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Abstract 

There is considerable evidence that many disease are associated with endothelial dysfunction and 

reduced nitric oxide production such as hypertension, obesity, dyslipidemias, diabetes, heart failure, 

atherosclerosis. Notably these conditions are also characterized by alteration in the adrenergic tone. 

Whether these two mechanisms are just epiphenomenal each other or there is a functional link, it is 

still to be established. A starting ground to establish this issue is that vascular endothelium plays an 

important role in the function of cardiovascular system and that adrenergic receptors on endothelial 

cells contribute to the regulation of vasomotor tone. The aim of this excerpt is to review current 

knowledge on the physiology of endothelial adrenergic receptors to contribute to the basis for newer 

and better approaches to endothelial dysfunction in the setup of cardiovascular conditions. 
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Introduction 

The endothelium controls several vascular functions, including vasculature tone and permeability, 

thrombosis, hemostasis and angiogenesis
1-4

. It is noteworthy that all these functions can be 

regulated by the activation of receptors and often the same receptor can activate multiple 

endothelial functions. The adrenergic system is the major regulator of cardiac and vascular function 

and of endothelial vasorelaxation by means of  and  adrenergic receptors activation. The 

adrenergic receptors (ARs) are part of a large family of G protein coupled receptors (GPCR) which 

mediate the functional effects of catecholamines like epinephrine and norepinephrine. The ARs 

family includes three  (1, 2, 3), three 1 (1A, 1B, 1D) and three 2 (2A, 2B, 2C) receptor 

subtypes. These receptors actively participate to the release of nitric oxide (NO) in order to regulate 

endothelial function
5
. NO plays a crucial role in endothelium homeostasis, with important 

vasodilatory, anti-thrombotic and anti-atherogenic properties. NO mediates most of the endothelial 

functions: it has been invoked as a mechanism in vasorelaxation, endothelium permeability and 

neoangiogenesis
3
. NO in the endothelium is constitutively produced by the endothelial NO 

synthase, eNOS
6
. This latter is then further activated through calcium levels 

7
 and phosphorylation 

of various serine residues by a number of protein kinases 
8, 9

. Indeed, it has been demonstrated that 

NO is activated by means of the PI3K pathway in response to the stimulation of tyrosine kinase 
10, 

11
.  

The impaired ability of vascular endothelium to stimulate vasodilation is referred to as “Endothelial 

Dysfunction” and the major cause is the decreased bioavailability of NO in different conditions 

which can be due to various mechanisms: reduced eNOS expression, altered NO production and 

increased NO catabolism. Endothelial dysfunction plays a key role in the development of 

cardiovascular disease such as hypertension, type 2 diabetes and heart failure. The identification of 

the underlying pathogenic mechanisms will lead to the discovery of newer and more potent tools to 



Translational Medicine @ UniSa, - ISSN 2239-9747 2011, 1(1): 213-228 

 

216 
Università degli Studi di Salerno 

treat such diseases. On this issue, endothelial dysfunction has been associated to signal transduction 

abnormalities observed in hypertension. In particular, adrenergic vasorelaxation has been 

demonstrated to be impaired in hypertensive patients, probably due to the presence of increased 

desensitization and impaired signalling of AR. Adrenergic receptors on endothelium have been 

longely not considered functional to the regulation of the vascular tone. On the contrary, it is 

possible to identify very specific roles for such receptors in several endothelial function. This 

review will summarize the effects of adrenergic receptors on endothelial functions, focusing on 

modulation of NO synthesis and angiogenesis.  

 adrenergic receptors 

AR are GPCRs that couple to Gq protein. The Gq subunit is a primary activator of 

phospholipase C (PLC). Activation of PLC promotes the cleavage of the inositol substrate 

phosphatidyl-inositol 4,5 bisphosphate (PIP2) to yield diacylglycerol (DAG) and inositol 1,4,5-

trisphosphate (IP3). DAG and IP3 promote the activation of a protein kinase C (PKC). 1AR can 

also activate specific adenylate (adenylyl) cyclases (AC) leading to an increase in cAMP levels. The 

activation of specific PLCs and ACs requires a complex balance of signals from G-proteins, 

especially the G subunits, within specific cell contexts. DAG and cAMP are second messengers 

that affect a wide array of cell signaling pathways and responses.  

1. 1AR and Nitric oxide 

Several reports 
12, 13

 have produced evidence for the functional presence of vasorelaxant 1AR in 

the brachial and pulmonary arteries isolated from the rabbit and rat, respectively. According to these 

reports, the pharmacological stimulation of 1AR located on endothelial cells, is able to generate 

NO, whereas the stimulation of 2AR releases a relaxing prostanoid
12, 13

. Filippi demonstrated that 

nanomolar concentrations of phenylephrine, which are devoid of any contractile effect, induced a 
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slight endothelium-dependent vasorelaxation in the rat mesenteric vascular bed through the 

stimulation of 1DAR, located on endothelial cells, which act through phospholipase C stimulation, 

followed by IP1 generation, and nitric-oxide synthase activation. Conversely, the increase in 

perfusion pressure induced by micromolar concentrations of phenylephrine is attributable to the 

stimulation of 1AAR
14

. 

2. 1AR and angiogenesis 

Neo-angiogenesis has long been known to be a highly ordered multistep molecular process under 

tight regulation by endothelial cells
15

 and closely associated with endothelial cell proliferation and 

migration and to the capability of these cells to modulate the levels of VEGF, the most important 

cytokine system involved in the formation of new vessels
16

. A series of biological, chemical, 

hormonal effectors can interfere with this process. Several data support the notion that α1-

adrenergic receptor should also be ranked among these agents. Indeed, it has been demonstrated that 

the 1A- and the 1B-AR subtypes but not the 1D subtype are expressed in cultured rat aorta 

endothelial cells. The activation of these 1-AR in endothelial cells provide a negative regulation of 

angiogenesis
17

. Indeed, pharmacological antagonism of 1-AR in endothelial cells from WKY rats 

by doxazosin enhanced, while stimulation of these adrenergic receptors with phenylephrine, 

inhibited endothelial mechanisms of angiogenesis such as cell proliferation and DNA synthesis, 

ERK and retinoblastoma protein (Rb) phosphorylation, cell migration and tubule formation
17

. A 

similar phenotype can be observed in vivo, since an increased 1-adrenergic receptor density in the 

ischaemic hindlimb, compared to non-ischaemic hindlimb, suggested an enhanced 1-adrenergic 

receptor tone in the ischaemic tissue. Treatment with doxazosin did not alter systemic blood 

pressure but enhanced neo-angiogenesis in the ischaemic hindlimb
17

. 
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3. 2ARand Nitric oxide 

It has been demonstrated that 2 adrenergic agonists cause endothelium dependent relaxation, that is 

reduced or abolished by inhibitors of L-arginine/NO pathway. It depends on the activation of 2AR 

on endothelial cells which stimulates the release of NO, an action that would tend to attenuate 

vasoconstriction produced by the activation of post-junctional vascular 1AR
18-20

. The 2AR 

subtype that cause endothelium dependent relaxation belongs to the 2A/D subtype, despite the 

prominent presence of 2CAR (77% of 2C versus 23% of 2A/D)
21

. It appears that this ratio may not 

be constant, since it varies within the vascular bed. Indeed, Bockman demonstrated that in the rat 

mesenteric artery the 2AR is coupled to endothelium dependent NO-mediated relaxations and 

belongs to the 2A/D subtype appearing in its 2D version 
22

. It has been demonstrated that 

endothelium dependent relaxation to 2 adrenergic agonists is prevented by pertussis toxin 
23-28

, 

suggesting the involvement of Gi proteins in the signal transduction from the receptor to the 

activation of nitric oxide synthase 
29, 30

. Indeed, 2 adrenergic agonists cause activation of Gi 

proteins in endothelial cells and stimulate NO synthase activity 
31, 32

. Contrary to what expected, 

cAMP is not involved in the signal transduction pathway for 2A/DAR mediated NO formation 
22

. 

Indeed, the use of forskolin to oppose 2 adrenergic receptor mediated inhibition of cAMP 

formation in endothelium did not affect the relaxant response to 2AR agonists, suggesting that 

cAMP is not involved in the coupling of 2AR to NO. There are physiological modulation of 

endothelium dependent relaxation to 2 adrenergic agonists. Such relaxation is upregulated by 

chronic increase in blood flow 
33

 or exercise training 
34

. Insulin enhances NO mediated 

vasorelaxation both in animal 
25

 and human 
32

 vasculature.  
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-adrenergic receptors 

ARs signal by coupling to the stimulatory G protein, Gs, leads to the activation of adenylyl cyclase 

and accumulation of the second messenger cAMP
35, 36

. However, recent studies indicate that under 

certain conditions AR, and particularly AR, can couple to Gi as well as to Gs 
37-41

. It is now 

widely accepted that AR exist on endothelial cells 
10, 38, 40, 42

 and contribute to the regulation of 

vasomotor tone. AR are classically known to be present in the vascular smooth muscle cells 

(VSMC) where they cause vasodilation. The relative relevance of endothelial VSMC in adrenergic 

vasodilation is demonstrated by the observation that, in presence of intact endothelium, 

vasorelaxation to AR agonist, isoproterenol (ISO), is sensitive to low doses of ISO (10
-10

M-10
-

8
M). On the contrary, in absence of endothelium, the vasorelaxation is sensitive to higher doses of 

ISO (10
-7

M-10
-5

M). This appears to hold true through experimental models (rat or man) and 

vascular districts (see Figure 1). 
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1. 1 and 2 adrenergic receptors 

It is now recognized that βAR located in the endothelium play an important role in the relaxant 

response to ISO, since the non selective β1-and β2-adrenergic receptor antagonist propranolol 

antagonized this relaxant effect
43, 44

. However, recent studies carried out in humans, in umbilical 

veins in vitro
10

or in the forearm in vivo
45

, showed that vasorelaxation to ISO is abolished by the 

selective β2AR antagonist ICI-118551 and remains unchanged in the presence of the β1AR 

antagonist CGP-20712, indicating that, as in the vascular smooth muscle cells 
46

, the endothelial 

βAR are totally or at least predominantly of the β2 subtype 
10, 45

.  

β2AR are seven transmembrane receptors coupled through Gs proteins to a cAMP dependent 

intracellular pathway
47

. It has been demonstrated that PKA posphorylation of the third intracellular 

loop of the β2AR increases the affinity of the receptor for Gi protein
48, 49

. This switch leads to two 

consequences: first, it decreases the rate of cAMP generation, since Gi activation inhibits adenylyl 

cyclase activity. Second, it increases non cAMP dependent signaling through Gi, such as activation 

of the extracellular signal-regulated kinases ERK1/2 and PI3K
50-54

. Gi coupled receptors have been 

shown to regulate non-receptor tyrosine kinases, such as SRC, which acts as an intermediate 

between Gi and other molecules like RAS and PI3K 
53, 55

. 

2. 2AR and Nitric oxide 

For years it has been given for granted that vascular β2AR mediate adrenergic vasorelaxation 

through direct activation of vascular smooth muscle cells
56

. However, recent data challenge this 

vision, and show that β2AR-dependent vasorelaxation is mediated at least in part, by endothelium 

through nitric oxide (NO) dependent processes
10

. We have recently demonstrated that the β2AR are 

expressed on endothelial cells (EC) and their stimulation causes endothelial nitric oxide synthase 

(eNOS) activation
57

. In particular, AR couple to eNOS and induce NO dependent vasodilation 
57

. 

The mechanism of eNOS activation following β2AR stimulation is known to be AKT dependent
58

. 
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Indeed, the activity of eNOS is regulated by both a calcium/calmodulin dependent fashion
59

and 

AKT dependent eNOS phosphorylation in Ser 1177 
8, 60-63

. AKT is primarily activated in response 

to stimulation of transmembrane receptors with intrinsic tyrosine kinase activity or indirectly 

coupled to tyrosine kinases or to seven transmembrane G protein-coupled receptor
11, 61, 64

. Therefore 

AKT acts as integrator of different signal transduction pathways converging on eNOS, including 

endothelial β2AR receptor
9, 58, 62, 63, 65

. 

3. 2AR and angiogenesis 

In the endothelium ARs control other important endothelial functions like angiogenesis, that is 

tightly associated to endothelial cell migration and proliferation 
57, 65, 66

. We demonstrated that 

AR stimulation with ISO and the overexpression of AR increases endothelial cell proliferation. 

Moreover, AR stimulation induces ERK phosphorylation and the MEKK inhibitor, U0126, 

inhibits AR induced cell proliferation 
66

 suggesting that AR dependent cell proliferation is 

dependent on ERK activation. We studied post-ischaemic angiogenesis in the hindlimb (HL) of 

β2AR knock-out mice (β2AR-/-) in vivo and explored possible molecular mechanisms in vitro. 

Angiogenesis was severely impaired in β2AR-/- mice subjected to femoral artery resection, but was 

restored by gene therapy with ADβ2AR. The proangiogenic responses to a variety of stimuli were 

impaired in β2AR-/- EC in vitro
17

. Moreover, removal of β2ARs impaired the activation of NFκB, a 

transcription factor that promotes angiogenesis; ISO did not induce NFκB activation in β2AR(-/-) 

EC
17

. ADβ2AR administration restored β2AR membrane density and reinstated the NFκB response 

to ISO 
17

. These results suggest that β2ARs control angiogenesis through the tight regulation of 

nuclear transcriptional activity. 
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 

5. 1ARand 2AR differently regulate neo-angiogenesis 

α1- and β2-adrenergic receptors mediate opposite effects on neo-angiogenesis, comparable to their 

regulation of the vascular tone. In particular, the α1-AR is inhibitory, whereas the β2-AR is 

stimulant to neo-angiogenesis. Interestingly, in ischaemia, the α1-AR are upregulated, thus causing 

a predominance of α1-adrenergic receptor signalling over that of β2-AR, which is downregulated. 

Furthermore, in conditions such as hypertension, where the α1-AR tone is higher than that of the β2-

AR, there is also an impairment in neo-angiogenesis 
66, 67

. It is interesting to note that in the 

ischaemic hindlimb, α1-AR blockade resulted in a normalization of β2-AR density together with 

improved neo-angiogenesis. α1-AR upregulation, in particular, might be a regulatory mechanism 

aimed at preventing excessive angiogenesis. This upregulation might be triggered by ischaemia, 

through regulatory sequences within the gene promoter, which have been demonstrated for both the 

α1A- and α1B-adrenergic receptor
68, 69

. 

 

6. 3 adrenergic receptors 

In rat thoracic aorta, Trochu showed that 3AR are mainly located on endothelial cells and act in 

conjunction with 1AR and 2AR to mediate relaxation through activation of NO synthase pathway 

and subsequent increase in tissue cyclic GMP content and is reduced by endothelium removal or in 

presence of L-NMMA 
70

. This 3AR mediated aorta relaxation seems to be independent of Gi 

proteins stimulation, since the blockage of Gi protein by PTX does not modify 3AR agonists 

induced relaxation. On the contrary, selective potassium channels blockers of K (Ca), K (ATP) and 

K (v) decreased 3AR agonists induced relaxation. So it appears that this effect results from the 

activation of several potassium channels, K (Ca), K (ATP) and K (v) 
71

.  
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Pathological implications 

It was reported that noradrenaline-induced release of nitric oxide is enhanced in mineralcorticoid 

hypertension 
72

 indicating that 2AR may play an important role in the regulation of vascular tone 

not only in physiological but also in pathological conditions. The implications of impaired βAR 

signalling in the pathophysiology of several cardiovascular disorders has been studied in animals 

and humans. Data from these studies indicate that changes in βAR function are induced by heart 

failure 
73, 74

 and hypertension 
75, 76

. Moreover, alteration in βAR function were found also with 

physiological aging 
77, 78

, due to receptor downregulation and desensitization. Exercise restored the 

impaired signalling and AR dependent vasorelaxation
79

. We and others have observed that 

impaired βAR signalling may account for dysfunctional βAR vasorelaxation in hypertension. In this 

condition, β2AR overexpression in hypertensive rat carotids corrects impaired vasorelaxation to 

AR stimulation to levels similar to those seen in normotensive rats
57

. We proved that impaired 

endothelium dependent vasorelaxation in spontaneously hypertensive rats (SHR) can be corrected 

by increasing the signal transduction pathways leading to nitric oxide synthase activation 
80

. In 

particular, since eNOS is activated in response to phosphorylation by AKT and impaired AKT 

activity is involved in endothelial dysfunction, AKT overexpression should result in the correction 

of impaired phenotype. Indeed, insulin and ISO cause AKT membrane localization and this 

subcellular localization is impaired in SHR. AKT overexpression, through means of adenovirus 

mediated AKT gene transfer to the endothelium, increases the amount of AKT localized to the 

membrane and corrects impaired NO release and endothelium dependent vasodilation to agonists of 

both the GPCR and tyrosine kinase (TK) dependent pathways.  

Conclusions 
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In the last years great advances have been made in the study of adrenergic receptors signaling and 

function in the endothelium also thanks to the development of new technologies. Indeed, genetic 

mouse models have significantly improved our understanding of the mechanisms of action of 

specific drugs in vivo. The ability to induce transgene expression at defined times or in defined 

tissues is an important goal as well as the ability to induce or repress the expression of endogenous 

genes in a developmental or tissue specific fashion. Indeed, deletion of the genes encoding for 

adrenergic receptor subtypeshas helped to identify the specific subtypes whichmediate in vivo 

effects of specific drugs. Thus, the combination of molecular biological, genetic, and 

pharmacological techniques greatly facilitates our understanding of adrenergic receptor function in 

vivo, and in turn leads to more effective and specific therapeutic treatment in humans. ARs, for 

instance, are already target of therapeutic intervention in many diseases: AR stimulation in asthma 

and obesity or AR blocking in hypertension and coronary insufficiency. In conclusion, giving the 

importance of endothelial function in most physiological and pathological conditions, it is clear that 

the increasing knowledge of adrenergic receptors function in the endothelium is helpful for future 

progresses in clinical application.  
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Legend 

Figure 1: AR vasodilation is impaired in hypertension: A) In hypertensive patients, forearm 

vasodilation to ISO yielded an increase in forearm blood flow that was significantly lower to that 

observed in normotensive patients, at each dose of ISO. B) In hypertensive rats SHR, AR-induced 

vasorelaxation to ISO in control-treated carotids was significantly impaired compared with that 

observed in normotensive WKY(* F= 5.756,  p< 0.01, 2-way ANOVA). 


