlighting the need
for high-resolution longitudinal data.
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Our results point to the importance of the immune system’s
influence on CAR T cell kinetics, and the impact of those kin-
etics on potentially stochastic tumour dynamics. We hope
that our model can be consolidated with descriptions of
short-term changes in inflammatory cytokines [19,39–41],
because these are accessible alternative biomarkers for the
immune system’s impact [11]. On the other hand, engineering
a CART product with fewer cell divisions, improving its ‘stem-
ness’ or increasing metabolic capacity of CAR T cells should
lead to a higher carrying capacity. Such changes would lead
to a higher peak and a higher total volume of CAR T cells
during treatment. Stem-ness, support by secreted molecules
(e.g. IL-2, IL-12) [42] or CAR T cell exhaustion as additional
mechanisms should be subject to future modelling.

Finally, models of treatment–tumour interactions do not
require that tumour extinction is a stable steady state.
Tumour extinction (cure) can be a stochastic event, since
cure becomes an absorbing state in a stochastic framework.
Our results indicate that the effects of CAR T cell therapy
are transient and should be optimized to maximize initial
impact and rapidly drive tumours into this stochastic
regime. The dynamics of our model are most sensitive to
the ability of CAR T to kill tumours and to the CAR T cell
expansion capacity. Future translational work to improve
these parameters may ultimately improve efficacy of therapy.
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found at https://github.com/MathOnco/CARTecology.
Authors’ contributions. G.J.K., F.L.L. and P.M.A. conceived of the model
and designed the study. G.J.K. carried out the mathematical model-
ling. G.J.K. and P.M.A. carried out computational modelling and
statistical data analysis. F.L.L. and P.M.A. coordinated and super-
vised the study. G.J.K., F.L.L. and P.M.A. wrote the manuscript. All
authors gave final approval for publication and agree to be held
accountable for the work performed therein.
Competing interests. G.J.K. and P.M.A. declare no potential conflict of
interest. F.L.L. is scientific adviser to Kite, Novartis, and Gamma-
Delta T cell Therapeutics, and consultant to CBMG.

Funding. This study was supported by the Richard O. Jacobson Foun-
dation, Moffitt Cancer Center Evolutionary Therapy Center, William
G. ‘Bill’ Bankhead Jr and David Coley Cancer Research Program
(20B06), National Cancer Institute (P30-CA076292 and U54-
CA193489) and USAMRAA (KC180036).
0229
References
1. Howlader N et al. 2014 SEER cancer statistics review,
1975–2014. Bethesda, MD: National Cancer Institute.

2. Crump M et al. 2017 Outcomes in refractory diffuse
large B-cell lymphoma: results from the
international SCHOLAR-1 study. Blood 130,
1800–1808. (doi:10.1182/blood-2017-03-769620)

3. Schroeder H, Imboden JB, Torres RM. 2012 Antigen
receptor genes, gene products, and co-receptors. In
Clinical immunology: principles and practice (ed. RR
Rich), pp. 47–51. Amsterdam, The Netherlands:
Elsevier.

4. Locke FL et al. 2019 Long-term safety and activity
of axicabtagene ciloleucel in refractory large B-cell
lymphoma (ZUMA-1): a single-arm, multicentre,
phase 1–2 trial. Lancet Oncol. 20, 31–42. (doi:10.
1016/S1470-2045(18)30864-7)

5. Neelapu SS et al. 2017 Axicabtagene ciloleucel CAR
T-cell therapy in refractory large B-cell lymphoma.
N Engl. J. Med. 377, 2531–2544. (doi:10.1056/
NEJMoa1707447)

6. Stein AM et al. 2019 Tisagenlecleucel model-based
cellular kinetic analysis of chimeric antigen
receptor-T cells. CPT Pharmacometrics Syst.
Pharmacol. 8, 285–295. (doi:10.1002/psp4.12388)

7. Glodde N et al. 2019 Experimental and
stochastic models of melanoma T-cell therapy
define impact of subclone fitness on selection
of antigen loss variants. bioRxiv. https://doi.org/10.
1101/860023.

8. Sahoo P et al. 2020 Mathematical deconvolution of
CAR T-cell proliferation and exhaustion from real-
time killing assay data. J. R Soc. Interface. 17,
20190734. (doi:10.1098/rsif.2019.0734)

9. Cess CG, Finley SD. 2019 Data-driven analysis of a
mechanistic model of CAR T cell signaling predicts
effects of cell-to-cell heterogeneity. J. Theor. Biol.
489, 110125. (doi:10.1016/j.jtbi.2019.110125)
10. Maude SL et al. 2018 Tisagenlecleucel in children
and young adults with B-cell lymphoblastic
leukemia. N Engl. J. Med. 378, 439–448. (doi:10.
1056/NEJMoa1709866)

11. Chaudhury A et al. 2020 Chimeric antigen receptor
T cell therapies: a review of cellular kinetic-
pharmacodynamic modeling approaches. J. Clin.
Pharmacol. 60(Suppl 1), S147–SS59.

12. Kimmel GJ, Locke LL, Altrock PM. 2020 Response to
CAR T cell therapy can be explained by ecological
cell dynamics and stochastic extinction events.
bioRXiv. 717074. (doi:10.1101/717074)

13. Wang E, Cesano A, Butterfield LH, Marincola F. 2020
Improving the therapeutic index in adoptive cell
therapy: key factors that impact efficacy.
J. Immunother. Cancer 8, e001619. (doi:10.1136/
jitc-2020-001619)

14. Henning AN, Klebanoff CA, Restifo NP.
2018 Silencing stemness in T cell differentiation.
Science 359, 163–164. (doi:10.1126/science.
aar5541)

15. Pace L, Goudot C, Zueva E, Gueguen P, Burgdorf N,
Waterfall JJ, Quivy J-P, Almouzni G, Amigorena S.
2018 The epigenetic control of stemness in CD8+ T
cell fate commitment. Science 359, 177–186.
(doi:10.1126/science.aah6499)

16. Oxnard GR, Morris MJ, Hodi FS, Baker LH, Kris MG,
Venook AP, Schwartz LH. 2012 When progressive
disease does not mean treatment failure:
reconsidering the criteria for progression. J. Natl.
Cancer Inst. 104, 1534–1541. (doi:10.1093/jnci/
djs353)

17. NCI. 2019 Time to progression. In Dictionary of
cancer terms, 1908D. Bethesda, MD: National Cancer
Institute.

18. Hart Y, Reich-Zeliger S, Antebi YE, Zaretsky I, Mayo
AE, Alon U, Friedman N. 2014 Paradoxical signaling
by a secreted molecule leads to homeostasis of cell
levels. Cell 158, 1022–1032. (doi:10.1016/j.cell.
2014.07.033)

19. Turtle CJ et al. 2016 CD19 CAR–T cells of defined
CD4+: CD8+ composition in adult B cell ALL
patients. J. Clin. Invest. 126, 2123–2138. (doi:10.
1172/JCI85309)

20. Roesch K, Hasenclever D, Scholz M. 2014
Modelling lymphoma therapy and outcome. Bull.
Math. Biol. 76, 401–430. (doi:10.1007/s11538-013-
9925-3)

21. Olufsen MS, Ottesen JT. 2013 A practical approach
to parameter estimation applied to model
predicting heart rate regulation. J. Math. Biol. 67,
39–68. (doi:10.1007/s00285-012-0535-8)

22. Miao H, Xia X, Perelson AS, Wu H. 2011 On
identifiability of nonlinear ODE models and
applications in viral dynamics. SIAM Rev. Soc. Ind.
Appl. Math. 53, 3–39.

23. Brady-Nicholls R, Nagy JD, Gerke TA, Zhang T, Wang
AZ, Zhang J, Gatenby RA, Enderling H. 2020
Prostate-specific antigen dynamics predict individual
responses to intermittent androgen deprivation.
Nat. Commun. 11, 1750. (doi:10.1038/s41467-020-
15424-4)

24. Richards FJ. 1959 A flexible growth function for
empirical use. J. Exp. Bot. 10, 290–300. (doi:10.
1093/jxb/10.2.290)

25. Muranski P, Boni A, Wrzesinski C, Citrin DE,
Rosenberg SA, Childs R, Restifo NP. 2006 Increased
intensity lymphodepletion and adoptive
immunotherapy–how far can we go? Nat. Clin.
Pract. Oncol. 3, 668–681. (doi:10.1038/ncponc0666)

26. Williams KM, Hakim FT, Gress RE. 2007 T cell
immune reconstitution following lymphodepletion.
Semin. Immunol. 19, 318–330. (doi:10.1016/j.smim.
2007.10.004)

https://github.com/MathOnco/CARTecology
https://github.com/MathOnco/CARTecology
http://dx.doi.org/10.1182/blood-2017-03-769620
http://dx.doi.org/10.1016/S1470-2045(18)30864-7
http://dx.doi.org/10.1016/S1470-2045(18)30864-7
http://dx.doi.org/10.1056/NEJMoa1707447
http://dx.doi.org/10.1056/NEJMoa1707447
http://dx.doi.org/10.1002/psp4.12388
https://doi.org/10.1101/860023
https://doi.org/10.1101/860023
https://doi.org/10.1101/860023
http://dx.doi.org/10.1098/rsif.2019.0734
http://dx.doi.org/10.1016/j.jtbi.2019.110125
http://dx.doi.org/10.1056/NEJMoa1709866
http://dx.doi.org/10.1056/NEJMoa1709866
http://dx.doi.org/10.1101/717074
http://dx.doi.org/10.1136/jitc-2020-001619
http://dx.doi.org/10.1136/jitc-2020-001619
http://dx.doi.org/10.1126/science.aar5541
http://dx.doi.org/10.1126/science.aar5541
http://dx.doi.org/10.1126/science.aah6499
http://dx.doi.org/10.1093/jnci/djs353
http://dx.doi.org/10.1093/jnci/djs353
http://dx.doi.org/10.1016/j.cell.2014.07.033
http://dx.doi.org/10.1016/j.cell.2014.07.033
http://dx.doi.org/10.1172/JCI85309
http://dx.doi.org/10.1172/JCI85309
http://dx.doi.org/10.1007/s11538-013-9925-3
http://dx.doi.org/10.1007/s11538-013-9925-3
http://dx.doi.org/10.1007/s00285-012-0535-8
http://dx.doi.org/10.1038/s41467-020-15424-4
http://dx.doi.org/10.1038/s41467-020-15424-4
http://dx.doi.org/10.1093/jxb/10.2.290
http://dx.doi.org/10.1093/jxb/10.2.290
http://dx.doi.org/10.1038/ncponc0666
http://dx.doi.org/10.1016/j.smim.2007.10.004
http://dx.doi.org/10.1016/j.smim.2007.10.004


royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

288:20210229

9
27. Wu L, Wei Q, Brzostek J, Gascoigne NRJ. 2020
Signaling from T cell receptors (TCRs) and chimeric
antigen receptors (CARs) on T cells. Cell. Mol.
Immunol. 17, 600–612. (doi:10.1038/s41423-020-
0470-3)

28. Gilpin ME. 1986 Minimal viable populations: processes
of species extinction. In Conservation biology: the
science of scarcity and diversity (ed ME Soulé).
Sunderland, MA: Sinauer Associates.

29. Brady R, Enderling H. 2019 Mathematical models of
cancer: when to predict novel therapies, and when
not to. Bull. Math. Biol. 81, 3722–3731. (doi:10.
1007/s11538-019-00640-x)

30. West J, Newton PK. 2019 Cellular interactions
constrain tumor growth. Proc. Natl Acad. Sci. USA
116, 1918–1923. (doi:10.1073/pnas.1804150116)

31. Prokopiou S et al. 2015 A proliferation saturation
index to predict radiation response and personalize
radiotherapy fractionation. Radiat. Oncol. 10, 159.
(doi:10.1186/s13014-015-0465-x)

32. Poleszczuk J, Walker R, Moros E, Latifi K, Caudell J,
Enderling H. 2017 Predicting patient-specific
radiotherapy protocols based on mathematical
model choice for Proliferation Saturation Index. Bull.
Math. Biol. 80, 1195–1206. (doi:10.1007/s11538-
017-0279-0)

33. Altrock PM, Liu LL, Michor F. 2015 The
mathematics of cancer: integrating quantitative
models. Nat. Rev. Cancer. 15, 730–745. (doi:10.
1038/nrc4029)

34. Davila ML, Bouhassira DC, Park JH, Curran KJ, Smith
EL, Pegram HJ, Brentjens R. 2014 Chimeric antigen
receptors for the adoptive T cell therapy of
hematologic malignancies. Int. J. Hematol. 99,
361–371. (doi:10.1007/s12185-013-1479-5)

35. Fraietta JA et al. 2018 Determinants of response
and resistance to CD19 chimeric antigen receptor
(CAR) T cell therapy of chronic lymphocytic
leukemia. Nat. Med. 24, 563–571. (doi:10.1038/
s41591-018-0010-1)

36. Mueller KT et al. 2018 Clinical pharmacology of
tisagenlecleucel in B-cell acute lymphoblastic
leukemia. Clin. Cancer Res. 24, 6175–6184. (doi:10.
1158/1078-0432.CCR-18-0758)

37. Wang M et al. 2020 KTE-X19 CAR T-cell therapy in
relapsed or refractory mantle-cell lymphoma. N
Engl. J. Med. 382, 1331–1342. (doi:10.1056/
NEJMoa1914347)
38. Hardiansyah D, Ng CM. 2019 Quantitative systems
pharmacology model of chimeric antigen receptor
T-cell therapy. Clin. Transl. Sci. 12, 343–349.
(doi:10.1111/cts.12636)

39. Park JH et al. 2018 Long-term follow-up of CD19
CAR therapy in acute lymphoblastic leukemia. N
Engl. J. Med. 378, 449–459. (doi:10.1056/
NEJMoa1709919)

40. Dholaria BR, Bachmeier CA, Locke F. 2019
Mechanisms and management of chimeric
antigen receptor T-cell therapy-related toxicities.
BioDrugs 33, 45–60. (doi:10.1007/s40259-018-
0324-z)

41. Jacobson CA. 2019 CD19 chimeric antigen receptor
therapy for refractory aggressive B-cell lymphoma.
J. Clin. Oncol. 37, 328–335. (doi:10.1200/JCO.18.
01457)

42. Pegram HJ, Lee JC, Hayman EG, Imperato GH,
Tedder TF, Sadelain M, Brentjens RJ. 2012
Tumor-targeted T cells modified to secrete
IL-12 eradicate systemic tumors without
need for prior conditioning. Blood 119,
4133–4141. (doi:10.1182/blood-2011-12-
400044)

http://dx.doi.org/10.1038/s41423-020-0470-3
http://dx.doi.org/10.1038/s41423-020-0470-3
http://dx.doi.org/10.1007/s11538-019-00640-x
http://dx.doi.org/10.1007/s11538-019-00640-x
http://dx.doi.org/10.1073/pnas.1804150116
http://dx.doi.org/10.1186/s13014-015-0465-x
http://dx.doi.org/10.1007/s11538-017-0279-0
http://dx.doi.org/10.1007/s11538-017-0279-0
http://dx.doi.org/10.1038/nrc4029
http://dx.doi.org/10.1038/nrc4029
http://dx.doi.org/10.1007/s12185-013-1479-5
http://dx.doi.org/10.1038/s41591-018-0010-1
http://dx.doi.org/10.1038/s41591-018-0010-1
http://dx.doi.org/10.1158/1078-0432.CCR-18-0758
http://dx.doi.org/10.1158/1078-0432.CCR-18-0758
http://dx.doi.org/10.1056/NEJMoa1914347
http://dx.doi.org/10.1056/NEJMoa1914347
http://dx.doi.org/10.1111/cts.12636
http://dx.doi.org/10.1056/NEJMoa1709919
http://dx.doi.org/10.1056/NEJMoa1709919
http://dx.doi.org/10.1007/s40259-018-0324-z
http://dx.doi.org/10.1007/s40259-018-0324-z
http://dx.doi.org/10.1200/JCO.18.01457
http://dx.doi.org/10.1200/JCO.18.01457
http://dx.doi.org/10.1182/blood-2011-12-400044
http://dx.doi.org/10.1182/blood-2011-12-400044

	The roles of T cell competition and stochastic extinction events in chimeric antigen receptor T cell therapy
	Introduction
	Methods
	Results
	Parameter sensitivity and identifiability
	Immune reconstitution and return to homeostasis during chimeric antigen receptor T cell therapy follows a Gompertz growth law
	Chimeric antigen receptor T cell kinetics can be explained by increased growth rate and lower carrying capacity
	Stochastic tumour extinction
	Probability and time to progression
	Variability in outcomes
	Necessity of lymphodepletion

	Discussion
	Data accessibility
	Authors' contributions
	Competing interests
	Funding
	References


