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Regulatory T (Treg) cells are indispensable for immune homeostasis due to their roles in
peripheral tolerance. As the master transcription factor of Treg cells, Forkhead box P3
(Foxp3) strongly regulates Treg function and plasticity. Because of this, considerable
research efforts have been directed at elucidating the mechanisms controlling Foxp3 and
its co-regulators. Such work is not only advancing our understanding on Treg cell biology,
but also uncovering novel targets for clinical manipulation in autoimmune diseases, organ
transplantation, and tumor therapies. Recently, many studies have explored the post-
translational regulation of Foxp3, which have shown that acetylation, phosphorylation,
glycosylation, methylation, and ubiquitination are important for determining Foxp3
function and plasticity. Additionally, some of these targets have been implicated to have
great therapeutic values. In this review, we will discuss emerging evidence of post-
translational regulations on Foxp3 in Treg cells and their exciting therapeutic applications.

Keywords: regulatory T cells, Foxp3, post-translational regulation, ubiquitination, glycosylation, acetylation,
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INTRODUCTION

Thanks to the precious gift inherited from jawed fish ancestors thought to have lived some 500
million years ago, our immune defenses are equipped with a powerful adaptive arm with the ability
to mount responses to a near-infinite diversity of targets (1). However, these immune responses can
sometimes be overpowered or misdirected to target self-targets. Fortunately, complex mechanisms
of immune tolerance have co-evolved to ensure proper regulations on both adaptive and innate
immune systems—an immune homeostasis state in the absence of an imminent threat. While
central tolerance prevents the development of self-reactive T lymphocytes during their maturation
in the thymus, mechanisms of peripheral tolerance suppress the activation of rogue T cells that
escape this safeguard (2). Among these, regulatory T (Treg) cells play essential roles in maintaining
immune homeostasis by moderating the intensity of immune responses and suppressing the
activation of self-reactive leukocytes (3).
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The concept of a regulatory T cell lineage has its roots in the
“suppressor T cells”. Back in 1969 and 1970, Nishizuka and
Gershon found that certain subsets of T cells from the thymus
had the ability to suppress the activity of other immune cells (4, 5).
Later, in 1995, Sakaguchi identified CD25 (IL-2 receptor a chain) as
a reliable marker for these CD4+ suppressive T cells (6). This minor
T cell population constitutes 5–10% of the peripheral CD4+ T cell
pool in normal naïve adult mice (i.e., those kept in specific pathogen
free (SPF) condition without pathogen challenge), and loss of these
cells led to severe autoimmune diseases (7). In 2001, the mutation of
a gene encoding the transcription factor Forkhead box P3 (Foxp3)
was identified as the disease-causative event underlying IPEX
(Immune dysregulation, Polyendocrinopathy, Enteropathy, X-
linked syndrome) syndrome in humans and the Scurfy phenotype
in mice (8–10). Immediately after the discovery of Foxp3, in 2003,
Sakaguchi, Rudensky, and Ramsdell confirmed that Foxp3 is the
master transcription factor that programs the development and
function of regulatory T cells (11–13). Since then, intensive research
has been focused on Treg cells to elucidate their roles in different
tissues and under a variety of physiological and pathological
conditions. It is now well-appreciated that Treg cells play
conserved functions in tissue pathophysiology and metabolism
across vertebrate species. In addition to their more classical role
in immune suppression, these cells are shown to participate in
wound healing, tissue homeostasis, and regeneration (14–16). More
detailed reviews in this perspective can be found elsewhere (17–19).

After decades of studies, we now understand that these Foxp3+

Treg cells use multiple different mechanisms to suppress immune
activation. These include mechanisms acting through direct cell-cell
interactions. For example, Treg cells express coinhibitory molecules
like LAG3, CTLA-4, GITR, and PD-1 to inhibitDCmaturation (20–
23) and effector T cell function (24). Paracrine release of suppressive
mediators is another avenue for suppression. Treg cells are known to
produce anti-inflammatory cytokines like TGF-b, IL-10, and IL-35
to inhibit effector T cells. Indirect means have also been studied, and
Treg cells are known to sequester the growth factor IL-2 from other
leukocytes, thus disrupting their survival and function (25). Losing
or disrupting Foxp3 undercuts these diverse mechanisms of
immune suppression significantly, which leads to a loss of
immune control and severe autoimmune diseases (25).

So far, multiple layers of regulations have been identified to
control the function and the turnover of Foxp3, especially
transcriptional and post-translational regulations (26, 27).
Among these, post-translational regulation is of high interest
due to its versatility and specificity. This is because each of these
modifications is orchestrated by a highly specific set of proteins
with a variety of functions. For example, ubiquitin-dependent
modification involves many unique E3 ligases for either poly-
ubiquitination-dependent proteasome degradation or
monoubiquitinated modification for signaling cascades (28).
Due to these features, post-translational regulation provides
new insights into protein functions and therapeutic targets (29).

Since the post-translational regulation of Foxp3 has become,
of late, an expansive topic, in this review, we will focus on a
selective number of modifications, including phosphorylation,
dephosphorylation, acetylation, deacetylation, methylation,
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glycosylation, ubiquitination, deubiquitination, and others.
Among these modifications, we will put additional emphasis
on ubiquitination and deubiquitination, and discuss some recent
therapeutic applications of Treg cells to build a connection
between basic research and clinical transformation.

CLASSIFICATION OF TREG

After decades of studies, we now understand that Foxp3+ Treg
cells are composed of a heterogeneous pool of cells arising from
distinct tissues of origin (30). Treg subsets have been
characterized with different potentials for proliferation and
suppression due to the interplay of both intrinsic and extrinsic
mediators (31). Accordingly, many different criteria have been
suggested to stratify and classify Tregs. Here, we will only cover
some of the most general approaches.

Based on their origin, Tregs can be classified as those having
developed in the thymus or those induced in peripheral tissues. The
former is normally called natural Treg (nTreg) or thymic Treg
(tTreg) and the latter is known as peripheral Treg (pTreg) or
inducible Treg (iTreg), especially when generated in vitro. nTreg
cells are developed from CD4+CD8- single positive T cells in the
thymus, and iTreg cells are derived from non-Treg precursors (i.e.,
naïve CD4+ T cells or CD4+ T conv cells) (32). While both nTreg
and iTreg require IL-2 to maintain cell survival and suppressive
function (33–36), TGF-b is critical for iTreg induction (32, 37).
Additionally, IL-35, retinoic acid, strong TCR activation (signal 1)
with weak co-stimulation (signal 2), and commensal microbiota
may also be important for iTreg induction and development (38–
46). Last but not least, the TCRs of nTregs are thought to generally
recognize self-antigens (47, 48), while iTregs tend to express TCR
targeting foreign antigens (49–51). Despite some controversies (52–
58), a common approach to distinguish tTreg and pTreg is based on
transcription factor Helios and cell surface glycoprotein neuropilin-
1 (NRP-1), which are highly expressed on nTreg cells (59, 60).

Treg cells can also be classified by different means, including
functional and phenotypic distinctions (61). For example, in terms of
suppressive function and proliferation potential, human Treg cells can
be classified as CD45RA+Foxp3int resting Treg (rTreg) or CD45RA-

Foxp3high effectorTreg (eTreg)cells.AlthoughbothrTregandeTregare
immunosuppressive in vitro, rTreg cells have a lower suppressive
activity than eTreg cells. However, rTreg cells can be activated to
proliferate and differentiate into eTreg cells, but eTreg cells have been
described as anergic and prone to apoptosis (31). Furthermore,
reflecting distinct activation states, Tregs can be classified as
Foxp3posHeliosneg or Foxp3posHeliospos Treg cells. The latter
represents recently activated Tregs as they express higher Foxp3 and
significantlymoreKi67 (62).Overall,Tregcells arehighlyheterogenous
and proper criteria are needed to further elucidate their differences.
FOXP3 STRUCTURE AND ITS
CO-REGULATORS

Foxp3 belongs to the forkhead box (Fox) family, subfamily P. In
mammals, there are four members in this subfamily, namely
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Foxp1–4 (63). Among these, FOXP3 is well conserved among
mammals. For example, human and mouse FOXP3 share 91%
similarity in amino acid sequences (64). In human, FOXP3 gene
locates on the short arm of Chromosome X (Xp11.23). It is about
20,039 bp long including 11 coding exons and one non-coding
exon (exon 1) (10). In terms of Foxp3 transcription, four
alternatively spliced isoforms have been identified, including
full-length Foxp3 (1,869 bp), Foxp3△2, Foxp3△7, and
Foxp3△2△7. Among these, 70% of Foxp3 mRNAs are
Foxp3△2, which lack retinoic acid-related orphan receptor gt
(RORgt) interaction domain (65). Besides, both full-length
Foxp3 and Foxp3△2 produce Foxp3 protein with normal
functions (66).

Foxp3 protein is about 431 amino acids long and 47.24 kDa
in molecular weight. It includes four functional domains,
namely the repressor (aa 1–190), zinc finger (ZF, aa 197–222),
leucine zipper (LZ, aa 239–260), and Fork-head domain (FHD,
aa 337–423) (67) (Figure 1A). In brief, the repressor domain is
located at the N-terminal region and is required to suppress
NFAT-mediated transcriptional signaling, for example,
suppressing IL-2 production (68). The zinc finger domain is
necessary and sufficient for Foxp3 homodimerization and
heterodimerization with Foxp1 (69), thus regulating its
transcriptional regulatory functions (70). Similarly, the leucine
zipper domain also mediates Foxp3 oligomerization by forming
a dynamic two-strand anti-parallel a-helical coiled-coil
structure (70). Finally, the Forkhead domain is important for
DNA binding and nuclear import (71). It recognizes a core 7 bp
DNA-binding sequence 5’-RWAAAYA-3’ (R = A/G; W = T/A;
Y = C/T) (72–74).

As the master transcription factor of Treg cells, Foxp3 can
form large protein complexes with other co-factors. These
complexes vary from 300 to 1,200 kDa in size and may involve
up to 361 different potential partners (75, 76). Some of the
characterized co-factors are: NFAT (77), RUNX1 (78), RORa
(79), Rel A and c-Rel (80), IRF4 (81), Eos (82), STAT3 (83),
HIF1a (84), GATA-3 (75), KAP1 (85), EZH2 (86), and Helios
(87) (Figure 1B). Besides, these co-factors can further bind with
other factors to form distinct functional complexes, including
transcriptional activation/repression, ubiquitination, acetylation,
etc. (76).
REGULATION OF FOXP3

Foxp3 is tightly regulated by a network of different mechanisms
with certain redundancy. Epigenetically, Foxp3 can be regulated
DNA methylation, histone modification, and nucleosome
positioning (88). For example, Foxp3 expression can be
regulated by the conserved non-coding sequences 2 (CNS 2)
within the Foxp3 locus through DNA methylation (89).
Transcriptionally, USP22 leads to H2BK120Ub on chromatins
among the FOXP3 locus to enhance its transcription (90). As for
post-transcriptional modifications, many factors play important
roles in regulating the conversion of precursor Foxp3 messenger
RNA transcripts into mature messenger RNA. For example,
Frontiers in Immunology | www.frontiersin.org 3
microRNAs (miRNAs) including miR-24, miR-31, and miR-
210 can lead to Foxp3 mRNA degradation, which prevents
Foxp3 translation (91, 92). In this review, we will briefly cover
transcriptional regulation of Foxp3 and specifically discuss post-
translational regulation of Foxp3.

Modification of Foxp3 Expression at
Transcriptional Level
Foxp3 can be regulated by a number of cis-acting elements,
which are located on the promoter and the enhancer regions
(CNS0, CNS1, CNS2, and CNS3) of the Foxp3 locus (93, 94).
These regions contain binding sequences for transcription
factors that are induced by extracellular signaling, including
TCR, CD28, TGF-bR, and IL-2R signaling (89). In this section,
we will review four major pathways that regulate Foxp3 at the
transcriptional level.

Upon T cell stimulation, TCR-induced NF-kB pathway plays
an important role in regulating Foxp3 expression and Treg
development. Mutating or deleting many key enzymes within
the pathway, including PKC-q (95), Bcl-10 (96), CARMA-1 (97,
98), IKK2 (99), and c-Rel (100–102), have been shown to reduce
Foxp3 expression and Treg frequency significantly. Further
studies have shown that c-Rel is the key NF-kB subunit that
binds to the promoter, CNS2, and CNS3 to regulate Foxp3
transcription (93, 103).

Another important pathway is the PLCg–NFAT/AP-1
pathway. Upon TCR engagement, PLCg induces calcium
influx, which leads to the activation of NFAT1 (104). NFAT1
not only plays an important role in maintaining Foxp3
expression (105), but also acts collaboratively with Foxp3 to
regulate IL-2, CTLA-4, and CD25 (77). Besides, PLCg induces
the activation of FOS/JUN, which leads to the activation of the
AP1-NFAT transcriptional complex (106). In the Foxp3 locus,
three NFAT and three AP1 binding sites are situated in close
proximity to each other, which further supports their collective
role in regulating Foxp3 expression (107).

Besides T cell stimulation, IL-2 signaling is also important for
Treg survival and function. It has been shown that IL-2 receptor
subunits IL-2Rb (CD122) and IL-2Rg (CD132) are essential for
Foxp3 expression, as losing them leads to no detectable Foxp3+ T
cells in mice (108–110). Additionally, losing IL-2Ra would
impair the development of Treg cells in the thymus and reduce
the suppressive function in the peripheral (111, 112). In brief,
upon IL-2 binding, the IL-2 receptor triggers JAK1 and JAK3
phosphorylation, which leads to the activation of STAT3 and
STAT5 (113). Then, dimerized STAT5 will bind to the promoter
and enhancer in CNS2 region, supporting the transcription of
Foxp3 (110, 114). This signaling pathway is important for Treg
development in the thymus (110, 114). It also plays a major role
in the homeostasis and function of Treg cells in the peripheral
(115, 116).

TGF-b is an important cytokine for both Treg induction and
maintenance (33). Recent studies have explained the role of this
TGF-b-Smad signaling in regulating Foxp3 expression. Both
Smad2 and Smad3 are redundantly essential in regulating
Foxp3 expression, demonstrated by double knockout mouse
April 2021 | Volume 12 | Article 626172
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models (117). In addition, Smad2/3 binds to the Foxp3 locus in
a temporal and spatial order. In brief, it first binds to the
enhancer region of CNS1 and then dissociates from it in order
to bind to the promoter binding element, which is about −85 bp
upstream of the transcription start site (105, 118). Overall,
Foxp3 is regulated by many important factors at the
transcriptional level.
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Modification of Foxp3 Expression and
Function at Post-Translational Level
Post-translational modification (PTM) refers to enzymatic
processes that alter a protein after its synthesis. These
modifications will influence the characteristics of the protein,
including its localization, interaction, turnover, etc. Given the
importance of this factor and the T cell lineage it defines, Foxp3
A B C

FIGURE 1 | Protein domains, binding partners, and post-translational modification sites of Foxp3. (A) The relative structure of Foxp3 protein is shown in scales on
the left. Four main domains are marked in different colors, namely repressor domain, zinc-finger (ZF) domain, leucine zipper (LZ) domain, and Fork-head (FHD)
domain. (B) Main binding partners of Foxp3 are shown in the figure. Those with known binding sites are shown in their relative positions; those with unknown
binding sites are listed in “unknown binding site”. (C) For post-translational modifications (PTM) of Foxp3, the sites that are discussed in this review are listed in
amino acid order. Besides, the species that are examined, the type of PTM, the modifier protein, and the role in regulating Foxp3 function are listed. Note that only
those well-characterized sites are listed. Potential or uncertain sites are not included.
April 2021 | Volume 12 | Article 626172
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is, not surprisingly, tightly regulated by a number of mechanisms
involving post-translational modifications. In this section, we
will review some recent findings on post-translational
modifications of Foxp3 (Figure 1C) and their roles in
maintaining Foxp3 function and plasticity (Figure 2).

Phosphorylation and Dephosphorylation
Phosphorylation is a mechanism by which a protein kinase
attaches a covalently bound phosphate group to the serine (S),
threonine (T), or tyrosine (Y) residue of a protein. It is a
reversible process as the protein can be dephosphorylated by
phosphatases. These two modifications are important for protein
function and stability. For Foxp3, more than 15 sites have been
documented to be targets of phosphorylation. Among these,
kinases CDK2, PIM1, and PIM2 negatively regulate Foxp3
functions; kinase NLK and phosphatase PP1 positively regulate
Foxp3 function (119) (Figure 2A).

CDK2, PIM1, and PIM2 suppress Foxp3 function through
different mechanisms. CDK2 is known to reduce Foxp3 stability.
Along with cyclin E, CDK2 binds to four cyclin-dependent
kinase motifs within the N-terminal domain of Foxp3 and
causes phosphorylation of at least Ser-19 and Thr-175 (120).
Such phosphorylation events lead to reduced Foxp3 protein
stability and reduced Treg suppressive function (121).
Intriguingly, PIM1 does not reduce Foxp3 stability but affects
its DNA binding activity. Under inflammatory conditions, PIM1
phosphorylates Foxp3 at Ser-422 directly, which is located at the
C-terminal region of the Fork-head domain (FHD) (122). Since
the Fork-head domain is important for DNA binding,
phosphorylated Ser-422 leads to reduced DNA binding.
Likewise, PIM2 does not reduce Foxp3 stability but may affect
its protein binding activity with other cofactors. PIM2
phosphorylates the N-terminal region of Foxp3, including at
least Ser-33 and Ser-41 (123). These regions are important for
binding with other cofactors like Eos, TIP60, and HDAC7, so
phosphorylation at these sites may affect their binding activities
(123, 124).

NLK and PP1 promote Foxp3 function through different
mechanisms. NLK improves Foxp3 stability by preventing
ubiquitin-dependent protein degradation of Foxp3. Upon TCR
stimulation, TAK1–NLK signaling is activated (125). Then, NLK
phosphorylates Foxp3 at seven distinct sites: Ser-19, Ser-156, Ser-
189, Ser-273, Ser-278, Ser-295, and Thr-341 (126). Such
phosphorylation prevents its interaction with STUB1, an E3
ligase that induces K-48 polyubiquitination of Foxp3 (126). As
for PP1, it protects Foxp3 function by improving DNA binding.
Under inflammatory states, TNF-a induces an unknown kinase
that phosphorylates Foxp3 at Ser-418 (127). Since Ser-418
resides in the Forkhead domain (FHD) and is critical for IL-2
regulation, dephosphorylation at Ser-418 by PP1 protects the
suppressive activity of Foxp3 (127).

Acetylation and Deacetylation
Acetylation is both a co-translational and a post-translational
modification procuress that introduces an acetyl group into a
protein by histone acetyltransferases (HTAs). This process can
Frontiers in Immunology | www.frontiersin.org 5
be reversed by histone deacetylases (HDACs). In regulatory T
cells, acetylation and deacetylation of Foxp3 protein are mostly
regulated by three HATs and nine HDACs with certain
redundancy (128) (Figure 2B).

TIP60, p300, and CBP are the three HATs that regulate Foxp3
acetylation. Among these, CBP is a paralog of p300 and they
perform critical but relatively redundant functions on Foxp3,
based on double knockout experiments (129). Experiments have
shown that p300 acetylates Foxp3 at multiples sites, including at
least Lys-31, Lys-262, and Lys-267. These sites are critical for
Foxp3 stability as they are also sites served for ubiquitin-
dependent protein degradation (130). TIP60 regulates Foxp3
acetylation through multiple mechanisms. Firstly, it can form a
binding complex with HDAC7 to promote Foxp3 acetylation
and target the 106–190 aa repressor domain near the N-terminal
region of Foxp3, which is important for IL-2 repression (131).
Additionally, it can work cooperatively with p300 to enhance
Foxp3 acetylation. It has been shown that p300 can facilitate the
autoacetylation of TIP60 at Lys-327, allowing TIP60 to change
binding partners to further enhance Foxp3 acetylation (132).
Together, optimized Foxp3 acetylation shall be achieved in the
presence of both TIP60 and p300 (for example, at Lys-179 and
Lys-227) (133). Experiments have shown that losing either one of
them leads to weak Foxp3 acetylation (132).

Besides direct acetylation by TIP60, p300, and CBP, it has
been shown that Foxp3 structure can influence its interaction
with HATs and vice versa. A recent study has shown that
p.A384T FKH mutation on Foxp3 can disrupt the interaction
between Foxp3 and TIP60, impairing the development and
suppressive function of Treg cells (134). On the other hand,
acetylation of Lys-250 and Lys-252 on Foxp3 by p300 leads to
dimer relaxation and downregulates the suppressive function of
Foxp3 (135). What is more, TGFb induced Foxp3 acetylation
and DNA binding are regulated by unknown mechanisms at Lys-
383 and Lys-393 (136, 137). Taken together, these demonstrate
the importance of protein acetylation on Foxp3.

HDACs from five different subfamilies are involved in Foxp3
deacetylation, including HDAC1, 2, 3 from Class I, HDAC6, 7, 9
from Class IIA, HDAC10 from Class IIB, SIRT1 from Class III,
and HDAC11 from Class IV. Among these, Class I HDACs are
ubiquitously expressed by all cells. Experiments have shown that
HDAC1 and HDAC2 bind to the N-terminal region of Foxp3
and counteract the hyper-acetylation of inflammation-related
genes (69). HDAC3 interacts with SMRT/NCoR to form a
functional complex in Treg cells. It associates with Foxp3 for
optimal suppressive function, including suppressing IL-2
production (138). Class IIa HDACs have a restricted tissue
distribution and they are expressed in lymphocytes. Upon
inflammatory conditions, HDAC6 deacetylates both Foxp3 and
HSP90, preventing them from forming a complex (139). The
direct role of HDAC6 in regulating Foxp3 protein interaction
and function is yet unclear, but recent experiments have shown
that deacetylation of HSP90 affects many client proteins,
including HSF1. Additionally, deletion of HDAC6 in Treg cells
would increase the expression of many Treg-associated genes,
including IL-10, Lag3, STAT3, and decrease IL-2, which
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A B

C D

E F

FIGURE 2 | Post-translational modifications (PTM) of Foxp3. Foxp3 can be post-transcriptionally modified by a variety of regulators. Brief illustrations are shown here
to outline their basic mechanisms. (A) Phosphorylation (CDK2, PIM1, PIM2, NLK) and dephosphorylation (PP1) of Foxp3. (B) Acetylation (p300 and TIP60) and
deacetylation (HDAC1, 2, 3, 6, 7, 9, 10, 11, and SIRT1) of Foxp3. (C) Methylation (PRMT1 and PRMT5) of Foxp3. (D) Glycosylation (OGT) of Foxp3.
(E) Ubiquitination (RNF31, Stub1, and TRAF6) and deubiquitination (USP7, 21, 22, and 44) of Foxp3. (F) Other modifications, including peptides (Foxp3 393–403
peptide and P60) that regulate Foxp3 and SUMOlyation (UBC9) that is regulated by PTM modified Foxp3.
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significantly improves Treg stability and suppressive function
(139, 140). Besides the role of forming functional complex with
TIP60 and Foxp3 (131), the HDAC7 complex is also associated
with the repression of Nur77, which regulates the balance
between Teff and Treg cells and the stability of Treg cells
(141). Despite the direct role of deacetylating Foxp3, upon
TCR-induced cell signaling, HDAC9 dissociates from
Foxp3 and disrupts the acetylation of STAT5, which negatively
regulates Foxp3 function (131, 136, 142). As a Class IIB HDAC,
HDAC10 also interacts with Foxp3 directly and reduces the
suppressive function of Foxp3. In vitro experiments show that
HDAC10 promotes the deacetylation of Foxp3 at Lys-31.
However, the detailed mechanism remains elusive (143).
Different from the other HDACs, SIRT1 is NAD-dependent,
and it inhibits the autoacetylation of TIP60, which negatively
regulates the acetylation of Foxp3 (144, 145). Lastly, as the only
member of Class IV Zn2+-dependent HDAC, HDAC11 co-
associates with Foxp3 in the nucleus and promotes p300-
dependent deacetylation of Foxp3. Besides, it has been
reported to regulate the suppressive function of Foxp3 in vitro
through a TGF-b-dependent mechanism by regulating the
expression of Treg-associated genes (146).

Methylation
Protein methylation is a common type of post-transcriptional
modification that adds methyl groups to a protein, commonly on
arginine and lysine residues (147). Recent studies have reported
that two arginine methyltransferase (PRMT) family members,
PRMT1 and PRMT5, are critical for Foxp3 protein methylation
(119) (Figure 2C).

In detail, PRMT1 leads to asymmetrical dimethylarginines on
Arg-48 and Arg-51 of Foxp3 (148). Inhibiting the methylation of
these two sites simultaneously leads to reduced suppressive
function of Treg cells and increased Th1-associated gene
expression profiles in Foxp3+ T cells (148). Using MS023 [a
type 1 protein arginine methyltransferase (PRMT) inhibitor]-
treated WT Foxp3+ T cells and Foxp3 R48/51A-transduced T
cells, these authors suggested that repressing the Th1 phenotype
through an AKT-dependent signaling abrogates the effect of
arginine methylation inhibition on the suppressive activity of
Foxp3+ T cells (148). Interestingly, another study showed that
PRMT1 is also important for differentiation of Th17 cells by
associating with RORgt and regulating the reciprocal recruitment
of STAT3 and STAT5. These authors showed that
overexpression of PRMT1 promotes Th17 differentiation and
inhibition of PRMT1 expands Foxp3+ Treg cells population
(149). Taken together, these two studies reveal the role of
PRMT1 in regulating Foxp3 function and Treg plasticity.

Likewise, PRMT5 catalyzes symmetric dimethylarginines on
Arg-27, Arg-51 and Arg-146 of Foxp3 (150), which are
confirmed using point mutation experiment and mass
spectrometry. Among these, methylation on Arg-51 is critical
for the suppressive function of Foxp3. Conditionally knocking
out PRMT5 in mouse Foxp3+ cells lead to reduced numbers of
Treg cells in the spleen but not in peripheral lymph nodes (150).
In addition, silencing PRMT5 in these Foxp3+ cells resulted in
limited suppressive function, demonstrating the importance of
Frontiers in Immunology | www.frontiersin.org 7
PRMT5 in maintaining Treg functions. Additionally, human
CD4+T cells transfected with Foxp3 R51K, a mutant lacking di-
methylation site modified by PRMT5 showed reduced
suppressive functions compared to those with vector encoding
wild type Foxp3 (150). A more recent study demonstrated that
PRMT5 is not required for thymic development of T cells before
the double positive (DP) stage (151). However, the factor is
critical for peripheral T cell survival, naïve to effector/memory
transition, and TCR-induced proliferation. One of the potential
mechanisms responsible for these observations involves RPMT5
regulation of the expression of the common gamma chain
(CD132) of IL-2 receptor (151). Besides, PRMT5 modulates
Th17 differentiation via the methylation of SREBP1, which
regulates cholesterol biosynthesis (152). Taken together, both
PRMT5 and PRMT1 are critical in regulating Foxp3 function
and plasticity.

Glycosylation
Glycosylation is a form of co-translational and post-translational
modifications that attaches glycans to proteins (153). As a rising
field in biological studies, protein glycosylation has shown
important effects on T cell development, activation, and
differentiation (153). Some studies have shown that the surface
glycosylation patterns of regulatory T and conventional T cells
are very different (154, 155). Interestingly, surface levels of tri/
tetra-antennary N-glycans on Treg cells correlates with the
expression level of suppressive ligands, including GITR, PD-1,
PD-L1, CD73, CTLA-4, and ICOS. Further experiments have
suggested a positive correlation between glycosylation and the
suppressive activity of Treg cells (154).

Recently, it has been shown that Foxp3 can be modified by
TCR-activated O-linked N-Acetylglucosamine (O-GlcNAc) at
multiple sites, including Thr-38, Ser-57, Ser-58, Ser-270, and Ser-
273 (156). Using Treg cells from inducible O-GlcNAc transferase
(OGT) knockout mice (Ubc-Cre/ERT2+Ogtfl/Y), these authors
showed that loss of O-GlcNAcylation destabilizes Foxp3 protein
in Treg cells ex vivo. Furthermore, using liquid chromatography
with tandem mass spectrometry (LC-MS/MS) through electron
transfer dissociation (ETD), these authors further found the
above O-GcNAc sites using HEK293 cells expressing Foxp3.
Although O-GlcNAc-deficient Treg cells develop normally in
mice (Foxp3YFP-Cre/YOgtfl/Y), their Foxp3 expression level is
moderately decreased and their suppressive function is
significantly impacted partially due to attenuated IL-2/STAT5
and Notch signaling (156, 157). Besides the role of O-GlcNAc on
Foxp3, it also affects the activation and function of c-Rel, which is
a critical NFkB subunit that regulates Foxp3 transcription (158,
159) (Figure 2D).

Ubiquitination and Deubiquitination
Ubiquitination is a type of post-translational modification that
attaches ubiquitin molecules to the target protein (160). It is an
ATP-dependent regulation that involves three adapter proteins,
namely E1 (ubiquitin-activating enzyme), E2 (ubiquitin-
conjugating enzyme), and E3 (ubiquitin ligase). The substrate
protein can be either monoubiquitinated or polyubiquitinated.
While monoubiquitination normally involves cell signaling and
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membrane trafficking, polyubiquitination involves many
different functions. Among the eight different types of
polyubiquitination (K6, K11, K27, K29, K33, K48, K63, and
M1), K48 polyubiquitination leads to proteasome-dependent
protein degradation and K63 polyubiquitination involves cell
signaling (161). Ubiquitination is a reversible process and it can
be reversed by deubiquitinases (DUB), which remove ubiquitin
tags from the substrate protein (162).

In Treg cells, RNF31, Stub1, and TRAF6 are the three E3
ligases that directly ubiquitinate Foxp3 (Figure 2E).
Interestingly, they mediate different types of ubiquitination
that lead to different functions. For example, RNF31 leads to
monoubiquitination on Foxp3. In brief, RNF31 is a RING-type
E3 ligase of LUBAC (linear ubiquitin chain assembly complex)
(163). It is auto-inhibited before binding with the other two
proteins of LUBAC, namely HOIL-1, and SHARPIN (164, 165).
The complex regulates linear polyubiquitination and is
important for multiple immune pathways, including TCR,
BCR, NOD, TLR, and TNFR signaling pathways (166–172). In
Treg cells, RNF31 not only regulates TCR signaling but also
regulates multiple monoubiquitinations on Foxp3, including
Lys-31, Lys-200, Lys-250, Lys-263, Lys-268, Lys-382, Lys-393,
and Lys-416 (173). These atypical ubiquitin chains lead to
improved Foxp3 protein level and enhanced suppressive
functions (173, 174).

Unlike RNF31, which mediates monoubiquitination, Stub1
and TRAF6 regulate polyubiquitination on Foxp3. Stub1 is a U-
box type E3 ligase that interacts with HSP70 (175). When
challenged with stress signals like LPS and proinflammatory
cytokines, Stub1 mediates K48 polyubiquitination on Foxp3 at
multiple sites, including at least Lys-227, Lys-250, Lys-263, and
Lys-268 (176). Such ubiquitination leads to proteasome-
dependent Foxp3 degradation and thus reduced suppressive
ac t i v i t y (176) . Add i t i ona l l y , S tub1 leads to K27
polyubiquitination on CARMA1 at Lys-689 and Lys-696,
which facilitates the activation of the NFkB pathway (177).
Distinct from the action of Stub1, which leads to Foxp3
degradation, TRAF6 regulates Foxp3 localization. TRAF6 is a
RING-type E3 ligase that mediates inflammation-related signals,
including IL1R, TLR, and TNFR superfamily signaling (178).
Studies from our group have shown that TRAF6 mediates K63
polyubiquitination on Foxp3 at Lys-262, which does not interfere
with other K48 polyubiquitination (179). The mechanism behind
this is that TRAF6 regulates the nuclear transport of Foxp3 as
deficiency of TRAF6 leads to aberrant accumulation of Foxp3 in
the cytoplasm (our unpublished data). Together, these studies
illustrate the importance and versatility of E3 ligases in
regulating Foxp3 stability and function.

As the Janus side of ubiquitination, deubiquitination also
plays important roles in regulating Foxp3 function and plasticity.
Among nearly 100 DUBs reported so far (162), USP7, USP21,
USP22, and USP44 have shown direct interaction with Foxp3
(Figure 2E). USP7 preserves Foxp3 homeostasis by removing
K48-type polyubiquitination tags at Lys-249, Lys-251, Lys-263,
Lys-267, and Lys-393 (180). Thus, USP7 prevents Foxp3 from
ubiquitin-dependent protein degradation and enhances the
Frontiers in Immunology | www.frontiersin.org 8
interaction between Foxp3 and TIP60, which preserves its
expression level (180, 181). Similarly, USP21 prevents Foxp3
degradation by deubiquitinating K48-type modifications at
residues Lys-206, Lys-216, Lys-227, Lys-252, Lys-277, Lys-332,
and Lys-393 (182). The action of USP21 also appears to play a
role in a feedback loop with Foxp3 (183, 184). Upon TCR
stimulation, Foxp3 activates the transcription of the Usp21
gene. Then, USP21 prevents Foxp3 degradation, which further
enhances the transcription of Usp21 and suppresses Th1-like
phenotypes (182, 183). Likewise, USP22 interacts with Foxp3
and prevents its degradation (90). Recently, a study from our
group showed that USP44 also interacts with Foxp3 and prevents
its degradation by deubiquitinating K48-type polyubiquitin
chains on Foxp3 (185]. During iTreg differentiation, TGF-b
signaling induces USP44 upregulation. Then, USP44
cooperates with USP7 to stabilize and deubiquitinate Foxp3
(185). Together, these DUBs play important roles in
maintaining Foxp3 homeostasis and show great therapeutic
potentials as drug targets.
Others
Besides the natural post-translational modifications reviewed
above, Foxp3 binding peptides may function as artificial PTMs
and are worth discussing. These binding peptides can be either
pieces of the Foxp3 amino acid sequence competing for the
binding partners and co-factors of Foxp3, or random peptides
that block critical Foxp3 functions. So far, two peptides have
been carefully studied regarding their roles in regulating Foxp3
functions. First, Foxp3 393–403 peptide can interact with the
RHR domain of NFAT1, disrupting of the Foxp3/NFAT1
interaction—a molecular pairing that is thought to regulate
Treg-associated genes. Such inhibition reduces Treg
suppression and may be useful for tumor immunotherapies
(186). Another 15-mer peptide, named P60, originates from a
phage-display peptide screening. P60 can enter the cell, inhibit
Foxp3 nuclear transportation, and impedes Foxp3 dimerization
and Foxp3/AML1 interaction (186, 187) (Figure 2F). These
findings suggest good therapeutic potential of artificial post-
translational modifications of Foxp3.

In addition to post-translational regulations of Foxp3,
modified Foxp3 can play a critical role in regulating other
PTMs, for example, SUMOylation. Similar to ubiquitination,
SUMOylation tags small ubiquitin-like modifiers (SUMO) to the
substrate for multiple functions, including cell signaling and
protein turnover (188). As the only E2 conjugating enzyme
involved in SUMOylation, UBC9 has been reported recently to
play a critical role in maintaining Treg suppression by enhancing
IRF4 SUMOylation. Such SUMOylation would prevent IRF4
from proteasome degradation (189, 190). As a transcriptional
activator of UBC9, Foxp3 binds to the UBC9 promoter and
regulates its activation. Furthermore, de-acetylation/
ubiquitination at Lys-263 and dephosphorylation at Tyr-342 of
Foxp3 would severely impede UBC9 transcription (189),
suggesting an important role of Foxp3 PTM in regulating
Foxp3 functions (Figure 2F).
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TREG CELLS IN CLINICAL APPLICATIONS

As a rising field in its own right, the therapeutic use and
modulation of Treg cells can have major clinical applications
in the treatment of autoimmune diseases, transplantation,
cancer, as well as colitis and other inflammatory diseases. So
far, 1,010 clinical trials involving Treg cells have been
documented at the NIH. In addition, hundreds of small
molecules drugs, antibodies, and other nanoparticles have been
designed to target Treg cells directly or indirectly, indicating the
broad range of potential applications involving Treg cells (191).
In this section, we will review some of the most recent advances
in the clinical manipulation of Tregs and provide some potential
therapeutic drugs that may worth further investigations.

Autoimmune Diseases
In brief, autoimmune diseases occur when the immune system
mistakenly targets self. Some common autoimmune diseases
include Lupus, Celiac disease, Sjogren’s syndrome, Multiple
sclerosis, Polymyalgia rheumatica, Type 1 diabetes (T1D), and
rheumatoid arthritis (RA) (192). Of note, deficiency or
dysfunction of Treg cells is considered to be the leading cause
of these diseases. For example, patients suffered from IPEX
syndrome have FOXP3 mutations that leads to a reduction of
the number of Foxp3+ Treg cells (10); many RA patients have
relatively normal number of Treg cells, but a lot of them show
impaired suppression of self-antigens (193).

To resolve these issues, many clinical trials are focusing on
augmenting functionally suppressive Treg cells for these patients.
One way is to select polyclonal autologous T cells, expand iTreg
cells ex vivo, and then infuse them back to patients. Many trials
have been performed using this approach to treat patients with
T1D and lupus, including, NCT02772679, NCT02932826,
NCT02704338, and NCT02428309 (194).

Transplantation
Despite established surgical techniques of organ transplantation,
long-term tolerance to an allogeneic organ is still challenging.
One current approach to prevent graft vs host disease (GvHD) is
to use immunosuppressants to down-regulate normal immune
functions, including using anti-proliferative agents, steroids,
mTOR inhibitors, and Calcineurin inhibitors (195). However,
systemic immunosuppression can lead to many side effects,
making patients susceptible to infectious diseases and
cancer (196).

For these reasons, chimeric antigen receptor Treg (CAR-
Treg) therapy attracts a lot of attentions (197, 198). Since
MHC I is critical for immune tolerance and HLA-A2 is highly
prevalent in white human donors (199, 200), HLA-A2-specific
CAR-Treg (A2-CAR-Treg) was generated and examined in
mouse models. Surprisingly, in a skin allograft model,
NOD.Rag1null.IL2rgnull (NRG) mice receiving A2-CAR-Treg
cells showed much stronger tolerance induction than those
receiving polyclonal nTreg or controls (201). Therefore,
antigen-specific Treg therapy cells hold a promising future for
patients that require transplantation.
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Cancer
While important for maintaining immune homeostasis, Treg
cells are known to play a pathological role in cancer patients by
impeding desirable anti-tumor immunity (202). They readily
accumulate within tumors and suppress the activity of tumor-
reactive cytotoxic immune cells, leading to uncontrolled
expansion and migration of malignant cells (203). Therefore,
strategies to deplete or inhibit intratumoral Treg cells are being
pursued to improve the therapeutic outcome.

As a proven weapon in the anti-cancer arsenal, checkpoint
inhibitor immunotherapies are being used to maintain and boost
the function of cytotoxic T cells (204). From the clinical
perspective, blocking antibodies, including ipilimumab (anti-
CTLA-4), nivolumab (anti-PD-1), and pembrolizumab (anti-
PD-1) have been widely approved to treat many types of
cancers (205). Since the ligands of these checkpoints, including
PD-1, CTLA-4, are expressed by Treg cells at high levels (206,
207), blocking these checkpoints are also expected to regulate the
plasticity of suppressive function of Treg cells (23, 208–210). So
far, many theories have been proposed to explain the therapeutic
effects of checkpoint inhibitors on Tregs, and they offer
explanations for the distinct effects of checkpoint inhibitors on
Treg cells and non-Treg cells. First, the anti-CTLA-4 antibody
blocks Treg cells from downregulating the B7 ligands on APCs,
which leads to reduced CD28 co-stimulation (211, 212). It also
prevents the co-inhibitory CTLA-4: B7 binding on Tconv cells,
which promotes the activation of Tconv cells (213, 214). Second,
the anti-PD-1 antibody prevents the conversion of TBET+ Th1
cells into Foxp3+ Treg cells in vivo (215). Additionally, it
prevents the PD-1: PD-L1 binding between tumor-infiltrating
lymphocytes and tumor cells, which restores the antitumor
immunity (23, 216, 217).

Drugs specifically targeting Foxp3 PTM also represent high
potential strategies for combating immune suppression in cancer
as they are not likely to affect the function of Tconv cells and
CTLs. As reviewed in the post-translational modification
sections, preventing the acetylation, DNA binding, or
dimerization of Foxp3 are potentially useful approaches to
suppress Treg cells. Thus, preclinical studies using USP7
inhibitors (181), p300 inhibitors (218), P60 peptide (187),
PMRT5 inhibitors (150), and PROTACs (219) may
be promising.
Colitis and Other Inflammation
Associated Diseases
We are challenged by a variety of potential pathogens at all times,
including bacteria, viruses, and fungi (220). To maintain tissue
homeostasis, Treg cells play an important role in developing T
cell memory and prevention of reinfection, especially in
gastrointestinal and respiratory systems (221). Impaired Treg
function or plasticity can lead to chronic inflammation (222). For
example, dysfunctional Treg cells can underlie the development
of inflammatory bowel disease (IBD) that can also leads to
colitis-associated colon carcinoma (CA-CRC) in the long
run (222).
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Some factors are known to restrict Treg functions, including
chronic exposure to inflammatory cytokines and deprivation of
stabilizing factors. Chronic exposure of Tregs to pro-
inflammatory cytokines like IL-1b, IL-6, TNFa, which can
antagonize Foxp3 expression and skews the gene expression
profile to that of Th17 or Th1 (223–225). Reduced levels of IL-
2 and TGFb (116, 226), on the other hand, can adversely affect
the survival of Treg cells. Therefore, besides anti-inflammatory
drugs which relieve colitis symptoms (227), drugs stabilizing and
enhancing Foxp3 function may also be useful, such as HADC6
and HADC9 inhibitors (228).
SUMMARY AND FUTURE PERSPECTIVE

After decades of intensive studies, our knowledge of Treg cells
has improved significantly. With increasing regulatory
mechanisms of Foxp3 being brought to light, the potential of
manipulating Foxp3 at the post-translational level has increased
dramatically. At this stage, we believe two aspects will be
important for future drug discovery: first, an in vivo, high-
throughput target screening assay for agents capable of
disrupting the posttranslational means of supporting Foxp3
expression and function and the stronger suppressive potency
of Treg cells, and second, a high-throughput and cost-efficient
pre-clinical drug examination platform for Treg-based therapies.
While the former requires more accurate and efficient CRISPR-
based gene-editing techniques to be applied to Treg cells, the
latter aspect will benefit from new screening systems. On the one
hand, murine disease models are still very different from human
cases due to evolutionary heterogeneities (229). On the other
hand, macaque models are very expensive, time-consuming, and
less quantitative due to the limited sample size (230). Besides, a
lot of ethical regulations limited the use of primates (231),
making it difficult for high-throughput experiments. In this
case, using organoids and microfluidic techniques may be a
compromise. Since organoids are derived from human stem
cells, they can mimic certain functions of human organs ex
vivo (232). Moreover, microfluidic devices can provide 3D
structures for immune cells, bacteria, viruses, and organoids to
contact with each other, which may represent in situ interactions
(233). Thus, 3D ex vivo culture systems showed great promise in
drug development.
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Another equally important issue is how to improve Treg-
specific targeting. Currently, most strategies targeting Treg cells
use monoclonal antibodies or ligand-directed toxins to deplete
Treg cells systemically or locally (234). However, such strategies do
not fit all disease conditions, especially autoimmune diseases and
other inflammation-associated diseases. Like other cell-type-
specific drugs, a biochemistry-based, bioinformatics-guided
designing platform is needed to achieve Treg-specific targeting.
To do so, the effective first step is to prevent targeting the isoforms
of the target protein. For example, treatment of a class I/II HDAC
inhibitor, Trichostain A (TSA), increased the percentage of Treg
cells and their suppressive activities (136). A later experiment
shows that the main effects were caused by inhibiting the class IIb
HDACs (e.g., tubastatin A) (228). Since both HDAC6 and
HDAC10 belongs to class IIb HDAC and HDAC6 has been
demonstrated to play more important roles in Treg functions in
vivo (235), a specific inhibitor for HDAC6 may provide the
optimum therapeutic outcome in the future. Another important
way to achieve Treg specificity is to target proteins with relatively
unique functions and pathways. In this regard, E3 ligases would be
excellent candidates since there are nearly 500–1,000 of them in
human andmany of them have unique functions in specific tissues
or cell types (236). Moreover, it is tempting to use nanoparticles to
achieve Treg specificity. Many recent studies have used specifically
designed particles as carriers to present antigens or deliver drugs to
Treg cells (237–240), which suggests that small-molecule
inhibitors against PTM enzymes can also be used for future
drug designs. Above all, we believe strongly that investigating
post-translational modifications of Foxp3 will reveal more
therapeutic potentials in the future and new techniques will
facilitate the drug discovery.
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