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Previous research suggests that learning to categorize
faces along a novel dimension changes the perceptual
representation of such dimension, increasing its
discriminability, its invariance, and the information used
to identify faces varying along the dimension. A
common interpretation of these results is that
categorization training promotes the creation of novel
dimensions, rather than simply the enhancement of
already existing representations. Here, we trained a
group of participants to categorize faces that varied
along two morphing dimensions, one of them relevant
to the categorization task and the other irrelevant to the
task. An untrained group did not receive such
categorization training. In three experiments, we used
face adaptation aftereffects to explore how
categorization training changes the encoding of face
identities at the extremes of the category-relevant
dimension and whether such training produces encoding
of the category-relevant dimension as a preferred
direction in face space. The pattern of results suggests
that categorization training enhances the already
existing norm-based coding of face identity, rather than
creating novel category-relevant representations. We
formalized this conclusion in a model that explains the
most important results in our experiments and serves as
a working hypothesis for future work in this area.

Introduction

Previous research suggests that learning to categorize
faces and other objects along a novel dimension changes
the perceptual representation of the category-relevant
dimension (Goldstone & Steyvers, 2001; Soto &
Ashby, 2015; Soto, 2019; see also Folstein et al., 2012,
2014). Such studies have created a novel dimension
by morphing two different unfamiliar “parent” faces
in several steps to obtain a morphed face dimension.

As shown in Figure 1, two of such dimensions can be
created, and combinations of several levels of both
dimensions result in faces that vary in combinations
of four parent faces. Such face dimensions are known
to be integral (Soto & Ashby, 2015), meaning that
the combined faces are perceived as unique identities
rather than solely varying along two dimensions. Faces
created using such a morph space can be presented in a
categorization task, represented by the green boundary
in Figure 1, which divides members of one category
(e.g., those more similar to Parent A) from members of
a second category (e.g., those more similar to Parent B).
In their seminal work, Goldstone and Steyvers (2001)
showed that training in such a categorization task
produces dimension differentiation, meaning that the
category-relevant and category-irrelevant dimensions
lose their integrality and instead become represented
as special directions in the morphed space (see also
Folstein et al., 2012; Soto & Ashby, 2015).

A wealth of evidence demonstrates that dimension
differentiation produces changes in the perceptual
representation of the stimuli involved (for recent
reviews, see Goldstone &Hendrickson, 2010; Goldstone
et al., 2008). Stimulus components that are relevant
for category discrimination become more distinctive,
in what has been termed as “acquired distinctiveness.”
Acquired distinctiveness is observed as an increase in
discriminability along the category-relevant dimension
after categorization training, in perceptual tasks that
do not require categorization (Folstein et al., 2012,
2013, 2014; Goldstone & Steyvers, 2001; Van Gulick
& Gauthier, 2014). In contrast, stimulus components
that are irrelevant for category discrimination
become less distinctive, in what has been termed
“acquired equivalence.” Acquired equivalence is
observed as a decrease in discriminability along the
category-irrelevant dimension after categorization
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Figure 1. A two-dimensional face morph space. The space is
created by first morphing two pairs of parent faces in several
steps (Parents A and B; Parents C and D) and then obtaining all
possible combinations of the two morphed dimensions. The
space can be used to train participants in a categorization task,
represented by the green boundary, in which faces to one side
of the boundary are assigned to one category and faces on the
other side of the boundary are assigned to another category.

training. Relatedly, categorization training increases
the separability or invariance of the category-relevant
dimension (Soto & Ashby, 2015), which means that
changes in an irrelevant dimension do not interfere
with perception of the category-relevant dimension,
according to a variety of tests from multidimensional
signal detection theory (Ashby & Soto, 2015; Soto et al.,
2017).

Recently, it has been found that the changes of the
perceptual representation of faces varying along a novel
identity dimension can be explained by changes in the
internal template used for face identification (Soto,
2019). By using reverse correlation to estimate internal
templates, this study determined that categorization
training altered the internal templates used for face
identification despite the fact that identification and
categorization tasks impose different demands on the
visual system (Schyns et al., 2002). After categorization
training, internal templates became more invariant
across changes in the irrelevant dimension, which
relates to the previously found increase in perceptual
separability (Soto & Ashby, 2015). The changes

produced to an individual’s internal template as a
result of category learning further suggests that the
representation of facial identity can be modified by
categorization training.

A common interpretation of this body of research
is that categorization training results in the creation
of novel features and dimensions that are useful for
performance in the categorization task but become
stable representations available for use in other tasks as
well (Goldstone & Steyvers, 2001; Folstein et al., 2013,
2015; Schyns et al., 1998). For example, Goldstone and
Steyvers (2001) interpreted their results as indicating the
existence of a mechanism “by which dimensions that
are originally psychologically fused together become
separated” (p. 117). They explicitly distinguished such
mechanism from attentional weighting of dimensions,
indicating that dimension differentiation would precede
selective attention for stimuli that are not initially
perceived as composed of separable dimensions. This
was taken as supporting the view that the features
and dimensions used by categorization and object
recognition are not fixed but sometimes created de novo
during learning (Schyns et al., 1998). In more recent
studies (Folstein et al., 2012; Soto & Ashby, 2019,
2015), researchers have aligned with this interpretation
of dimension differentiation as resulting from the
development of a novel dimensional structure in the
stimuli. Here, we will call this the dimension creation
hypothesis. An important piece of evidence in favor
of it is that the directions in stimulus space that
become perceptually differentiated after categorization
can be arbitrarily chosen by the experimenter
(Goldstone & Steyvers, 2001; Folstein et al., 2012).
Dimension creation would also explain why the effects
of categorization training can be measured using
orthogonal tasks, both through psychophysics (e.g.,
Goldstone & Steyvers, 2001; Folstein et al., 2012; Soto
& Ashby, 2015; Soto et al., 2017) and neuroimaging
(Brants et al., 2016; Folstein et al., 2013), and why, in
the latter case, effects are observed in high-level visual
cortex. An alternative interpretation, which has received
less attention in the literature, is that categorization
training produces alterations in already existing visual
representations, simply enhancing the prelearning
selectivity of populations of neurons that happened to
provide useful information for the categorization task
(Brants et al., 2016). Here, we will call this the dimension
enhancement hypothesis. From this point of view, the
known integrality of morphed dimensions (Goldstone
& Steyvers, 2001; Blunden et al., 2015; Soto & Ashby,
2015) would be only apparent, perhaps produced by the
fact that stimuli such as faces can be described in a very
high-dimensional space, with only a few dimensions
aligning with the structure of a categorization task.

The most accepted theory of how faces are encoded
by the visual system proposes that a face is represented
as a point in a multidimensional space, or face-space,
with distances between faces representing their
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Figure 2. Representation of a number of face identities in face
space. The global average face serves as a point of reference for
encoding of all other identities. In norm-based coding, face
information is encoded by an opponent system, with two
neural populations or channels tuned to opposite extremes
from the prototype. Thus, if there is a population of neurons
tuned to “Adam,” then there is an equivalent but opposite
population of neurons tuned to “anti-Adam.” Morphing
between two parent faces, such as Adam and Leo, is used to
create a morphed face dimension (red line), and an important
open question is whether training in a categorization task in
which that dimension differentiates the two categories
produces a new code, sensitive to changes along that specific
direction of face space.

perceptual discriminability (for a recent review, see
Valentine et al., 2016). Encoding of face identity within
this space has been proposed to be norm-based, a code
in which individual faces are represented by how they
deviate from an average or prototype face (Webster &
MacLeod, 2011). Figure 2 shows a sketch of how faces
would be represented in face space. Here, the global
average face serves as the origin of the space, with
identities such as “Adam” and “Leo” being represented
with respect to that origin. While the specifics of how
face norms are encoded are still debated (e.g., Ross
et al., 2013), there is consensus among researchers
that there is a special role for the average (encoded
implicitly or explicitly) in face encoding. Norm-based
coding can be implemented by an opponent system
in which information about a particular identity is
represented by two neural populations or channels

tuned to opposite extremes from the prototype. Thus,
if there is a population of neurons tuned to “Adam”
in Figure 2, then there is an equivalent but opposite
population of neurons tuned to “anti-Adam.”

One technique that is often used to study face
encoding using psychophysics is face adaptation.
Adaptation temporarily alters the sensitivity of
the visual system to a stimulus feature in response
to exposure to it, generating perceptual aftereffects
(Rhodes, 2017;Webster, 2015). Adaptation is commonly
used as a tool to directly measure the way faces are
encoded by the visual system, as it is considered a way
to desensitize the contribution of a specific visual neural
population to a discrimination task. This is a reasonable
assumption, although the neural mechanisms of
adaptation go beyond simple response suppression
(Kohn, 2007).

Norm-based encoding is supported by studies
showing that recognition of a face is facilitated by
adaptation to its anti-face (Leopold et al., 2001).
Adapting to an anti-face reduces sensitivity to that
face, causing a brief bias in perception away from
that identity and toward its corresponding face. Also
consistent with opponent-channel coding, the more
extreme the anti-face, the larger the perceptual bias
that is observed (Jeffery et al., 2018; McKone et al.,
2014). In addition, adaptation to a face produces a
stronger aftereffect along the morphing dimension
going to its corresponding anti-face (through the
average) than along a dimension going to a second
face, even when dissimilarity is matched (Rhodes &
Jeffery, 2006). Finally, evidence for such a code has
been found in the human fusiform face area (Loffler
et al., 2005; Carlin & Kriegeskorte, 2017) as well as
in monkey inferior temporal cortex (Leopold et al.,
2006; Freiwald et al., 2009). In line with such findings,
it is commonly assumed that studies of face encoding
target representations stored in face-selective areas
within inferior temporal cortex, at the latest stages of
processing in the visual ventral stream (Jiang et al.,
2006; Giese & Leopold, 2005).

If the dimension creation hypothesis is correct,
then this should have important consequences for the
encoding of face identity. In particular, categorization
training should create a preference for encoding a
direction in space connecting the two parents of
the category-relevant dimension. For example, if
the parents of the category-relevant dimension are
Adam and Leo from Figure 2, then a consequence
of dimension creation is that the direction in face
space connecting these two faces, shown in red in
the figure, should be preferentially represented after
categorization training. Because the categorization
bound is usually placed right in the middle of the
category-relevant dimension, the stimulus labeled
“categorization average” in Figure 2, which corresponds
to that bound, might become an important reference
point against which surrounding stimuli are compared.
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Figure 3. Design of the adaptation test in Experiment 1. Participants were asked to determine whether the briefly presented target
stimulus was a particular identity (“Adam” from Figure 2) or not. That identity was at one extreme of the category-relevant dimension
in our categorization task. In different blocks, participants were presented with no adaptor in the control condition, with anti-Adam in
the Identity Adaptation condition, or with the face at the other extreme of the category-relevant dimension (“Leo” from Figure 2) in
the Category Adaptation condition. Targets varied along the direction in face space connecting Adam and anti-Adam through the
average face (see Figure 2), in steps of 10%.

This new encoding of the parent faces of the
category-relevant dimension would be at odds with
their usual norm-based encoding, and thus it might
interfere with it. That is, while the usual encoding of a
parent face such as Adam from Figure 2 is in relation
to the global average, and opposed to the encoding of
anti-Adam, if a novel category-relevant dimension is
created, then the encoding of Adam is in relation to the
categorization average and opposed to the encoding
of Leo, the second parent face. This would be similar
to the case of natural face categories such as gender,
ethnicity, and expression, which seem to be encoded
through their own category-specific norms (Benton
et al., 2007; Hsu & Young, 2004; Rutherford et al., 2008;
Webster et al., 2004), which are independent from the
identity norm.

On the other hand, the dimension enhancement
hypothesis would predict that the changes produced
by categorization training would simply modify the
already-existing representation of the parent faces,
without creating any novel preferred dimensions or
reference points in face space.

The goal of the present study was to explore
how categorization training changes the encoding
of face identities at the extremes of the category-
relevant dimension, as measured through face
adaptation aftereffects. Our experiments provide
relevant information to start answering the following
question: Are the perceptual changes observed
after categorization training due to new dimension
creation or preexisting dimension enhancement? In
Experiment 1, we used a paradigm developed by

Leopold et al. (2001) to test whether categorization
training changes the norm-based coding of face
identity. Experiment 2a was designed to test the same
question more thoroughly, while additionally testing
whether categorization training produces a preference
to encode the category-relevant dimension in face space,
with the categorization bound as a reference point.
Finally, in Experiment 2b, we used cross-adaptation
(i.e., effect of changes across stimuli in an irrelevant
dimension on the adaptation effect that they induce
along a target dimension; see Ellamil et al., 2008; Fox
& Barton, 2007; Fox et al., 2008; Webster, 2015) to test
whether categorization training made the encoding of
identity more invariant to changes in information about
irrelevant faces, as suggested by prior work (Soto &
Ashby, 2015; Soto, 2019).

Experiment 1

Leopold et al. (2001) were the first to offer evidence
of norm-based encoding of face identity, using an
adaptation design similar to that shown in Figure 3.
They trained people to identify a target face, such as the
face labeled “Adam” in the figure, and then showed a
number of morphed faces along the dimension linking
that target face to the face average (i.e., the teal line in
Figure 2). The proportion of “Adam” identifications
as a function of morph level produces a psychometric
function, which can be used to determine identification
thresholds. Leopold et al. obtained such psychometric
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functions in two conditions depicted in Figure 3. In
a control condition, they presented only the target
stimuli very briefly, whereas in an identity adaptation
condition, they first presented an anti-face as an
adaptor for 5 s before the presentation of the target.
In our example, this adaptor would correspond to
“anti-Adam” from Figure 2.

In our first experiment, we used a variation of
this design to test whether categorization training
modifies the norm-based encoding of face identity.
Our target stimulus was one of the parents of the
category-relevant dimension shown in Figure 1 (Parent
A, or “Adam” from Figure 2). As shown in Figure 3,
we included the control and identity adaptation
conditions from Leopold et al. (2001). In addition, we
included a condition in which the second parent of the
category-relevant dimension (“Leo” from Figure 2) was
used as an adaptor (category adaptation in Figure 3).
We presented a range of target stimuli along the
dimension going from the average to the target face,
which allowed us to obtain psychometric functions
from each participant in all three conditions.

Recently, it has been highlighted that adaptation
can influence decision-making processes rather than,
or in addition to, sensory processes (Storrs, 2015;
Storrs & Arnold, 2012; Witthoft et al., 2018). For this
reason, we fit the data to a signal detection model of the
psychometric function, which allows us to dissociate
sensitivity and decisional contributions to the shape of
psychometric curves. Our goal with this was to make
sure that our procedures targeted perceptual rather
than decisional effects.

There were two groups of participants. The trained
group was exposed to extended training with the
categorization task shown in Figure 4, whereas
the untrained group did not have such exposure.
Comparison between groups allowed us to answer
two questions. First, whether categorization training
reduces norm-based encoding of the target face, as it
would be evident from a smaller identity adaptation
effect in the trained than in the untrained group.
Second, whether categorization training increases a
link between the representations of the two parents of
the category-relevant dimension, so that adaptation to
one would produce an adaptation effect on the other.
Such a link has been found with natural categories, like
emotion and sex (e.g., Hsu & Young, 2004; Pond et al.,
2013; Rutherford et al., 2008; Webster et al., 2004), and
it would be evident by a larger category adaptation
effect in the trained than in the untrained group.

Methods

Participants
Thirty-eight students at Florida International

University (66% female; ages between 18 and 29 years

Figure 4. Representation of the categorization task in the
two-dimensional morphing space. Points represent stimuli
obtained from a specific combination of levels of each
dimension. The green dotted line represents the category
boundary used for training, so that stimuli on each side of the
boundary were assigned to a different category.

old, median = 23) participated in this experiment
in exchange for a monetary compensation (U.S.
$10/hour). Half of the participants were semi-randomly
assigned to the trained or untrained groups. Nineteen
participants (10 in the trained group, 9 in the untrained
group) had previously participated in a related study
testing the effect of categorization training on face
identity representation (Soto, 2019). This prior study
finished 2 months before the current study started, but
the exact time lapsed between experiments was different
for different participants. The previous study used the
same stimuli as the current studies in the categorization
task (see below), but testing stimuli and procedures
were different. All participants previously trained in the
categorization task were placed in the trained group
and retrained for the current study. Thirteen additional
participants took part in the experiment but did not
finish it either because they could not achieve good task
performance after several sessions or due to attrition.
Performance criteria to be included in the last part of
the experiment (adaptation testing) were 65% correct
in the last session of categorization training and 85%
correct in the identification training session (see below).

Stimuli
Stimuli were created from images chosen from

a database of 300 computer-generated Caucasian
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faces described by Oosterhof and Todorov (2008),
created using the Facegen Modeller program
(https://facegen.com/) v. 3.1. Thirty male faces that
had similar eyebrow color and levels of facial fat were
chosen from the original database. From these 30 faces,
three sets of stimuli were created, each to be used in a
different experimental task.

The first stimulus set was created to be used in the
categorization training task. Judgments of similarity
between all faces were obtained in a pilot study,
described in detail by Soto (2019). Two pairs of faces
from the stimulus set were selected to be used as
parents in the subsequent construction of the morphed
multidimensional stimuli, so that the mean dissimilarity
of the first pair (0.51, SD = 0.13) was close to the mean
dissimilarity of the second pair (0.49, SD = 0.13). This
ensured that the pairs of parent faces would create
dimensions of relatively similar salience. The selected
faces were also not easily discriminable by any salient
feature, such as degree of femininity/masculinity or
head width. All faces were converted to grayscale and
their intensity histograms were equalized to ensure that
the stimuli along the resulting morphed dimensions
varied in shape features but not in low-level features
such as color or brightness.

A two-dimensional space was created using a
factorial morphing procedure (Folstein et al., 2012;
Goldstone & Steyvers, 2001; Soto & Ashby, 2015)
to generate morphed faces that were a combination
of the four parent faces, as shown in Figure 1.
Each dimension was created by generating morphs
containing different proportions of its two designated
parent faces (in Figure 1: Parents A and B for the
category-relevant dimension, and Parents C and D
for the category-irrelevant dimension). The resulting
dimensions contained a range or percentages of the
second parent that was equal to 0%, 6%, 14%, 20%,
24%, 30%, 32%, 38%, 42%, 50%, 58%, 62%, 68%,
70%, 76%, 80%, 86%, 94%, and 100%. All levels of the
category-relevant dimension were morphed with all
levels of the category-irrelevant dimension such that the
resulting two-dimensional morph included 50% from
each of the one-dimensional morphs.

The second stimulus set was used in the identification
training task, and it consisted of the face to be identified
in later testing (Parent A of the category-relevant
dimension) plus three unrelated faces from the original
pool.

The third stimulus set was created using the
Psychomorph software (http://users.aber.ac.uk/bpt/
jpsychomorph/), to be used during the adaptation test.
The full set of stimuli is shown in Figure 3, under
the title “Target Stimulus.” First, the average face
(0% morph in Figure 3) was obtained by morphing
together all 30 male faces described above. Second, we
obtained all other stimuli by morphing the average and
target faces to varied degrees, going from 60% target

face to −20% target face (or 20% anti-face) in 10%
steps.

Procedure
Categorization training: Participants in the trained
group were exposed to three 1-hr sessions of training
in the categorization task shown in Figure 4, where
the dots represent stimulus coordinates in the morph
space, and the green line separates stimuli assigned to
Categories A and B. This circular configuration of
stimulus has been used in prior research on dimension
differentiation (Folstein et al., 2012; Soto, 2019; Soto
& Ashby, 2015, 2019), and was created to ensure
that the distribution of stimuli does not suggest a
dimensional structure in the task, which instead has
to be learned from feedback (Goldstone & Steyvers,
2001). The sessions were run within a span of 3 days,
and no more than two sessions were run on the same
day. Consecutive sessions were separated by at least
1 hr and at most 25 hr. Each session consisted of nine
blocks of 72 trials each, for a total of 648 trials. Some
participants (see Participants section above) completed
two 1.5 hr sessions of testing in a reverse correlation
task. Results from those sessions are reported elsewhere
(Soto, 2019). These participants received an additional
1 hr of categorization training before proceeding with
the rest of the experiment.

At the beginning of each session, instructions were
displayed on the screen indicating that the participant’s
task was to categorize the faces presented into two
different groups (Category A or Category B) based
purely on physical appearance. The instructions
informed participants on the structure of each trial and
how to report a categorization response. Participants
were warned that during the early stages of the task,
they would have to guess the correct answer but would
eventually become more accurate as the experiment
progressed.

Each session consisted of nine blocks composed
of 72 trials, for a total of 648 trials per session. Each
stimulus (36 per category) was presented once every
block in a randomized manner. Throughout the session,
there were voluntary breaks of 1 min between every
block, which the participant could skip at any moment
by pressing “enter” on the keyboard. If the participant
allowed the entire minute to elapse, the next block
would automatically begin when the break was over.

Each trial began with the presentation of a white
cross in the middle of a black screen for 500 ms.
Immediately afterward, a face stimulus was presented
in the middle of the black screen until the participant
pressed one of the two response buttons on the
keyboard or a time deadline of 2 s was reached,
whichever occurred first. To report whether the face
shown belonged to either Category A or B, participants
could press the keys D or K on their keyboard, which
were relabeled as “A” and “B,” respectively. After every

https://facegen.com/
http://users.aber.ac.uk/bpt/jpsychomorph/
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key press, participants received feedback on their
accuracy. For correct responses, the word CORRECT
was presented for 500 ms in green font color in the
middle of the screen. For incorrect responses, the
word INCORRECT was presented for 500 ms in red
font color in the middle of the screen. Feedback was
followed by a 1–s intertrial interval during which the
monitor was completely black.
Identification training: Participants in both groups were
exposed to a single 30-min session of identification
training. The main goal of this task was to familiarize
the participant with the identity of “Adam” in
Figure 2 and train them to recognize his face from
briefly presented images. This was achieved within
the context of an identification task, which included
three other faces, each with their corresponding name.
Note that “Adam” corresponds to Parent A of the
category-relevant dimension in Figure 1.

During the beginning of each session, instructions
were displayed on the screen indicating that the task was
to learn and identify the name of the face presented.
The instructions included images of the four faces
and their names: Adam, Sam, Kyle, and Luke. The
instructions informed participants about the structure
of each trial and how to report an identification
response. Participants were warned to familiarize
themselves well with the four different faces displayed
and their names, and that faces would be presented very
quickly during the task. Finally, they were told that
during the early stages of the task, they would have to
guess the correct answer but would eventually become
more accurate as the experiment progressed.

The session consisted of 25 blocks of 20 trials each,
for a total of 500 trials at completion of the session.
Each face was presented five times per block in a
randomized manner. Throughout the session, there
were voluntary breaks of 1 min between every block,
which the participant could skip at any moment by
pressing “enter” on the keyboard. If the participant
allowed the entire minute to elapse, the next block
would automatically begin when the break was over.

Each trial began with the presentation of a white
cross in the middle of a black screen for 500 ms,
followed by the presentation of a face stimulus in the
middle of the black screen for 200 ms. Immediately after
this, participants could report whether the face shown
was Adam, Sam, Kyle, or Luke, by pressing the keys A,
S, K, or L on their keyboard, respectively. Participants
had as much time as they needed to make their response.
After every key press, participants received feedback
on their accuracy. For correct responses, the word
CORRECT was presented for 500 ms in blue font color
in the middle of the screen. For incorrect responses,
the word INCORRECT was presented for 500 ms in
red font color in the middle of the screen. The given
feedback was then followed by a 1-s inter-trial interval
during which the monitor was completely black.

Adaptation testing: Participants in both groups
were exposed to three 1-hr sessions of adaptation
testing. Each session involved one of the three
conditions presented in Figure 3: an identity adaptation
condition, a category adaptation condition, and a
control condition. Each session was broken into two
parts. During the first part, participants underwent
identification training, identical to that described in the
previous section. However, this was only meant to serve
as a reminder, so it consisted of only four blocks of 20
trials each, for a total of 80 trials.

Adaptation testing happened during the second
part of the session, which had the goal of obtaining
psychometric functions for the identification of “Adam”
along the morph dimension presented in teal color
in Figure 2 (i.e., going from anti-Adam to Adam and
passing through the average face). Thus, all conditions
involved the presentation of nine target stimuli varying
along the anti-Adam/Adam morph dimension, each
presented once in a block, with trials randomized
within blocks. The two adaptation conditions involved
60 presentations of each stimulus (60 blocks of nine
stimuli), whereas the control condition involved 120
presentations of each stimulus (120 blocks of nine
stimuli).

The participant’s task was simply to indicate in each
trial whether the face presented was Adam or not.
The instructions displayed informed participants of
this task, indicated that strangers’ faces would also be
presented, and instructed them to press the key “1”
to indicate “Yes” and the key “2” to indicate “No.”
Participants were also informed that they would no
longer receive feedback about the correctness of their
responses.

During the two adaptation conditions, the
instructions also included information about the
presentation of two different stimuli during each trial.
Participants were instructed to look at the first face
but completely ignore it for their responses during the
task. They were also instructed to wait until the second
response was quickly flashed on the screen, and then
identify it as either Adam or not Adam.

During the two adaptation conditions, an adaptor
was presented for 5 s before the target. In the identity
adaptation condition, the adaptor presented was the
anti-face of Adam (–100% in the morph dimension),
whereas in the category adaptation condition, the
adaptor presented was the second parent of the
category-relevant dimension (Leo in Figure 2). No
adaptor was presented in the control condition.

Trials involved the presentation of an adaptor for 5 s
in the two adaptation conditions or no adaptor in the
control condition. This was followed by 200 ms of a
black screen and then the target stimulus was presented
for 200 ms. Right after the target stimulus disappeared,
the text “Was this Adam? Yes = 1, No = 2” was shown
in the middle of the screen, and participants were able



Journal of Vision (2020) 20(10):18, 1–24 Soto, Escobar, & Salan 8

Figure 5. Explanation of the parameters of the detection-theoretic model fitted to the psychometric function data from Experiment 1.
At the center of this model is the estimation of a sensitivity function, which links sensitivity in the y-axis and signal contrast s in the
x-axis. Three parameters of this function are explained in the figure. At the top, it is possible to see the perceptual distributions
assumed for four different levels of signal contrast. Sensitivity to their difference against zero is computed as the d’ distance between
the distributions. A decision criterion allows us to determine proportions of “yes” responses as a function of signal contrast, using the
sensitivity function as an intermediate step.

to record their response. A response was immediately
followed by an intertrial interval of 500 ms. To prevent
low-level adaptation aftereffects, the adaptor and target
stimuli were presented with different sizes. The size of
the adaptor image was 480×480 pixels, whereas the size
of the target image was 384×384 pixels.

There were voluntary breaks of 1 min between every
block, which the participant could finish at any moment
by clicking “enter” on the keyboard. If the participant
allowed the entire minute to elapse, the next block
would automatically begin when the break was over.
Data analysis: We fit the data from each participant to
a signal detection model of the psychometric function
(Lesmes et al., 2015). At the center of this model is the
estimation of a sensitivity function, shown in Figure 5,
which describes sensitivity (d ′) as a function of the
signal contrast s, which in our case is morph level, using
the following equation:

d ′ (s) = �
( s

α

)β

√(
�2 − 1

) + ( s
α

)2β , (1)

where β, �, and α represent the slope, upper asymptote,
and position of the sensitivity function, respectively, as
shown in Figure 5. The parameter α provides a direct
estimate of a threshold (in units of s) corresponding
to d ′ = 1. The sensitivity function from Equation 1
is linked to the psychometric function through the
following equation:

P
(′′yes′′|s) = �

(
d ′ (s) − τ

)
, (2)

where P (′′yes′′|s) represents the probability of “yes”
responses given a value of the morph dimension s, �
represents the standard normal cumulative function
and τ = �−1 (1 − FA) the decision criterion, with �−1

being the standard normal quantile function and FA
the false alarm rate.

We fit this model to data using R v 3.2.1 (R Core
Team, 2015) and the package quickpsy v. 0.1.4 (Linares
& López-Moliner, 2016). The asymptotic sensitivity
parameter � was fixed to a value of 10, which is
similar to the values found by Lesmes et al. (2015).
This corresponds to the assumption that the maximum
discriminability between any two stimuli is not affected
by adaptation or participant and helps in obtaining
more precise estimates of all the other, more interesting
parameters. The slope parameter β was limited to have
a maximum value of 10, to avoid problems in the fits
of some participants for whom this parameter would
sometimes increase boundlessly to uninterpretable
values. This did not affect the estimates for most
participants, which were well below that limit.

After obtaining estimates of the parameters α
(sensitivity threshold), β (sensitivity slope), and τ
(decision criterion) from each participant’s data, each
of them was entered as a dependent variable in a
separate 2 (Group) ×3 (Adaptor) mixed-effects analysis
of variance (ANOVA) in R.

Results and discussion

The main results are presented in Figure 6. The most
interesting results are presented in Panel a, which shows
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Figure 6. Results of Experiment 1. The y-axis in each plot represents the estimated parameter values. Black dots represent individual
parameter estimates and yellow diamonds represent the group mean of the estimates. The red and blue violin shapes represent
kernel density estimates of the distribution of parameter estimates for the untrained and trained groups, respectively.

the estimated sensitivity thresholds. There seems to be
an adaptation effect with both identity and category
adaptors, evidenced by the drop in thresholds in those
conditions compared to the control. More important,
there is no evidence that categorization training
modified such adaptation effect in any way. These
results were confirmed by the ANOVA, which found a
significant effect of adaptor, F(2, 104) = 4.23, p < .05,
representing a global adaptation effect on sensitivity,
whereas the main effect of group and the interaction
were not significant. Post hoc pairwise comparisons
(Bonferroni-corrected) revealed a significant difference
between the control condition and both the identity and
category adaptors (both p < .001), but no significant
difference between these last two (p > .5).

Panels b and c show the estimated sensitivity
slopes and criterion placement. These results are
less interesting for the goals of our study, but they
are presented because they allow us to determine
whether adaptation and/or training have any effects on
aspects of performance different from discriminability
thresholds. The ANOVA results showed no significant
effects in the analysis of sensitivity slopes (all p > .1),
indicating that the increase in sensitivity as a function
of stimulus value was unaffected by adaptation or
training (Figure 6b). Similarly, the ANOVA showed no
significant effects in the analysis of criterion placement
(all p > .1), suggesting that the bias to report the target
face was unaffected by adaptation or training.

A more commonly used measure of adaptation is
simply the proportion of identification responses for
an ambiguous target stimulus (e.g., the average face at
0% morphing) when presented alone, minus the same
proportion when an adaptor is presented beforehand.
We calculated such adaptation scores from our data,
and we found adaptation scores above zero, but again
no effect of adaptor, training, or their interaction in an
ANOVA.

In sum, we found adaptation effects that were
perceptual rather than decisional in nature, but
categorization training had no effect on adaptation.
That is, we found no evidence that categorization
training reduces norm-based encoding of the parent
of a category-relevant dimension or that it increases a
link between the two parents of the category-relevant
dimension.

However, Experiment 1 was limited in several ways.
First, we tested only one parent of the category-relevant
dimension. It is possible that categorization training
had an effect on the other parent only. Second, we tested
norm-based encoding by using the parent face as target
and the anti-face as adaptor, but not the other way
around. Finally, we focused on norm-based encoding,
by presenting a sequence of target stimuli along the
path of the average face (i.e., teal line in Figure 2),
but we ignored the potential encoding of a completely
novel category-relevant direction in space (i.e., red line
in Figure 2).

Those are not limitations of the design of
Experiment 1 per se but rather limitations imposed
by the large amount of data that must be gathered
in order to test all possibilities using psychometric
functions, such as those obtained in this first
experiment. The experiment was designed to obtain
such functions and analyze them using a detection-
theoretical model. Because we now know that our
adaptation procedure produces perceptual effects
with no contribution from decisional bias, and that
similar results can be found using psychometric
functions as well as simple adaptation scores, in
the following experiments we reduced the amount
of data recorded to a couple of ambiguous target
stimuli, which allowed us to expand the experimental
design considerably to more thoroughly test encoding
of parent faces with and without categorization
training.
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Experiment 2a

The results of Experiment 1 suggest that
categorization training does not change the norm-based
encoding of Parent A of the category-relevant
dimension (see Figure 2). However, the experiment
was limited in that it could only answer whether the
encoding of that specific face identity changed after
categorization. There was no testing of the encoding
of Parent B of the category-relevant dimension.
It is possible that categorization changes encoding
of only one of the two parents, as the task can be
solved by making decisions based on how similar each
stimulus is to a single one of them (i.e., “Adamness”
categorization).

More important, an open question is whether the
direction in face space connecting the two parents of
the category-relevant dimension, represented by the
red line in Figure 2, is more strongly encoded after
categorization training. From the point of view of
the dimension creation hypothesis, a new perceptual
representation of this category-relevant dimension
should be constructed after categorization training. To
be useful for the categorization task, this representation
should contain information about the distance of a
face from the category bound, which is equivalent to
the categorization average shown in Figure 2. On the
other hand, from the point of view of the dimension
enhancement hypothesis, any changes in encoding of the
two parents of the category-relevant dimension should
be constrained to the directions in face space that were
privileged before any training occurred, represented
by the teal and orange lines in Figure 2. Experiment 1
found no evidence of such changes, but its limitations
do not allow to completely rule out this hypothesis yet.

The present experiment was designed to more
thoroughly explore how categorization training changes
the encoding of the parents of the category-relevant
dimension. To facilitate data collection, and given
that the effect of adaptation was clearly restricted to
sensitivity thresholds in Experiment 1, we evaluated
the adaptation effect in specific ambiguous faces rather
than in the full psychometric function.

The design involved all the faces presented in
Figure 2. We first trained participants to identify
Adam, Leo, and their anti-faces (which were renamed
in the task). Then, during adaptation test, we presented
both the global average and the category average as
targets and asked participants to select which of the
four identities was most likely being presented. In
different blocks, we presented such targets without
any adaptors or with any of the four identities as
adaptors. We computed adaptation scores by taking
the proportion of identification responses with and
without an adaptor and then focused on three scores
that were of particular interest. First, we computed an

anti-identity adaptation effect, which was the average
adaptation score observed for the parent faces when
their anti-faces were presented as adaptors. Second, we
computed an identity adaptation effect, which was the
average adaptation score observed for the anti-faces
when their corresponding parent faces were presented
as adaptors. Finally, we computed a category adaptation
effect, which was the average adaptation score obtained
for each parent face when the other parent face was
presented as adaptor. All three effects were recorded
both at the global average and the categorization
average, for a total of six combinations. Only two of
these combinations were measured in Experiment 1, so
the present experiment should provide a much richer
data set to understand the effect of categorization
training on face identity encoding.

As before, there were two groups of participants, one
exposed to extensive training in the categorization task
shown in Figure 1 and one without such training.

Methods

Participants
Forty-eight students at Florida International

University (78% female; ages between 18 and 30 years
old, median = 22) participated in this experiment
in exchange for a monetary compensation (U.S.
$10/hour). Twenty-six participants were assigned to
the trained group, and 22 participants were assigned to
the untrained group. Nineteen participants (13 in the
trained group, 6 in the untrained group) had previously
participated in Experiment 1. Those participants
retained their previous group assignment.

Stimuli
The stimulus set used in the categorization training

task was the same as described for Experiment 1. The
stimulus set used during adaptation testing included the
same average identity as Experiment 1, as well as Parent
A of the category-relevant dimension and its anti-face
(Adam and anti-Adam in Figure 2). In addition, it
included Parent B of the category-relevant dimension
and its anti-face (Leo and anti-Leo in Figure 2), as well
as the average morph between the two parents of the
category-relevant dimension, labeled “Categorization
Average” in Figure 2. All morphs were obtained using
the procedures outlined in Experiment 1.

Procedure
Categorization task: All procedures were exactly the
same as those described for Experiment 1, with the
exception of the number of blocks in the categorization



Journal of Vision (2020) 20(10):18, 1–24 Soto, Escobar, & Salan 11

session and the number of categorization training
sessions completed by the trained group participants.

Participants who had previously participated
in Experiment 1 had already completed three to
four categorization-training sessions. Therefore,
these returning participants completed one 30-min
categorization reminder session before completing
the following test. The instructions and setup of
the task were identical to the categorization task in
Experiment 1, but the session consisted of only five
blocks rather than nine.

Participants in the trained group who had not
previously participated in Experiment 1 completed three
1-hr sessions of the categorization task, as described
for Experiment 1. Like the returning participants, these
newly recruited participants completed one 30-min
categorization reminder session before completing the
following test.
Adaptation testing: Participants in all groups were
exposed to one 1-hr session of adaptation testing. Each
session was divided into two parts.

During the first part of each session, participants
were trained in an identification task. Four faces were
included, corresponding to Adam, Leo, and their
anti-faces displayed in Figure 2. Anti-Adam was given
the name Scott, whereas anti-Leo was given the name
Kurt.

At the beginning of this identification training,
instructions were displayed on the screen indicating
that the participant’s task was to learn and identify the
names of four faces. The instructions included images
of the four faces and their names: Adam, Scott, Kurt,
and Leo. The instructions informed participants on the
structure of each trial and how to report an identity
response. Participants were warned to familiarize
themselves well with the four faces displayed and their
names, and that faces would be presented very quickly
during the task. They were also warned that during
the early stages of the task, they might have to guess
the correct answer for each face image, but through
feedback, they would eventually become more accurate
as the experiment progressed.

This identification training part consisted of 25
blocks of 4 trials each, for a total of 100 trials. Each
face was presented once every block in a randomized
manner.

Each trial began with a black screen for 200 ms,
followed by the presentation of a face stimulus in the
middle of the black screen for 200 ms. Immediately
after this, the following text was presented: “Who was
this? Adam = A, Scott = S, Kurt = K, Leo = L,” and
participants were allowed to record their response.
After a key press, participants received feedback
on their accuracy. For correct responses, the word
CORRECT was presented for 1 s in blue font color in
the middle of the screen. For incorrect responses, the
word INCORRECT was presented for 1 s in red font

color in the middle of the screen. The given feedback
was then followed by a 500-ms intertrial interval during
which the monitor was completely black.

During the second part of the session, participants
underwent adaptation testing. Each trial during this
testing was structured as described for adaptation
testing in Experiment 1. Here, however, both the
adaptors and target stimuli were different from those
used in Experiment 1.

There were five blocks of testing, which were identical
except for the adaptor used. Each of the four stimuli
presented during identification training was used as
adaptors in different blocks, and there was one baseline
block in which no adaptor was presented. The baseline
block was always presented first in the sequence, and
the other blocks were presented in random order.

Each testing block began with seven blocks of
identification training, for a total of 28 trials. These were
presented just as a reminder of the correct assignment
of faces to response keys. In adaptation blocks, this was
followed by instructions. During the first adaptation
block (i.e., immediately after finishing the baseline
block), detailed instructions were provided. Participants
were told that two different faces would be presented
during each trial, with the first face being presented for
a long time and the second face briefly flashed on the
screen. Participants were instructed to look at the first
face but completely ignore it for their responses during
the task. On the other hand, they were instructed
to identify the second face as Adam, Scott, Kurt, or
Leo, by using the response keys previously learned. In
subsequent adaptation blocks, more brief instructions
were presented, simply reminding participants that now
they would see trials with one face following another
and that they should only look at the first face but
identify the second one.

Each block was composed of six sub-blocks of 10
trials each: 5 using the global average as a target and
5 using the category average as a target. Trials were
randomized within these sub-blocks. In total, each
target was presented 30 times in each block.

There were voluntary breaks of 1 min between every
block in which the participant could finish at any
moment by clicking “enter” on the keyboard. If the
participant allowed the entire minute to elapse, the next
block would automatically begin when the break was
over.
Data analysis: Performance criteria to include data in
the main analysis were the same as in the previous study,
that is, 65% correct in the categorization task, and 85%
correct in the main identification task during testing.

Adaptation scores were computed by taking the
proportion of identifications of a given face during
blocks in which a specific adaptor was presented
and subtracting the proportion of identifications of
the same face during baseline blocks. These scores
were used to compute three different effect scores per
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Figure 7. Results of Experiment 2. Each column represents a different adaptation effect score, and each row represents a different
target face presented during the adaptation test. Blue and red outlines represent data from the trained and untrained groups,
respectively. Black dots represent individual participant scores, yellow diamonds represent the mean of each subset of the data, and
the outlines represent kernel density estimates obtained from such subsets. The red dotted line represents no adaptation effect.
Green asterisks represent a significant adaptation effect, and black asterisks represent a significant difference between groups in the
adaptation effect, with ∗p < .05, ∗∗p < .01, and ∗∗∗p < .001.

participant. First, an anti-identity adaptation effect was
computed as the average adaptation score observed for
the parent faces (i.e., involving identification responses
for the parent faces) when their anti-faces were
presented as adaptors. Second, an identity adaptation
effect was computed as the average adaptation score
observed for the anti-faces (i.e., involving identification
responses for the anti-faces) when their corresponding
parent faces were presented as adaptors. Finally,
a category adaptation effect was computed as the
average adaptation score obtained for each parent
face (i.e., involving identification responses for a given
parent face) when the other parent face was presented
as adaptor. All three effect scores were separately
computed for trials in which the global average and
the categorization average were presented as target
stimuli. Separate data analyses were performed for each
combination of target and adaptation effect.

Differences between groups were tested using a
one-tailed independent-samples t test. We tested
whether categorization training reduced norm-based
encoding of identity, as evidenced by a reduced
anti-identity adaptation effect or a reduced identity
adaptation effect. We tested whether categorization
training increased categorical encoding of identity, as

evidenced by an increased category adaptation effect. A
one-sample t test (one-tailed) was used to test whether
each adaptation effect was significantly higher than
zero.

Results and discussion

Using the preset criteria for inclusion into the main
analysis, 9 participants were eliminated from each
group, resulting in the inclusion of 13 participants
in the untrained group and 17 in the trained group.
Performance in the categorization training task was
81.94% correct on average (SD = 4.69%). Performance
in the identification task was 92.14% correct on average
(SD = 4.42%).

The top row of plots in Figure 7 (Panels a—c) shows
the results of the analysis when the target stimulus
presented was the global average. Figure 7a shows the
anti-identity adaptation effect, in which anti-identities
were presented as adaptors and the adaptation effect
was measured for their corresponding identities. The
adaptation effect was significant both in the trained
group, t(16) = 5.07, p < .001, and in the untrained
group, t(12) = 1.81, p < .05. Categorization training
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did not reduce the norm-based encoding of identity,
as it would be evidenced by a reduced adaptation
effect, t(28) = −1.68, p > .5. If anything, there is
evidence of an increased adaptation effect, with an
effect that was slightly higher in the trained group
than in the untrained group. This reversed effect was
also not significant (one-tailed p = .052). These results
are consistent with those obtained in Experiment 1,
revealing an overall adaptation effect but no effect of
categorization training on norm-based encoding of the
parent identities.

Figure 7b shows the identity adaptation effect, in
which parent identities were presented as adaptors
and the adaptation effect was measured for their
corresponding anti-identities. The adaptation effect
was again significant both in the trained group, t(16)
= 6.14, p < .001, and in the untrained group, t(12) =
5.93, p < .001. In addition, categorization training
did significantly reduce the adaptation effect in this
case, t(28) = 1.84, p < .05. This is surprising, as this
identity adaptation effect should tap into the same
mechanisms as the anti-identity adaptation effect
measured above and in Experiment 1, which were not
influenced by training. We discuss this asymmetrical
result in more detail in the General Discussion, but for
now, the important conclusion from this test is that
categorization training does influence the norm-based
encoding of face identity.

Figure 7c shows the category adaptation effect, in
which a parent identity was presented as adaptor and
the adaptation effect was measured for the other parent
identity. Neither adaptation effect was significant
(p > .05). However, the category adaptation effect was
slightly enhanced after categorization training, being
on average below zero before training, but above zero
after training. This difference was significant, t(28) =
2.03, p < .05.

Overall, these results show a clear effect of
categorization training on encoding of face identity,
revealed by a reduction in the adaptation effect that
used the category parents as adaptors and an increase
in the category adaptation effect.

The bottom row of plots in Figures 7d–f shows
the results of the analysis when the target stimulus
presented was the categorization average. Figure 7d
shows the anti-identity adaptation effect, in which
anti-identities were presented as adaptors and the
adaptation effect was measured for their corresponding
identities. The adaptation effect was again significant
both in the trained group, t(16) = 6.06, p < .001, and in
the untrained group, t(12) = 6.40, p < .001. However,
there was no effect of categorization training on this
adaptation effect, t(28) = .39, p > .5.

Figure 7e shows the identity adaptation effect, in
which parent identities were presented as adaptors
and the adaptation effect was measured for their
corresponding anti-identities. The adaptation effect

was significant both in the trained group, t(16) = 2.57,
p < .05, and in the untrained group, t(12) = 2.13,
p < .05, but their difference was again not significant,
t(28) = .08, p > .5.

Figure 7f shows the category adaptation effect, in
which a parent identity was presented as adaptor and
the adaptation effect was measured for the other parent
identity. Unlike the results shown in Figure 7c, here
the category adaptation effect was significant both in
the trained group, t(16) = 5.90, p < .001, and in the
untrained group, t(12) = 5.63, p < .001. However,
there was no increase in the strength of this effect with
categorization training, t(28) = .13, p > .5.

In sum, the results measured at the global average
were consistent with those from Experiment 1, in
that there was no effect of categorization training
on the anti-identity adaptation effect. On the other
hand, categorization training did reduce the identity
adaptation effect and, unlike in Experiment 1, also
increased the category adaptation effect. These results
suggest that categorization training does change the
norm-based encoding of face identity.

On the other hand, categorization training had
no effect in any adaptation effect measured at the
categorization average. That is, there was no evidence
suggesting that the category-relevant dimension
becomes a preferred direction in the encoding of the
parent faces.

The overall pattern of results is better explained by
the dimension enhancement hypothesis, which proposes
that categorization training only modifies already
existing representations, than by the dimension creation
hypothesis, which proposes that categorization training
creates novel stimulus representations. In the General
Discussion, we present a formal model implementing
the dimension enhancement hypothesis, which explains
the pattern of significant changes produced by
categorization training as shown in Figures 7a–c.

Experiment 2b

Prior research has shown that categorization training
increases the invariance of the category-relevant
dimension (or its “separability”; see Ashby & Soto,
2015; Soto et al., 2017) to changes in category-irrelevant
morphed face dimensions (Soto & Ashby, 2015; Soto,
2019). Experiment 2b was a simple extension of
Experiment 2a, aimed at using adaptation procedures
to explore whether categorization training increases
invariant encoding of category-relevant faces.

In particular, we used a test that was previously used
to determine whether the encoding of face identity is
invariant to changes in facial expression and vice versa
(e.g., Ellamil et al., 2008; Fox & Barton, 2007; Fox et al.,
2008; Webster et al., 2004). In this test, which here we
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call cross-adaptation, stimuli vary along an adaptation
dimension and a modulatory dimension. For example,
one might be interested in the encoding of face identity,
as in the previous experiments. In that case, adaptor and
target stimuli differ in their level along some identity
dimension, and participants report the perceived
identity of the target. The idea behind cross-adaptation
is to test whether the observed adaptation effects
generalize across changes in the modulatory dimension.
For example, Fox et al. (2008) compared the strength of
the identity aftereffect when the expression shown by
the adaptor and target faces was congruent (e.g., both
angry) versus when it was incongruent (e.g., one angry
and one fearful). If encoding of identity is invariant
to changes in expression, then the identity aftereffect
should be the same in congruent and incongruent trials,
showing strong cross-adaptation across expression. On
the other hand, if encoding of identity is not invariant
to changes in expression, then the identity aftereffect
should be stronger in congruent than in incongruent
trials, showing poor cross-adaptation across expression.

Here, we used the cross-adaptation test to determine
whether, with categorization training, encoding of
parent faces of the category-relevant dimension
becomes more invariant to changes in the category-
irrelevant dimension. The same participants from
Experiment 2a were exposed to a second adaptation
test. This test was similar to the first, with the exception
that adaptors and targets were morphed with the
parents of the category-irrelevant dimension (Parents
C and D in Figure 1). Each participant was exposed to
adaptors having a single level of the category-irrelevant
dimension (counterbalanced across participants), but
to targets with both levels of the category-irrelevant
dimension. That is, in different trials, the level of the
category-irrelevant dimension could be congruent or
incongruent between adaptor and target. This allowed
us to test the effect of congruency on all the adaptation
effects previously introduced in Experiment 2a, while it
also served as a way to test the reliability of the effects
observed in that experiment.

Methods

Participants
Participants were the same as those from

Experiment 2a. One participant from each group
did not return for this second test, producing 21
participants in the untrained group and 25 participants
in the trained group.

Stimuli
The stimuli used during categorization training were

the same as those used in Experiments 1 and 2.

The stimuli used during the cross-adaptation test were
created by morphing all the stimuli from the previous
experiment with the parents of the category-irrelevant
dimension (Parents C and D in Figure 1), where the
contribution of the irrelevant dimension was 30%.
This percentage was chosen so that the change in the
irrelevant dimension was perceptually obvious, but to
avoid a change so large that it would make identification
of the parents of the category-relevant dimension too
difficult for participants to master quickly. The reason
to avoid making identification too difficult is that, as
can be seen from the examples in Figure 1, it is quite
difficult to discriminate changes in multidimensional
morphed faces, and many participants can never master
categorization and identification tasks involving such
stimuli.

Procedure
Categorization task: All procedures were exactly the
same as those used in Experiment 2.
Cross-adaptation test: All procedures were exactly the
same as those used for Experiment 2, with the following
exceptions.

The first part of the session consisted of 10 blocks
in which each of the four stimuli identified as Adam,
Scott, Kurt, or Leo were presented once, for a total of
40 training trials. The task was the same as in
Experiment 2, with the exception that the four stimuli
used were morphed with 30% of the average face,
in order to train participants in a more difficult
identification task than what they encountered during
Experiment 2a. The reason behind this was that all
stimuli presented during the cross-adaptation test
would only include 70% of the relevant face.

Adaptation testing proceeded as in Experiment 2a,
but each adaptor was presented in a single level of
the irrelevant dimension, either Level 1 or Level 2
(corresponding to 30% of morphing of the adaptor with
the two parents of the category-irrelevant dimension,
as explained above in the Stimuli section, with each
parent representing one level). The assignment of
level of the irrelevant dimension was counterbalanced
across participants within each group. Each test block
was subdivided into six smaller blocks, each with five
presentations of four different target faces, resulting
from the combination of the same target faces as
in Experiment 2 (global average and categorization
average; see Figure 2), each at Levels 1 and 2 of
the irrelevant dimension. Each target was shown
30 times per block for a total of 120 trials per
block.
Data analysis: Data analysis proceeded as in
Experiment 2a, but adaptation effect scores were
entered into a 2 (Group: trained vs. untrained) ×2
(Congruency: congruent vs. incongruent level of the
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Figure 8. Results of Experiment 2b. Each column represents a different adaptation effect score, and each row represents a different
target face presented during the adaptation test. Blue and red outlines represent data from the trained and untrained groups,
respectively. Data are presented separately in each plot for congruent (same level of the irrelevant dimension in adaptor and target
stimuli) and incongruent (different level of the irrelevant dimension in adaptor and target stimuli) trials. Black dots represent
individual participant scores, yellow diamonds represent the mean of each subset of the data, and the outlines represent kernel
density estimates obtained from such subsets. The red dotted line represents no adaptation effect. Black asterisks represent a
significant difference between groups in the adaptation effect, with ∗p < .05, ∗∗p < .01, and ∗∗∗p < .001.

irrelevant dimension between adaptor and target)
mixed-effects ANOVA, rather than to a t test.

Results and discussion

Using the same preset criteria for exclusion as in
prior experiments, 9 participants were eliminated
from the untrained group and 11 from the trained
group. This resulted in 12 participants in the untrained
group and 14 in the trained group. Performance in the
categorization training task was 82.04% correct on
average (SD = 5.67%). Performance in the identification
task was 90.58% correct on average (SD = 2.91%).

The top row of plots in Figures 8a–c shows the results
of the analysis when the target stimulus presented was
the global average. Figure 8a shows the anti-identity
adaptation effect. It can be seen that congruency of
the adaptor and target along the irrelevant dimension
had little influence on this effect, which resulted in a
nonsignificant effect of Congruency, F(1, 40) = .49,
p > .1, and a nonsignificant Group × Congruency
interaction, F(1, 40) = .01, p > .5. As in the previous

experiment, categorization training slightly increased
the adaptation effect, but the effect of group was not
significant, F(1, 40) = .16, p > .5.

Figure 8b shows the identity adaptation effect.
Again, congruency of the adaptor and target along the
irrelevant dimension had little influence, resulting in a
non-significant main effect of the congruency factor,
F(1, 46) = .01, p > .5, and a nonsignificant Group ×
Congruency interaction, F(1, 46) = .00, p > .5. On
the other hand, categorization training significantly
decreased the adaptation effect, F(1, 46) = 9.25, p <
.005, which replicates the finding from the previous
experiment.

Figure 8c shows the category adaptation effect. Once
again, there was no significant effect of congruency,
F(1, 46) = .57, p > .1, or the Group × Congruency
interaction, F(1, 46) = 1.16, p > .1. However, the
category adaptation effect was slightly enhanced after
categorization training, a difference that resulted in a
significant effect of group, F(1, 46) = 6.77, p < .05.
As in Experiment 2a, the category adaptation effect is
slightly below zero in the untrained group and slightly
above zero in the trained group.
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Overall, these results mirror those of Experiment 2a
in showing a clear effect of categorization training on
encoding of face identity, revealed by a reduction in
the identity adaptation effect, and an increase in the
category adaptation effect. On the other hand, there
was no evidence of an effect of congruency of the
adaptor and target along the irrelevant dimension.

The bottom row of plots in Figures 8d–f shows
the results of the analysis when the target stimulus
presented was the categorization average. Figure 8d
shows the anti-identity adaptation effect. No effects
were significant in the ANOVA (group: F(1, 40) = .00,
p > .5; congruency: F(1, 40) = .00, p > .5; Group ×
Congruency: F(1, 40) = .19, p > .5). Similarly, Figure 8e
shows the identity adaptation effect, and again, no
effects were significant in the ANOVA (group: F(1,
46) = 2.74, p > .1; congruency: F(1, 46) = .01, p > .5;
Group × Congruency: F(1, 46) = .01, p > .5). Finally,
Figure 8f shows the analysis of the category adaptation
effect, where again no effects were significant (group:
F(1, 46) = .06, p > .5; congruency: F(1, 46) = .92, p >
.1; Group × Congruency: F(1, 46) = .58, p > .1).

In sum, the results regarding the effect of
categorization training on adaptation exactly reproduce
those found in the previous experiment, showing that
they can be reliably obtained across different stimulus
sets. In that sense, the results of this experiment can be
considered successful.

On the other hand, we found cross-adaptation across
changes in the irrelevant dimension in both groups,
indicating that either encoding of the category-relevant
parent identities is invariant to changes in the category-
irrelevant identity, or that the contribution of the
category-irrelevant dimension to the test stimuli was not
large enough to detect a drop in the adaptation effect.
In favor of the invariance hypothesis, the contribution
of the category-irrelevant dimension to the test stimuli
was large enough to be easily perceived. One possibility
is that the extensive identity training received by our
participants (they were trained in both Experiments 2a
and 2b, with the task made difficult through morphing
in the latter experiment) in both groups produced
invariant identity representations. In favor of the
insensitive tests hypothesis, a body of work suggests
that novel morphing dimensions are not invariant but
encoded in an integral/configural manner (Blunden
et al., 2015; Folstein et al., 2012; Goldstone & Steyvers,
2001; Soto & Ashby, 2015; Soto, 2019). However,
none of those tests involved adaptation testing, and as
research from the interaction between face identity and
expression shows, the results of cross-adaptation tests
are not always in line with the results from other tests
of invariance. More research will be necessary to decide
between these two possibilities, but at the very least, the
results of the present experiment served to demonstrate
the reliability of the pattern of results observed in
Experiment 2a.

General discussion

Here, we used face adaptation aftereffects to explore
how categorization training changes the encoding of
face identities at the extremes of the category-relevant
dimension. Most previous work on perceptual effects of
categorization training have favored an interpretation of
results in terms of dimension creation or differentiation
(Goldstone & Steyvers, 2001; Folstein et al., 2013, 2015;
Schyns et al., 1998), which assumes the creation of novel
representations of the category-relevant and category-
irrelevant dimensions that are used to perceptually
organize stimuli beyond the original training task. We
contrasted this to an alternative interpretation in terms
of dimension enhancement, meaning that categorization
training produces alterations in already existing visual
representations, simply enhancing the prelearning
selectivity of populations of neurons that happen to
provide useful information for the categorization task
(Brants et al., 2016).

Surprisingly, our results seemed to support the
less popular dimension enhancement hypothesis.
In Experiment 1, we failed to see any effect of
categorization training on identity aftereffects,
when such aftereffects were tested by presenting
anti-identities as adaptors and measuring identification
of the parents of the category-relevant dimension.
Experiments 2a and 2b reproduced this lack of an
effect of categorization training, but they also showed
two reliable effects of such training: (a) Categorization
training decreases identity aftereffects measured
by presenting the parents of the category-relevant
dimension as adaptors and measuring identification
of their anti-faces, and (b) categorization training
increases identity aftereffects measured by presenting
one parent of the category-relevant dimension as
adaptor and measuring identification of the other
parent. Importantly, all these effects were observed
when the global average face was used as a target
in the adaptation design (gray circle in the middle
of Figure 2), which could be explained as resulting
from modification of the already existing norm-based
encoding of face identities. When adaptation was
measured using the categorization average as a target
(red circle in Figure 2), categorization training produced
no effects. This suggests that categorization training
does not promote encoding the category-relevant
dimension as a preferred direction in face space but
rather modifies encoding of already preferred directions
that pass through the face average.

In the following section, we present a mechanistic
explanation of the pattern of results observed
in the present experiments, which is essentially a
formalization of the dimension enhancement hypothesis
within the theoretical framework of face-space
encoding.
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Figure 9. A model implementing the dimension enhancement hypothesis as it would be applied to the present study. From the point
of view of this hypothesis, the only effect of categorization training involving a category-relevant dimension joining Parent A and B
(Panel a) is an enhancement in the already existing encoding of those specific identities. As shown in Panel b, this is achieved by
simply assuming that categorization training scales up the response of channels that are sensitive to the presence of Parent A or B. By
assuming that adaptation scales down responses in the affected channels (dotted lines in Panel b), the model makes predictions that
match the results observed in Experiments 2a and 2b, when adaptation was tested at the global average face. These predictions are
shown in Panel c and should be compared to results shown in Panels a to c of Figures 7 and 8.

A working hypothesis

Figure 9 shows a plausible mechanistic explanation
for the effects of categorization training observed in the
present experiments (for mathematical details of the
model, see the Appendix). Note first that we follow here
previous authors in modeling the response of opponent
channels to stimuli changing along a single dimension
(going from a parent face to its anti-parent; seeMcKone
et al., 2014; Jeffery et al., 2018), although in reality, such
dimension would be embedded in a multidimensional
face space (Valentine et al., 2016). The first channel,
represented by the solid teal curves, responds more
strongly to faces that are more similar to the parent
identity. The second channel, represented by the solid
yellow curves, responds more strongly to faces that are
more similar to the anti-parent identity. A wealth of
psychophysical (e.g., Leopold et al., 2001; McKone
et al., 2014; Rhodes & Jeffery, 2006), neurophysiological
(e.g., Giese & Leopold, 2005; Freiwald et al., 2009;
Leopold et al., 2006), and neuroimaging (e.g., Carlin &
Kriegeskorte, 2017; Loffler et al., 2005) data support
such coding for face identity (but see Ross et al., 2013).
However, we assume that a more complete model would
involve explicit modeling of the full face space and the
multidimensional tuning of many channels distributed
in such space (e.g., Giese & Leopold, 2005; Ross et al.,
2013). In addition, we assume here a single norm,
because all our stimuli correspond to Caucasian male
faces (as in previous studies in this area of research;

Goldstone & Steyvers, 2001; Soto & Ashby, 2015,
2019; Soto, 2019). However, we must note that there
is evidence for the existence of different norms for
different genders (Rhodes et al., 2011) and races (Jaquet
et al., 2008).

The main novel hypothesis that we propose is quite
simple, and it is schematically represented in Figure 9a.
The idea is that the only effect of categorization
training is an enhancement in the representation of
the identities at the extremes of the category-relevant
dimension. As represented in the figure, face encoding
after categorization training would remain norm-based,
just as before training, but the system becomes biased
to detect shape features of Parents A and B of the
category-relevant dimension. This can be achieved
by simple scaling of the responses of the population
of neurons whose preferred stimuli are those face
identities. This is shown in Figure 9b, where one of
the morphed dimensions from Figure 9a is encoded
using two channels with opponent stimulus preference.
As shown by the blue arrow, the only effect of
categorization training is a scaling up of the response
of the first channel.

The dotted curves shown in Figure 9b represent
the effect in a channel’s response of continued
presentation of its preferred stimulus, as it happens
during adaptation. We make the simple assumption
that adaptation produces a scaling down in the
response of the channel, which is proportional to its
nonadapted response. This simple divisive scaling
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of channel responsiveness is only one of multiple
neural mechanisms that could be behind adaptation
(Kohn, 2007; Solomon & Kohn, 2014; Vogels, 2016),
with others including subtractive reduction, shifts in
the tuning curve (Kohn, 2007), and normalization
(Solomon & Kohn, 2014; Vogels, 2016). However, most
of the direct evidence for such mechanisms comes from
studies in early visual cortex using simple visual stimuli;
it remains unknown which of those mechanisms acts
in the case of face adaptation. In addition, divisive
scaling has been widely used in prior modeling work
(e.g., McKone et al., 2014; Jeffery et al., 2018; Giese
& Leopold, 2005; Ross et al., 2013; Series et al., 2009)
to explain a variety of psychophysical (McKone et al.,
2014; Jeffery et al., 2018; Ross et al., 2013; Series
et al., 2009) and neuroimaging (Alink et al., 2018)
observations.

These very simple assumptions, plus a decision
rule based on the ratio rule (Luce, 1959), are all that
is necessary to explain the effects of categorization
training observed when the global average was used
as a target (0% morphing in Figure 9b). As shown in
Figure 9c, the model reproduces the lack of an effect of
categorization training on the anti-identity adaptation
effect, observed in all our experiments, but the presence
of an effect of categorization training on the identity
adaptation effect observed in Experiments 2a and
2b. To understand these effects, one must first note
that the adaptation effects are measured relative to a
nonadapted baseline of responding. For example, in
the top panel of Figure 9b, baseline responding to the
global average (the 0% point) does not favor either
the parent or anti-parent identities, as both of them
have the same value (solid lines, which cross at 0%).
After adaptation to the anti-parent, there is a drop
in responding in the corresponding channel (dotted
yellow curve), resulting in a bias to identify the parent
at the global average. Now switch your attention to the
bottom panel of Figure 9b. Here, baseline responding is
already biased toward identification of the parent face
(compare solid lines at 0%). After adaptation to the
anti-parent, the addition to this bias produced by the
drop in anti-channel responding is equivalent to that
observed in the untrained condition.

Something different happens when the parent is the
adaptor and the effect is measured for identification
of the anti-parent. Without training, the situation is
the same as before. However, after training, there is a
baseline bias to identify the average as the parent, and
the effect of adaptation is simply to get rid of that bias,
rather than creating a new bias toward identifying the
anti-parent. Thus, the adaptation effect is smaller than
in the untrained condition.

Finally, the model reproduces a below-zero category
adaptation effect in the untrained group and above-zero
adaptation effect in the trained group, also observed in
both Experiments 2a and 2b. In the untrained group,

adaptation to one of the parent’s simply produces a
strong bias to choose its anti-parent. This produces a
general drop in all other choices, including the choice of
the second parent of the category-relevant dimension.
This is how the category adaptation effect ends up being
negative in the untrained group. The same process
occurs in the trained group, but now categorization
has created a baseline bias toward identifying either of
the parents of the category-relevant dimension. Thus,
when responding in the channel preferring one of the
parent’s drops, responding in the channel preferring
the other parent is now relatively strong, producing an
adaptation effect. However, the effect is not very large,
as the tendency in norm-based encoding is to often
choose the anti-parent when a parent has been adapted.

If the dimension enhancement hypothesis presented
in Figure 9 is correct, then one consequence is that
categorization training should increase the baseline
proportion of identifications of the parent faces and
reduce the baseline proportion of identifications of
the anti-parent faces. We performed a 2 (Group) ×4
(Choice: Parent A, Parent B, Anti-parent A, and
Anti-parent B) mixed-effects ANOVA with proportion
of choices during baseline as dependent variable and
found a significant interaction effect, F(3, 144) = 4.453,
p < .01. The interaction was due to an increase in
responding to Parent A and a decrease in responding
to Anti-parent A as a result of categorization training,
partially confirming the prediction of the model
presented in Figure 9, but suggesting that categorization
training might affect the representation of one of the
parent faces more than the other. Related asymmetrical
results have been observed before (Soto, 2019), and
they suggest that what is learned during categorization
training is to extract evidence for the presence of one of
the parents and choose that parent when the evidence
is high and the other parent when the evidence is
low (i.e., solving the categorization task based on the
“Adamness” of the presented faces). The model results
presented in Figure 9 assume equivalent effects in the
encoding of both parents of the category-relevant
dimension, so clearly a better implementation of the
model and a more systematic exploration are necessary.

We must highlight that the results in Figure 9 are
presented as a proof of concept rather than as a
full-fledged model of dimension differentiation. Such a
theory would require additional details in the model
(e.g., modeling neural noise and a choice rule capable of
handling such noise). Ideally, the theory would be able
to explain additional results in the literature. For that to
happen, the model might require a better formalization
of representations in face space than what is presented
in Figure 9. That is, the model presented in the figure
works by simply focusing on a couple of dimensions
embedded within a large multidimensional space of
face features. If such space were explicitly modeled,
it would allow, for example, generating predictions
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not only about the results at the global average, but
also at the category average (i.e., the bottom rows of
Figures 7 and 8, which were not simulated here). There
are multiple ways in which a multidimensional face
space has been modeled in the previous literature. For
example, one can use a relatively arbitrary face space
(Ross et al., 2013), a space created through principal
component analysis of actual face images (Turk &
Pentland, 1991), or a space of face-selective units at
the end of a hierarchical feedforward model of the
ventral visual stream (Giese & Leopold, 2005; Jiang
et al., 2006). Multiple channels should be modeled
rather than only two, with each channel’s tuning
function, as well as internal noise, defined within the
high-dimensional face space (Giese & Leopold, 2005;
Ross et al., 2013). Finally, implementing the dimension
enhancement hypothesis in a multidimensional space
would be more complex than in the simple model
presented in Figure 9, with the scaling mechanism
influencing multiple channels distributed around the
parent faces. The development of a full computational
theory is outside the scope of the current study, and the
model presented in Figure 9 should be taken only as a
working hypothesis.

However, at least intuitively, this hypothesis seems
able to explain other results in the literature. For
example, if the two parents of the category-relevant
dimension are perceived more easily from ambiguous
stimuli, this would explain the observed increase in
discriminability along the category-relevant dimension,
or acquired distinctiveness (Folstein et al., 2012, 2013,
2014; Goldstone & Steyvers, 2001; Van Gulick &
Gauthier, 2014). This facilitated perception might
also interfere with the extraction of information
about other, category-irrelevant features, resulting
in acquired equivalence. A combination of both
effects would explain an increase in invariance of the
category-relevant dimension (Soto & Ashby, 2015;
Soto, 2019). The dimension enhancement hypothesis
would also explain why categorization training does not
dramatically change templates for face identification
but rather seems to strengthen features of already
existing identity representations, as shown by reverse
correlation (Soto, 2019).

Category learning is usually faster and more
generalizable when the category bound aligns with
a preexisting dimensional structure in the stimuli.
Morphed face dimensions lack such dimensional
structure, but they appear to acquire it on-the-fly during
training in a categorization task (Soto & Ashby, 2019).
The dimension enhancement hypothesis would explain
why such learning of representations that support
categorization is so fast, as it would require only the
modification of already existing representations rather
than the creation of new representations.

The results presented here and the model sketched
in Figure 9 are in line with the functional MRI results

reported by Brants et al. (2016). These authors trained
a classifier to decode novel object categories using
patterns of activity from high-level visual cortex
obtained before categorization training and tested this
pretrained classifier with patterns of activity obtained
after categorization training. The dimension creation
hypothesis predicts that generalization from pre- to
post-training data should be difficult. On the other
hand, the dimension enhancement hypothesis predicts
strong generalization from pre- to post-training data,
which is exactly what Brants and colleagues found.

Our conclusion is also in line with an assumption
of the face-space theory of face representation, which
proposes that dimensions in face space are scaled to
optimize discrimination based on experience (Valentine
et al., 2016). Originally, this assumption was used to
explain the other-ethnicity effect, in which people
are worse at identifying faces from other ethnicities
than faces from their own ethnicity, probably due
to a difference in experience with each group. One
way in which the scaling of dimensions in face space
might occur is as a result of categorization training.
Categorization might promote rescaling of dimensions
that enhances between-category discriminability and
reduces within-category discriminability, especially if
it is not accompanied by other tasks requiring more
fine-grained identity discrimination.

Brain mechanisms of dimension differentiation

As indicated earlier, it is commonly assumed that
representations such as those shown in Figure 9 are
stored in face-selective areas within inferior temporal
cortex, at the latest stages of processing in the visual
ventral stream. An important question then is whether
the current literature on learning-related changes
within inferior temporal cortex provides clues about the
neurocomputational mechanisms underlying dimension
differentiation and whether they agree with a dimension
enhancement hypothesis.

There is evidence that, when stimuli vary along
already existing separable dimensions, neurons in
inferior temporal cortex become more selective to
features of complex stimuli that are diagnostic of
category membership, including faces (De Baene et al.,
2008; Sigala & Logothetis, 2002; see also Ester et al.,
2020). This is in line with the dimension enhancement
hypothesis, but an important problem is that morphed
dimensions, such as those used here and in previous
studies on dimension differentiation, are known to be
integral (Blunden et al., 2015; Goldstone & Steyvers,
2001; Soto & Ashby, 2015).

Early studies using such integral morphed dimensions
found small effects of categorization on tuning of
inferior temporal cortex neurons, which could be
explained as resulting from the neurons’ selectivity to
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visual shape and simple familiarity with the testing
stimuli (Freedman et al., 2003, 2006). A problem with
these and similar studies was their use of morphing
techniques that are now known to not produce
dimension differentiation according to psychophysical
tests (Folstein et al., 2012). Without such perceptual
effects, there is little reason to expect the concomitant
changes in neural encoding. In a human neuroimaging
study, Folstein et al. (2013) showed that, when the
correct morphing procedures are used, not only are
changes in early visual cortex observed, but they are
found during a task that is different from the trained
categorization task (but see Liu & Jagadeesh, 2008, for
a case in which such transfer was not observed).

While neuroimaging studies such as that of Folstein
et al. (2013) are in line with the hypothesis presented in
Figure 9, they do not provide strong support for such a
model over alternatives. More research will be necessary
to understand the neurocomputational mechanisms
underlying dimension differentiation and whether the
dimension enhancement hypothesis is in line with
them.

What about changes in readout?

A popular hypothesis regarding the mechanisms
of perceptual learning is that, rather than involving
changes in the neural populations encoding the
relevant stimuli, they involve changes in the way neural
populations in later stages of decision processing use
the information from the visual encoding populations,
what is usually called “readout” mechanisms of
learning (e.g., Kahnt et al., 2011; Law & Gold, 2010;
Petrov et al., 2005). For example, the model presented
in Figure 9 would make the exact same predictions
if no changes are assumed in the neural channels
encoding the parent faces, but their output was scaled
by the readout mechanisms in charge of producing a
behavioral decision. Thus, one question that remains
to be answered is whether the changes observed in
dimension differentiation can also be explained as the
result of changes in readout, rather than as changes in
existing codes as we have hypothesized here.

There are two reasons to believe that the perceptual
changes observed after categorization training with
morphed faces and other objects are not due to readout
mechanisms. First, the effects of categorization are not
task specific, but they transfer from a categorization
task to unrelated tasks, both in psychophysical (e.g.,
Goldstone & Steyvers, 2001; Folstein et al., 2012; Soto
& Ashby, 2015; Soto et al., 2017) and neuroimaging
(Brants et al., 2016; Folstein et al., 2013) studies.
Readout is usually considered task specific, as different
tasks are solved optimally using different sources of
information. The second reason is that neuroimaging
studies have shown that one of the effects of object

categorization training is a change in representations
located in high-level visual cortex (e.g., Brants et al.,
2016; Folstein et al., 2013). Thus, the enhancement
hypothesis presented in Figure 9 seems more in line with
the body of results than a readout hypothesis, although
more research directly comparing the predictions of
both hypotheses is necessary.

Differences with encoding of natural face
categories

Natural facial categories such as gender, ethnicity,
and expression seem to be encoded independently from
identity, involving distinct neural populations and their
own category-specific norms. Such natural categories
also show adaptation effects (Benton et al., 2007;
Hsu & Young, 2004; Rutherford et al., 2008; Webster
et al., 2004). That is, adaptation to one category
value (e.g., male, Caucasian, or disgusted) changes
recognition of ambiguous faces away from the adaptor
(e.g., ambiguous faces look more female, Asian, or
surprised). Those adaptation effects survive changes in
identity between the adaptor and the probe stimuli,
suggesting that they are not simply due to identity
adaptation effects (e.g., Webster et al., 2004; Fox &
Barton, 2007).

Several natural face categories seem to be encoded
via norm-based opponent channels. For example,
adaptation to antiexpressions (created by using an
average expression) biases perception toward its
corresponding expression, with the effect being stronger
when the antiexpressions are farther away from the
average, as expected from norm-based coding (Rhodes
et al., 2017; Skinner & Benton, 2010). Also in line
with norm-based coding, expression aftereffects are
specifically in the direction away from the adaptor and
toward the average expression (Cook et al., 2011). There
is also some evidence that gender encoding is norm
based, as the gender adaptation aftereffect is stronger
when the adaptor is farther away from the average
(Pond et al., 2013).

Thus, on the one hand, natural categories seem to
possess their own category-specific codes and norms,
independent from identity codes and norms. On the
other hand, categorization training does change the
perceptual representation of the face identities involved,
but our results suggest that it does so by modifying the
already existing identity code, rather than creating new
codes and norms. Why would natural face categories
and artificial face categories behave differently? An
important point is that natural categories involve much
larger variation in identity than what can be obtained
using morphed face dimensions (Soto, 2019). That
is, natural categories involve very large perceptual
differences between categories and also large perceptual
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differences within each category. On the other hand,
as it is evident from the stimuli shown in Figure 1,
morphed face dimensions provide a rather compact
perceptual space, in which between-category and
within-category variability is small and initially hard to
perceive.

A challenge for future work is to develop artificial
categorization tasks that involve completely novel face
dimensions but also reproduce the larger variability
observed in natural categories. For this, one exciting
possibility is to move from the use of morphing to
the explicit manipulation of three-dimensional face
models within a parameterized face space (Hays
et al., 2019). This would not only ensure that the
tasks are more natural but also facilitate experimental
design and data collection. The categorization task
used here is extremely difficult to master (this is
easy to see from Figure 1), and even with very
extensive training, a number of participants are
excluded due to low performance. Similarly, the use of
morphing to create the cross-adaptation test stimuli
in Experiment 2b produced a trade-off between the
inclusion of information about the relevant and
irrelevant dimensions. This is very different from prior
examples of cross-adaptation designs in the literature,
in which the relevant and irrelevant dimensions are
truly orthogonal (Ellamil et al., 2008; Fox & Barton,
2007; Fox et al., 2008; Webster et al., 2004). The explicit
manipulation of three-dimensional face models would
allow us to solve these and similar methodological
issues.

Conclusion

In summary, here we used face adaptation aftereffects
to explore how categorization training changes the
encoding of face identities at the extremes of the
category-relevant dimension. Across experiments,
the pattern of results suggests that categorization
training produces enhancement of already existing
dimensions in face space, rather than creation of new
category-relevant dimensions. We formalized this
hypothesis in a model that explains the most important
results in our experiments (see Figure 9) and serves as
a working hypothesis for future work in this area. The
data and model presented here represent a departure
from the most popular interpretation of results from
dimension differentiation studies, and we hope that it
will motivate new experimental and theoretical research
aimed at better understanding the neurocomputational
mechanisms behind perceptual changes produced by
categorization training.

Keywords: categorization, face identity, face encoding,
adaptation
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Appendix

The model used to create Figure 9 assumes that the
two parents of the category-relevant dimension and
their anti-faces are each encoded along a dimension that
crosses the average in face space, which is a common
assumption in studies of encoding of face identity. Each
face/anti-face pair is encoded through two channels
with opponent stimulus preference, each responding
maximally to one of the faces, as shown by the solid
curves in Figure 9b. The response of each neural
channel as a function or morph level is characterized by
a logistic function:

fc(s) = amax
c

1
1 + exp (qc (sc − s))

, (A1)

where amax
c represents the maximum neural activity for

channel c, sc is a position parameter that represents
the value of expression intensity where the curve is
midway between zero and amax

c , and qc is a parameter
determining the slope of the logistic curve. There were a
total of four channels c, one for each face and anti-face
presented in Figure 2.

The untrained model (solid curves in Figure 9b, top)
had parameters amax

c = 20, sc = 0, and qc = 3. The
trained model (solid curves in 9b, bottom) had the
same parameters, with the exception that the channels
whose preferred stimuli were the two parents of the
category-relevant dimension (c = 1, 2) had an increased
amax
c = 40, which produced an overall scaling up of the

channels’ responses.
Adaptation was simply modeled as a scaling down of

the responses of the channel whose preferred stimulus
was the adaptor (see dotted curves in Figure 9b). The
adapted amax

c was half the value of the nonadapted
amax
c .
The participant’s task in Experiments 2a and 2b was

to identify whether a presented face was Parent A or B
of the category-relevant dimension or their anti-faces,
each with a different name. Because information
about each identity in this model is assumed to be
dependent on two channels (the identity channel and
its anti-identity channel), we first computed decision
variables di = fi (s)

fh(s)
, where i and h represent the channel

and anti-channel encoding a given identity i. From
these decision variables, we computed the probability
of each response ri given the presentation of stimulus s
using a simple ratio rule (Luce, 1959):

P (ri|s) = di (s)
4∑
j=1

d j (s)
. (A2)

Adaptation scores were computed from these
response probabilities in the same way in which they
were computed from response proportions in the data
analysis of Experiment 2.


