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Most machine learning-based methods predict outcomes rather than understanding
causality. Machine learning methods have been proved to be efficient in finding
correlations in data, but unskilful to determine causation. This issue severely limits the
applicability of machine learning methods to infer the causal relationships between the
entities of a biological network, and more in general of any dynamical system, such as
medical intervention strategies and clinical outcomes system, that is representable as a
network. From the perspective of those who want to use the results of network inference
not only to understand the mechanisms underlying the dynamics, but also to understand
how the network reacts to external stimuli (e. g. environmental factors, therapeutic
treatments), tools that can understand the causal relationships between data are highly
demanded. Given the increasing popularity of machine learning techniques in
computational biology and the recent literature proposing the use of machine learning
techniques for the inference of biological networks, we would like to present the challenges
that mathematics and computer science research faces in generalisingmachine learning to
an approach capable of understanding causal relationships, and the prospects that
achieving this will open up for the medical application domains of systems biology, the
main paradigm of which is precisely network biology at any physical scale.
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1 INTRODUCTION

The availability of big data, the use of (deep) machine learning techniques to process them, and
consequently the opportunity to access and/or perform high-performance computing are becoming
of crucial importance for biology (Xu and Jackson, 2019), medicine and healthcare (Bates et al., 2020;
Prosperi et al., 2020). Machine learning aims to develop computer algorithms that improve with
experience and with the use of data. Nowadays, machine learning techniques are integrated with
bioinformatic methods, as well as curated databases and biological networks, to enhance training and
validation, identify the best interpretable features, and enable feature and model investigation
(Auslander et al., 2021). This integration is not without its challenges and hurdles to overcome, but it
is an endeavour that many researchers have decided to actively address given the tantalizing promise
of machine learning to enable sophisticated analysis of complex biological systems.

Inmolecular biology, machine learning techniques are used for the analysis of genome sequencing
data sets, including the annotation of sequence elements and epigenetic, proteomic or metabolomic
data (Libbrecht and Noble, 2015). Xu et al. (Xu and Jackson, 2019) provide a brief but comprehensive
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overview of the main uses of machine learning in genomic
applications. Machine learning has been used to predict the
sequence specificities of DNA- and RNA-binding proteins,
enhancers, and other regulatory regions (Libbrecht and Noble,
2015; Zou et al., 2018) on data generated by omics approach, such
as DNase I hypersensitive sites (DNase-seq), formaldehyde-
assisted isolation of regulatory elements with sequencing
(FAIRE-seq), assay for transposase-accessible chromatin using
sequencing (ATAC-seq), and self-transcribing active regulatory
region sequencing (STARR-seq). Machine learning in molecular
biology can be used also to build model to predict regulatory
elements and non-coding variant effects de novo from a DNA
sequence (Zou et al., 2018). Recently, machine learning
approaches have been used in population and evolutionary
genetics, to address questions such as the identification of
regions under purifying selection or selective sweep. Moreover,
machine learning approaches have been used to predict transcript
abundance (Washburn et al., 2019), imputation of missing SNPs
and DNA methylation states (Sun and Kardia, 2008;
Angermueller et al., 2017), and to accurately calling genetic
variants present in an individual genome from billions of
short full-of-errors sequence reads (Poplin et al., 2018).

From applications in genetics and genomics, machine
learning has quickly made the leap to applications in
medicine, to address disease diagnosis, disease classification,
and to precision medicine to assess disease risk, take preventive
measures, make diagnoses and define personalized treatment.
However, precision medicine, and more in general medicine, are
not only about predicting risks and outcomes, but also about
predicting clinical models. In this regard, Prosperi et al. (2020)
point out that interventional clinical predictive models require
the correct specification of cause and effect, and the calculation
of alternative scenarios. The deduction of cause and effect
relationships is generally done in experiments or with the
help of data-driven approaches. Many questions in
biomedical research can only be answered with observational
studies. Unfortunately, however, unlike controlled experiments
or well-planned, experimental randomized clinical trials,
observational studies are subject to a number of potential
problems that may jeopardize the reliability of their results.
Factors that may bias the results of observational studies include
selection bias resulting from the way study subjects are recruited
or from differing rates of study attendance depending on the
subjects’ cultural background, perception of the problem, age, or
socioeconomic status, information bias, measurement error,
and confounders (Hammer et al., 2009). Under these
conditions and without a substantial a priori knowledge,
causal inference is not feasible. On the other hand, data-
driven prediction models - often implemented by machine
learning algorithms - even assuming they are derived from
an experiment in which several bias were minimised, should
be used with great caution and their results should be subjected
to critical review before interpretation. Although these methods
are widely used to draw cause-effect relationships, attention
must be paid to the fact that neither their parameters nor their
predictions necessarily have a causal interpretation (Prosperi
et al., 2020). Therefore, the belief that data-driven prediction

models allow trustable decisions and efficient planning of
interventions for precision medicine, and in general, for
medicine, is doubtful.

The same problem can be found in molecular biology, where a
computational method for inferring biological networks, such as
gene regulatory, protein-protein, metabolic, and signalling
networks, has been sought for years since the emergence of
the paradigm of systems biology in the early 2000s. Critical
reviews and comparative analyses of the various methods that
have been proposed over the years can be found in various
reviews and research papers over the last 10 years, some of
which in these references (Veiga et al., 2010; Dongarra et al.,
2011; Oates and Mukherjee, 2012; Omony, 2014; Chang et al.,
2015; Zarayeneh et al., 2016; Angermueller et al., 2017; Liu et al.,
2019; Lu et al., 2021), who principally present data integrative
statistical methods and methods of network reconstruction and
causal contextualization of reconstructed networks. The
development of experiments which, especially in genetics and
genomics, manage to collect large amounts of heterogeneous
data, along with the today-real possibility of high-performing
computers and cloud parallel architectures have made it possible
to apply various machine (and deep) learning methods to the
problem of deducing causality relationships in a biological
network. Consequently, the scientific literature already
proposes several articles in which machine (and deep) learning
approaches are used and applied in the most appropriate ways for
the specific context of investigation.

Very recent contributions can be found in (Yuan and Bar-
Joseph, 2019a; Badsha and Fu, 2019; Kishan et al., 2019; Li F. et al.,
2020; Muzio et al., 2020; Yazdani et al., 2020) and a primer on
machine learning for life scientists, including an introduction to
deep learning can be found in (Kishan et al., 2019). In particular,
Camacho et al. (Kishan et al., 2019) discuss opportunities and
challenges of the application of machine learning to network
biology, and envisage the impact on disease biology, drug
discovery, microbiome research, and synthetic biology. The
reader can find a comprehensive review on the opportunities
of intersection between machine learning and network biology in
(Camacho et al., 2018). Machine learning approaches have been
used more for network reconstruction and network inference
than for causal inference, a task the latter of which has been partly
attempted to be solved by informing inference algorithms with a
priori knowledge about network nodes and edges. Nevertheless,
the current literature provides a very solid and promising basis
fromwhich to implement machine learning approaches for causal
discovery.

Despite the promising premises that these works hint at, it is
the opinion of many experts in artificial intelligence that—using
Schölkopf et al. (2021) words—if we compare what machine
learning can do to what animals accomplish, we observe that the
former is rather bad at some crucial feats where animals excel
(Schölkopf, 2019; Schölkopf et al., 2021). These crucial operations
include transfer to new problems, and any form of generalization
that is not from one data point to the next one (sampled from the
same distribution), but rather from one problem to the next one.
Schölkopf et al. (2021) also note that this is not surprising,
because machine learning often disregards information that
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animals use heavily, such as interventions in the world, domain
shifts, and temporal structure. When designing machine learning
algorithms, these factors are usually considered a nuisance and a
source of noise, and are therefore not included. Yet these same
factors are what would enable machine and deep learning
methods to infer causal structures.

Finally, as we will discuss later in the paper, we recall that in
any computational pipeline dedicated to causal inference,
methods of identifying causal variables are of strategic
importance. In this respect, there is already available a
literature of advanced computational methods and advanced
experimental technology. Noticeable findings that provide a
solid basis on which to develop new methods for the
identification of causal variables are, for example, studies
aimed at the identification of cancer biomarkers as the study
of Zhang et al. (2020a), who proposed a novel method for high-
throughput identification of cancer biomarkers in human body
fluids. Their use in research has increased greatly in current
research, given the importance of biomarkers in defining the
causal pathway of a disease (Mayeux, 2004). The method in
(Zhang J. et al., 2020) integrates physicochemical properties and
the weighted observed percentages and position-specific scoring
matrices profiles to enhance their attributes reflecting the
evolutionary conservation of the body fluid-related proteins.
The least absolute selection and shrinkage operator feature
selection are used to generate the optimal feature subset. By
the same author (Zhang et al., 2019), is a paper on the collection
of data also needed for the identification of the cancer
biomarkers, and another paper introducing and discussing
structure-trained predictors to predict protein-binding
residues. Zhang J. et al. (2017a) presented also a method to
detect bioluminescent proteins, that by virtue of their capability
of emitting lights, can be served as biomarkers and easily detected
in biomedical research, such as gene expression analysis and
signal transduction pathways. Zhang and co-authors in (Zhang
J. et al., 2017) collected a series of sequence-derived features
known to be involved in the structure and function of
bioluminescent proteins. These features include amino acid
composition, dipeptide composition, sequence motifs and
physicochemical properties. They found the combination of
four types of features that outperforms any other
combinations or individual features. To remove potential
irrelevant or redundant features, they introduced Fisher
Markov Selector together with Sequential Backward Selection
strategy to select the optimal feature subsets.

In this paper, some possible scenarios for the development of
current machine learning approaches towards machine learning
approaches capable of inferring causal relationships between
components of a biological system are presented. The paper
does not pretend to cover all the issues involved in the effort
to make machine learning capable of causality. Such an attempt is
largely impossible at present. In fact, it is only in recent years that
the use of machine learning techniques has become ubiquitous,
and so it is only now that its limitations are beginning to be
understood. However, we focus on a rather large and very topical
and timely slice of current research on causal discovery in
machine learning. i.e. the analysis of the issues and possible

perspectives that machine learning has in structural causal
model inference. Causal inference methods based on Pear’s
(Pearl, 2010) and other theoretical work with counterfactuals
and structural causal models (see a comprehensive summary of
them in (Nogueira et al., 2021) and a seminal works in (Andrieu
et al., 2003; Yin and Yao, 2016)) have recently paved the way for
the improvement of machine learning models, especially in
biology, biomedicine, and recently in epidemiology
(Triantafillou et al., 2017; Glymour et al., 2019; Castro et al.,
2020; Rivas-Barragan et al., 2020; Rose, 2020; Wilkinson et al.,
2020; Raita et al., 2021), the increment transparency of model
assumptions, and the help control for confounding variables, the
understanding of counterfactual reasoning, and ultimately the
increment of the understanding of the effect of training set
selection bias, and the causal discovery (Piraino, 2018).

The paper outlines as follows: Section 2 introduces some basic
concepts of machine learning and mathematics of structural
models and presents the current state of the art and the
possible imminent perspectives on the development of
machine learning methods for the learning of causal graphs.
In particular, the session proposes the perspective of a strong
coupling between meta-modelling and meta-learning to
overcome the current limitation of machine learning in
performing causal discovery. Section 3, comment on popular
machine learning algorithm who has been reformulated
specifically for causal discovery, deepens the perspectives
presented in Section 2, presents the possible difficulties and
proposes modular meta-leaning upstream of meta-modelling
as the next challenge and opportunity for the development of
machine learning that wants to perform causal inference. Finally,
Section 4 draws some conclusions. The perspectives presented
and discussed in this paper are conceived with particular
reference to biological networks of any scale (molecular,
cellular, ecosystem), but remain valid also in other research
areas where the problem of inferring causal relationships in a
dynamical system is posed.

2 MACHINE LEARNING AND STRUCTURAL
CAUSAL MODELS

A machine learning algorithm is a computer program that is able
to learn from data. Mitchell (Mitchell, 1997) provided this
definition: ”A computer program P is said to learn from
experience E with respect to some class of tasks T and
performance P, if its performance at tasks in T, as measured
by performance P, improves with experience E”. A variety of
experiences E, tasks T, and performance measures P, can be used
to build a machine learning algorithm (Goodfellow et al., 2016).
Learning is the ability to perform the task, which are usually
described in terms of how themachine learning should process an
example. An example is a set of features that have been
quantitatively measured from some object or event that we
want to process with machine learning. An example is usually
represented by a vector x ∈ Rn, whose entries are features.
Machine learning can perform many tasks, such as
classification, regression, transcription, machine translation,
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anomaly detection, imputation of missing values, de-noising,
probability density estimation (Goodfellow et al., 2016), but
causal inference is still a challenge for it, because of its
inability to implement a generalization from one problem to
the next, rather than a generalization from a data point to the next
(both sampled from the same distribution). Schölkopf et al.
(2021) use an evocative term for the first form of
generalization, that is “out-of-distribution” generalization. In
order to understand the nature of the problem more fully, it is
necessary to start with a formal description of a causal model,
which we briefly outline in the following subsection adopting a
notation similar to that of Schölkopf et al. (Schölkopf et al., 2021).
We then present some perspectives for machine learning of a
structural causal model.

2.1 Learning a Structural Causal Model: The
Present and the Perspectives
Consider a set of variables X1, . . . , Xn associated with the vertices
of a directed acyclic graph (DAG), and assume that each
observable is

Xi � fi(PAi;Ui). i � 1, 2, . . . , n (1)

where fi a deterministic function depending on Xi’s parents in the
graph (denoted by PAi) and noise random variable Ui. Directed
edges in the graph represent direct causation, since the parents
are connected to Xi by directed edges and through (1) directly
affect Xi. The presence of a noise term make Xi itself a random
variable, for which it is possible to define a conditional probability
distribution P (Xi|PAi) The noises U1, . . . , Un are assumed to be
jointly independent. If they were not, then by the Common Cause
Principle there should be another variable that causes their
dependence, and thus the model in (1) would not be causally
sufficient.

The graph structure along with the joint independence of the
noises implies the factorization of the joint probability P (X1, X2,
. . . ,Xn) into causal conditionals as follows (Schölkopf et al., 2021)

P(X1, X2, . . . , Xn) � Πn
i�1P(Xi|PAi)

� Πn
i�1P(Xi|Xi+1, Xi+2, . . . , Xn) (2)

The factorization decomposes the joint distribution into
conditionals corresponding to the functions fi in Eq. 1. These
assignments can be interpreted as the causal relationships
responsible for all statistical dependencies among the variables.
A structural causal model allows a straightforward formalization
of interventions as operations that modify the arguments of the
function fi in (1), e.g., changing Ui, or changing the functional
form of fi itself. In particular, changing the form of fi means
changing the dependency of Xi on its parents (Spirtes et al., 1993;
Neuberg, 2003; Schölkopf et al., 2021). It is worth to note that
there is a substantial difference between the statistical model and
the causal model. If we dispose of a causal model, by a learning
process, causal reasoning allows us to draw conclusions on the
effect of interventions, and potential outcomes. On the contrary,
statistical models only allow to reason about the outcome of
independent identically distributed experiments.

There are two fundamental elements in a structural causal
model: the graph and the functions fi, and then the fundamental
question to ask is whether it is possible to deduce from the data
both the graph and the functions fi. The question does not have an
easy answer considering the fact that the deducing the graph is in
general depending on deducing the functions. A common
method to infer the graph from data is performing conditional
independence tests, i.e. testing whether two random variables X
and Y are independent, given Z. The conditional independences
are implied by the causal Markov condition stating that if G is a
causal graph with vertex set V and P is a probability distribution
over the vertices in V generated by the causal structure
represented by G, G and P satisfy the Causal Markov
Condition if and only if for every X ∈ V, Y is independent of
V∖(Descendants(X) ∪Parents(X)) given Parents(X) (Hájek, 2011).
The causal Markov condition holds regardless of the complexity
of the functions appearing in an structural causal model
(Schölkopf et al., 2021), and this is definitely an advantage of
the condition independence tests. However, it is well-known that
testing for conditional independence is a hard statistical problem,
especially if Z is a continuous random variable (Shah and Peters,
2020). Another problem, highlighted by Schölkopf (Schölkopf
et al., 2021) is that in the case of only two variables, the ternary
concept of conditional independence is not applicable and the
Markov condition thus has no non-trivial implications. A
possible solution to both problems could be found by making
assumptions on the function in the structural causal model. This
is the route typically taken bymachine learningmethods. It is well
known that in absence of assumptions on the functions fi it not
possible to generalize finite-sample data. To better explain these
statements, let’s take a practical example.

A non-linear structural causal model is a generative process of
the following form (Galanti et al., 2020):

X ∼ PX

E ∼ PE

Y � g(f(X), U).
(3)

The functions g: RDf+DU →RDY and f: RDX →RDf are non-
linear unknown functions. Here, as in Eq. 1, X is the input
random variable andU is the noise variable that is independent of
X. We say that X ∈ RDX causes Y ∈ RDY if they satisfy a
generative process, such as Eq. 3.

For any joint distribution P(X,Y) of two random variables X
and Y, there is a structural causal model, Y � g (f(X),U), such that,
X ⊥ U and f, g are some measurable functions. Therefore, in
general, deciding whether X causes Y or vice versa is ill-posed
when only provided with samples from the joint distribution.
However, for the one dimensional case (i.e., X,Y ∈ R), under
reasonable conditions, a representation

Y � g(f(X) + U) (4)

holds only in one direction (Zhang and Hyvärinen, 2010). The
model for Y in Eq. 4 is an additive noise mode, and thus
represents a restricted class of functions f, The restriction is
considerable compared to the possibilities for f offered by
model in Eq. 3. Assuming a noise additive model make it
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easier to learn functions from data, and can break the symmetry
between cause and effect in the two-variable case. Schölkopf et al.
(Schölkopf et al., 2021) report several literature references
showing that given a distribution over X, Y generated by an
additive noise model, one cannot fit an additive noise model in
the opposite direction (i.e., with the roles of X and Y
interchanged). The assumption can be justified when the
function f depends weakly on U and U has a not too large
variance.

Restriction of function classes is not the only strategy to
simplify the causal structure inference. The so-called
“distribution-shifts”, i.e. observing the systems in different
environments and contexts may also help to infer causal
structure. Different contexts can come for instance from
different interventions and from heterogeneous non-stationary
data (Zhang K. et al., 2017). In a very general scenario different
contexts may require the execution of different tasks and, thus,
prepare the ground for the meta-learning, i.e. learning algorithms
that learn from the output of other learning algorithms. Meta-
learning is derived from meta-modelling with which it shares
many objectives. Both rely on meta-data, i.e. data that describe
other data, to model a predefined class of problems. Both are used
to define the output and input relationships and thenmay be used
to identify the best model representing the behaviour of the data
(Hartmann et al., 2019). Meta learning studies and approaches
has started in 1980s and became popular after Schmidhuber
(Schmidhuber, 2015) and Bengio’s works (Goodfellow et al.,
2016). The interest in meta-learning accelerated especially after
the massive use of deep learning and advanced machine learning
algorithms. The increment of the difficulties to train these
learning algorithms generated a stronger interest for meta-
learning studies. Currently, the major application domains of
meta-learning for machine learning in bioinformatics have been
genomic survival studies in cancer research (Qiu et al., 2020), and
the estimation of heterogeneous therapeutic treatment effects
(Künzel et al., 2019; Rivas-Barragan et al., 2020). Let us therefore
look in more detail at the methodology of meta-learning for
identifying causal directions.

An interesting prospect for meta-learning is the development
of methods for learning conditional probability functions rather
than fi functions. Learning probability models is a more general
approach than learning dynamical functions, it requires less a
priori knowledge, allows it to be questioned in the light of new
knowledge, thanks to Bayes’ theorem, and incorporates a
comparison of models and possible scenarios by comparing
the likelihoods of the models themselves. To learn the joint
distribution of two variables X and Y we can use their
conditional distributions pX|Y (X, Y) and pY|X (X, Y) alongside
their marginal distributions pX and pY. In a Bayesian framework,
we can write the following probabilities

PX→Y(X,Y) � PX→Y(X)PX→Y(Y|X)
PY→X(X,Y) � PY→X(Y)PY→X(X|Y)

Let us assume that the true causal direction is X → Y and
use the training distribution p0 (x, y) � p0(x)p (y|x),

Thereafter, the distribution is changed to the transfer
distribution p1 (x, y) � p1(x)p (y|x). According to a recent
methodology proposed by Wong et al. (Wong and Damjakob,
2021) both networks, X → Y and Y → X, are meta-trained to
the transfer distribution for N steps according to the
following two step process:

1) The relationship between X and Y is learned using two
models: one assumes X causes Y, the other the opposite
causal direction;

2) the distribution of X is changed to a transfer distribution. Both
models are retrained on the new data and the resulting
likelihoods are recorded.

The Resulting Likelihood Are

LX→Y � ΠN
n�1PX→Y,n(xn, yx), LY→X � ΠN

n�1PY→X,n(xn, yx),
(5)

where PX→Y,n denotes the trained Bayesian network after step n.
The loss function is calculated as

R(α) � log[σ(α)LX→Y + (1 − σ(α))LY→X] (6)

where α is a structural parameter defining the causal direction
and σ(·) is a sigmoid function. From Eq. 6, we can see that zRzα > 0 if
LX→Y < LY→X, i.e. if PX→Y is better at explaining the transfer
distribution than PY→X. Bengio et al. (Bengio et al., 2020) showed
that

EData_transfer log LX→Y( )[ ]>ED_transfer log LY→X([ ] (7)

where E[·] denotes the expected value, and Data_transfer is the
data drawn from the transfer distribution. Regarding Eq. 7, Wong
et al. (Wong and Damjakob, 2021) observed that as the loss
function modelling the correct direction (X → Y) only needs to
update its estimate for the unconditional distribution PX→Y(X)
from p0(x) to p1(x) while the reverse direction network (Y → X)
needs to change both PY→X(Y) and PY→X (X|Y), we indeed obtain
that the loss function for the correct direction has a lower
expected value. Then, in summary, the meta-training of the
candidate networks, the estimation of loss function, its
likelihoods and their expected values, provide a methodology
to recover causal directions.

The deduction of causal directions with meta-learning is still a
new research topic, but meta-learning is in perspective a very
promising approach to develop machine learning methods
capable of causal discovery. The greatest strength of meta-
leaning, as we could see in the works of Wong and Damjakob
(2021) and Bengio et al. (2020) here reported, lies in not
considering assumptions on the data distribution itself, but
rather on how it changes (e.g., when going from a training
distribution to a transfer distribution, due some agent’s
actions). However, there is a need to integrate meta-learning
into a composite upside-down framework that includes the
following phases in the following order: 1) meta-modelling. 2)
meta-learning, and finally 3) testing of classes of candidate
functions fi. Instead of posing the problem of learning the
causal graph as a problem of determining fi functions, one
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would pose it as an efficient process of learning for learning’s
sake, and only at the end of this process, once a set of causal
graphs has been obtained, e.g. according to schemes similar to
Wong’s (Wong and Damjakob, 2021), one proceeds to the
identification of the optimal fi functions for each of these
graphs. At this point the determination of the optimal fi
functions becomes a regression problem of the available
experimental data. Figure 1 illustrates a scheme of this
approach. Reducing the number of classes of functions in
order to allow more nimble machine learning upstream of
the whole learning procedure could create biases that are
difficult to identify. Indeed, it could happen that the
structure of the functions that is imposed at the beginning
for simplifying purposes is such as to supply an incorrect
causal model, precisely because it is too simplified or too
abstract and therefore far from the physical reality of the
task that one wants to learn. In these cases an evaluation of
the goodness of the learning method based on measures of
performance like the count of the false positives and false
negatives and/or on other classic tests could not reveal this
problem and in cases of very good performances it could even
lead to think that the functions fi are descriptive of the physical
process that governs the interactions among the nodes of
the graph.

In this new perspective the restriction of the classes of
function is the results of a discrimination among the fitting
classes of function, rather than an upstream simplification of
the learning process. The starting point is instead the

meta-modelling, i.e. construction and development of the
frames, rules, constraints, and theories applicable for
modelling a predefined class of problem. So, instead of
restricting the class of possible functions, we start by
considering a set of models for describing a class of
problems, which in the language of machine learning derive
from different contexts in turn obtained from different
interventions. Meta-learning is then applied to learn the
structural causal models outlined by meta-modelling.
Preceding the machine learning phase by the meta-modelling
phase could be a successful strategy to mimic the learning
patterns of humans. Using a metaphor to explain machine
learning from meta-models, we could say that people who
know how to drive a car can most likely figure out how to
drive a truck after a few instructions and a short demonstration.
This may be a loosening and pursuable perspective, but it is not
without its challenges. While meta-learning is evolving towards
causal discovery meta-learning, popular classification
algorithms, such as k-nearest neighbour (KNN), support
vector machine (SVM), and random forests (RF), have been
repurposed in the guise of causal KNN, causal SVM and causal
RF as we see in the following sections. The KNN agorithm is the
one whose mathematical specification has been most closely
adapted to develop its own version for causal inference, and it is
to this that we devote more space in the following. The other two
approaches have instead been used more in combination with
other techniques for causal inference in order to implement a
computational pipeline for causal inference.

FIGURE 1 | Outline of a computational procedure using upstream meta-modelling for the inference of causal structures. Meta-learning into a composite upside-
down framework that includes the following phases in the following order. Step 1: meta-modelling first provide candidate models; step 2: meta-learning is designed to
learn from data the conditional probability structure of these models where the structure and parameters of mathematical relations defining the interaction between
nodes (i.e. the functions fi, i � 1, 2, . . . ,MwithM the number of arc in the probability graph) are then determined by regressionmethods (step 3). By employingmeta-
modelling upstream to meta-learning, and meta-learning it-self in place of a direct application of machine-learning, this pipeline extends a typical machine learning
approach that generally poses the problem of structural causal discovery as a problem of learning the functions fi. In this pipeline, the determination of optimal fi functions
is posed as a regression problem once meta-modelling and meta-learning has identified wiring diagrams. The data are essential to the learning and regression
procedure. The data are typically divided into train set, test set and cross-validation set. Cross-validation is a resampling procedure used to assess machine learning
models on a limited data sample, and for the sake of simplicity in this figure is reported as a subset of the dataset. However, the procedure has a single parameter calledK
that refers to the number of groups that a given data sample is to be split into (for this reason for “cross-validation” it is usually meant K-fold cross-validation.). In K-fold
cross validation we have multiple (K) train-test sets instead of 1, so that we train and test the model K-times. The purpose of doing this is that in a single train-test split, the
test part of the data that we chosemight be really easy to predict and themodel will perform extremely well on it but not exactly so for the actual test sets. The image of the
laboratory in this figure is part of the Pixabay free online pictures (https://pixabay.com/it/).
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2.2 Causal K-Nearest-Neighbourhood
Zhou and Kosorok (2017) first and thenHitsch andMisra (Hitsch
and Misra, 2018) introduced a way to use KNN to causal
discovery. The method became rapidly popular and has
been implemented in common statistics software libraries
(see for example (Kricke and Peschenz, 2019)). In particular,
in the application domain of precision medicine, the first
proposed a causal k-nearest neighbour (CKNN) method to
estimate the optimal treatment regime and the causal
treatment effects within the nearest neighbourhood. The
purpose was to tailor treatments to individual patients to
maximize treatment benefit and reduce bad side-effects.
Nevertheless, Zhou and Kosorok (2017) method is also
applicable to biological networks, such as gene networks or
protein-protein networks, when one wants to identify nodes
or pathways affected by drug treatments or when one wants to
design drug repurposing strategies, or drug combination
prediction, and more in general to identify differences
between networks of different patients. In this respect, we
refer the reader to some significant recent studies such as
(Feng et al., 2017; Cheng et al., 2019; Hasan et al., 2020; Lu
et al., 2020; Adhami et al., 2021; Ruiz et al., 2021; Somolinos
et al., 2021). In this context, the crucial step is the treatment
selection rule, or optimal treatment regime. By “treatment
regime” we mean a decision rule that assigns a treatment to a
patient based on his or her clinical or medical characteristics.
Similarly, for a biological network by “treatment regime” we
mean a decision rule that assigns a therapeutic intervention
to a network based on the state of the network or some of its
pathways (e.g. altered pathways in disease state). In the next,
we describe and comment on how the decision rule is
constructed in a KNN method.

The KNN rule is a classification approach, where a subject is
classified by a majority vote of its k neighbours. As noted by Zhou
et al. (Zhou and Kosorok, 2017), the rationale of nearest
neighbour rule is that close covariate vectors share similar
properties more often than not. We briefly summarize causal
KNN method, using a notation similar to that of Zhou and
Kosorok (2017).

Consider a randomized clinical trial with M treatment arms.
Let R ∈ R denote the observed clinical outcome, A ∈ A �
1, . . . . ,M denotes the treatment assignment received by the
patient, and X � (X1, . . . , Xp)T ∈ X ⊂ Rp, where X is compact,

Hldenotes the covariates, describing the feature of a node (e.g.
the patient’s clinical covariates in a network patients-treatments,
or gene expression in a gene network, or protein concentration in
a protein-protein network). Let

πm(x) � P(A � m|X � x) (8)

denote the probability of being assigned treatment m for a node
with covariates x. In the Zhou et al. framework this probability is
assumed to be predefined in the design. Potential outcomes,
denoted by R*(1), . . ., R*(M), are introduced and are defined
as the outcomes that would be observed were a node to receive
treatment 1, . . . ,M, respectively. Very often in literature, we find
two assumptions regarding the potential outcomes:

1) Consistency assumption: the potential outcomes and the
observed outcomes agree, i.e.,

R � ΠM
m�1R

*(m)I(A � m)
where I(·) is the indicator function;

2) No unmeasured confounders assumption: conditional on
covariates X, the potential outcomes {R*(1), . . ., R*(M)} are
independent of the treatment assignment A that has been
actually received.

Let’s make some remarks on these assumptions right away.
We point out that it is often assumed that assumption two is valid
in the case of randomised trials, but this belief is debatable. We
consider it more prudent to state that in randomised trials the
number of unmeasured confounders is reduced, but not
completely eliminated and that, in any case, the influence on
the predictive ability of the algorithm is not only given by the
number of possible confounders, but also by their role in the
system studied.

Mathematically, a treatment regime d is a function from
covariates X to the treatment assignment A. For a treatment
regime d, we can thus define its potential outcome Let

R*(d) � ∑
M

m�1
R*(m)I(d(X) � m) (9)

be the potential outcome of a treatment regime d. Let denote with
E(R*(d)|X � x) the expected potential outcome under any regime
d. An optimal regime dopt is a regime that maximizes E(R*(d)) i.e.:

dopt(x) � argmaxm�1,...,ME(R*(d)|X � x). (10)

By the consistency assumption and non-unmeasured confounder
assumption, we have that

E(R*(d)|X � x) � E(R|X � x and A � m).
The causal nearest neighbour algorithm implements the
following steps (i) to find a neighbourhood of x in X , (ii) to
find an estimate m̂ � E(R|X � x and A � m) for each arm in this
neighbourhood, and (iii) to plug m̂ into Eq. 10 to obtain the
nearest neighbour estimate for the optimal treatment regime, i.e.

dCKNN
opt (x) � argmaxm�1,...,Mm̂. (11)

dCKNN
opt (x) is called the causal k-nearest neighbour regime

(Zhou and Kosorok, 2017).
We refer the reader to the works of Zhou and Kosorok (2017),

Hitsch andMisra (Hitsch andMisra, 2018), (Kricke and Peschenz
(2019) for the models used to calculate m̂ and to the technical
algorithmic details. What is important to note here is that the
causal nearest neighbour regimes are calculated as local
averaging, and k is a tuning parameter. It is required that k be
small enough so that local changes of the distribution can be
detected. On the other hand, k needs to be large enough so that
averaging over the arm is effective. This parameter can be
estimated by a cross validation procedure to balance the two
requirements, provided we have a 1) sufficiently large sample and

Frontiers in Bioinformatics | www.frontiersin.org September 2021 | Volume 1 | Article 7467127

Lecca Machine Learning for Causal Inference

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


2) sufficient computational resources to deal with large complex
network. It is however well known that biological network
inference is in many realistic situations an undetermined
problem, since we size of the node covariate sample is small,
whereas the size of the network is huge. However even assuming
that computational costs can be managed and optimal covariate
sample size can be obtained, still we have to deal with the problem
that the potential outcomes of any node only depends on their
nearest neighbours. The concept of neighbour is defined through
the concept of distance, so ultimately the results of a CKNN in
terms of both interpretation and reliability depend on the
definition of distance we use. We point out that here by
distance we do not mean the metrics e.g. Euclidean distance
rather than Manhattan or Minkowski distance or others, but
precisely the physical quantities and related processes we use in
the definition of these metrics. For example, using the difference
between the expression levels of genes in a gene network or
protein concentrations in a protein-protein network might be
insufficient for the purposes of causal inference, since cause-effect
relations between nodes might not manifest themselves through a
variation of this distance and might not manifest themselves only
through appropriate behaviour of this distance.

2.3 Causal Random Forests
A random forest (RF) algorithm consists of many decision trees, i.
e. a “forest” generated by the algorithm itself. The forest is trained
through bootstrap aggregating. The RF algorithm establishes the
outcome based on the predictions of the decision trees. It predicts
by taking the mean of the output from various trees. Causal
random forests (CRF) are recently proposed as a causal inference
learning method that are an extension of Random Forests. In
random forests, the data is repeatedly split in order to minimize
prediction error of an outcome variable. Causal forests are built
similarly, except that instead of minimizing prediction error, data
are split in such a way to maximize the difference across groups in
the relationship between an outcome variable and a “treatment”
variable. Also in the context of CRF “treatment” is used in the
broadest sense of the term. Causal forests simply estimate
heterogeneity in a causal effect. In fact, the term causal
referring to random forest can be misleading, as causal forests
can reveal heterogeneity in a causal effect, but they do not by
themselves make the effect causal. There have been interesting
approaches to achieve this goal very recently, see for example the
work of Li et al. (2020a) which developed a causal inference model
combining Granger causality analysis and a random forest
learning model. In the same vein, we find the works of
Schmidt et al. (2020). and Tsai et al. (2020), all these devoted
to identify cause-effect relationships in climatic phenomena, and
at the present still not easily generalizable to the inference of
biological networks of different kinds, due to the different
physical nature of the climatic effects and the large variety of
biological interactions. Nevertheless, on the same methodological
line, there have also been important achievements in this
direction in gene regulatory networks in the recent past, such
as the development of a random forest algorithm for gene
regulatory network inference by Petralia et al. (2015), Furqan
and Siyal (2016), Deng et al. (2017), Huynh-Thu and Geurts

(2018), Kimura et al. (2020), Zhang et al. (2020a), Cassan et al.
(2021). The majority of the methods base on random forest for
causal discovery in gene regulatory networks.

Most of these approaches implement upstream of the
inference process the integration of large amounts of data of
different natures that are indispensable for inferring causal
relationships in structures as complex as biological networks.
The complexity of a biological network, be it a gene regulatory
network or a signalling network or a metabolic or biochemical
network, lies in its size expressed by the number of nodes and the
potential number of arcs and very often by the potential non-
linear relationships between nodes that challenge the reliability
and the accuracy of the regression techniques. The big amount of
heterogeneous data would require the RF algorithm to generate a
large quantity of trees to improve its efficiency. However, it is well
known that the main limitation of random forest is that a large
number of trees can make the algorithm too slow and ineffective
for real-time predictions.

Furthermore, it is also well known that an RF algorithm cannot
extrapolate. It can only calculate an average of previously observed
labels. This means that when applied to a regression problem, a RF
algorithm provide a range of predictions that is bound by the
highest and lowest labels in the training data. This behaviour is
regrettable when the training and prediction inputs differ in their
range and/or distributions. This is called covariate shift and it is
difficult for most models to handle (also to KNN) but especially for
RF algorithms, because they only interpolate. The frequency with
which the problem of covariate shift may be encountered is also
very high when using heterogeneous biological data to aid causal
inference in complex biological networks.

The current literature is promising regarding the applications
of RF-based methods for causal inference in biological networks,
but we believe that there are still many steps to be taken to
overcome these limitations and to arrive at a mathematical model
underlying RF angles that makes these approaches generalizable
to networks other than gene regulatory networks, e.g. metabolic
and biochemical networks.

2.4 Causal Support Vector Machine
Support vector machines (SVMs) appeared in the early nineties as
optimal margin classifiers in the context of Vapnik’s statistical
learning theory. The SVM algorithm aims to find a hyperplane in
an N-dimensional space (where N is the number of features) that
distinctly classifies the data points. SVMs can be used both for
classification and regression tasks.

Moguerza and Muñoz (2006) highlights that an advantage of
the support vector approach is that sparse solutions to
classification and regression problems are usually obtained. i.e.
only a few samples are involved in the determination of the
classification or regression functions. This fact constitutes a
facilitation of the application of SVMs to problems that
involve a large amount of data, such as text processing and
bioinformatics tasks. However, to the best of our knowledge,
their evolution as a function of causal inference has not yet been
developed, although in the literature we find some works in which
SVMs are used in combination with other techniques in order to
infer the structure of gene regulatory networks. In these regards,
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we report the work Gillani et al. (2014) who proposed
CompareSVM a tool that can be used to infer gene regulatory
network highly accurate for networks with less than 200 nodes.
The tool employs SVM Gaussian kernel for biological datasets
(knockout, knockdown, multifactorial and all). The authors state
that for large network, choice of algorithm depends upon the type
of biological condition. Interestingly they state that since there are
variations in prediction accuracy in all inference methods,
prediction should be limited for simple network. Furthermore
they envisage that future work is needed for the development of
semi-supervised methods capable of predicting targets of
transcription factors which have no prior known targets.

Another study, representative of the works using SVMs in
biological network inference, is the paper of Vert et al. (2007),
who deal with inferring network edges in a supervised way from
a set of high-confidence edges, possibly characterized by multiple,
heterogeneous data sets (protein sequence, gene expression, etc.). In
this setting the authors distinguish between two modes of inference:
direct inference based upon similarities between nodes joined by an
edge, and indirect inference based upon similarities between one pair
of nodes and another pair of nodes. Theirs is a supervised approach
for the direct case consisting of learning a distance metric. In this
framework, a relaxation of the resulting convex optimization
problem leads to the a SVM algorithm with a particular kernel
for pairs, that is called “the metric learning pairwise kernel”. The
proposed methods hold the promise of being used by most SVM
implementations to solve problems of supervised classification and
inference of pairwise relationships from heterogeneous data.

Finally, a recent work by Le Borgne et al. (2021) not specifically
on biological networks, but on treatment-effect networks, found
that SVM approach is competing with the most powerful recent
methods, such as G-computation (Snowden et al., 2011) for small
sample sizes with one hundred nodes when the relationships
between the covariates and the outcome are complex. These
findings, as well as the literature mentioned in this section,
constitute important insights into the development of an
efficient future causal version of SVMs.

3 THE CHALLENGES OF THE MODERN
MACHINE LEARNING

The two main challenges that machine learning algorithms have
to face are:

• the need for large datasets for training and the high
operational costs due to many trials/experiments during
the training phase

• and the remarkable dependency of the algorithms results of
the training data, and the risk of over-fitting.

These are the challenges of current machine learning
approaches and should be distinguished from the challenges
faced by users of these approaches, such as for instance:

• data quality control
• exclusion of irrelevant features.

Not in all areas of application of computational biology, we
can count among the challenges of relevance to the user of
machine learning, the collection of high-dimensional data
samples, as this is not always experimentally feasible and
could often be very expensive. For this reason, when dealing
with biological networks, which can be not only gene networks
(where indeed in the last decade the volume and heterogeneity of
the data strongly continued to grow), but also biochemical
networks, protein-protein interaction networks, metabolic
network, and signalling networks (where the volume of
experimental data is lower and the sample size is not always
optimal), we prefer to indicate the ability to infer causal structures
from a limited number of data as a challenge that computational
procedures must try to win. The challenges for users of machine
learning, listed here, are common to many computational
approaches and are addressed by many textbooks and many
innovative solutions presented in papers in the scientific
literature. Given the large amount of literature on the subject
and the fact that these challenges are not unique to machine
learning algorithms, we do not address them in this work. Instead,
in Section 3.1, we put into perspective two possible approaches to
solving the problems concerning the large amount of training
data and the risk of over-fitting, i.e., lacking predictive and
abstractive capabilities. The first perspective concerns meta-
modelling upstream of any learning procedure and in
particular modular meta-modelling, while the second
perspective concerns meta-learning and modular meta-
learning. We believe that these two perspectives can contribute
to overcoming the challenges posed to machine learning
algorithms. In particular, the first perspective can be useful in
overcoming the first challenge, while the second perspective can
be useful in overcoming the second challenge, even if only the
synergy between the methods proposed in the first and second
perspective is much more effective in achieving both objectives in
network biology. Finally, section 3.2 reports on one of the major
problems that meta-learning methods also will have to solve,
namely connecting causal variables to data, and the necessity to
rely both on observational and interventional data.

3.1 Modular Meta-modelling for Modular
meta-Learning
Meta-modelling goes in the direction of reducing the amount of
needed data (for this purpose, recent meta-learning algorithm are
also equipped with data-augmentation procedures (Ni et al., 2021)),
and computational costs and times, but a further step in these
directions can be taken by exploiting the modular structure of many
physical systems. Biological systems, and specifically biological
networks are known to have a modular organisation. to give an
example, there several studies dealing with the mergence of
modularity in gene networks (Rives and Galitski, 2003; Lorenz
et al., 2011; Zhang and Zhang, 2013; Hütt, 2019; Serban, 2020)
and in protein-protein network (Zhang et al., 2010). Modularity is a
ubiquitous phenomenon in various biological systems, both in
genotype and in phenotype. Biological modules, which consist of
components relatively independent in functions as well as in
morphologies, have facilitated daily performance of biological
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systems and their long time evolution in history. Indeed, modularity
in biological networks is an emergent property evolved to be highly
functional within uncertain environments while remaining
remarkably adaptable. Modular organization is one of the main
contributors to the robustness and evolvability of biological networks
(Hintze and Adami, 2008). In order to understand the intimate
connection between the modular organisation of a biological
network and the improvement of meta-learning efficiency we
start from the following considerations.

An artificial or natural system in a complex world is faced
with limited resources. This concerns training data, i.e., we only
have limited data for each task/domain, and thus need to find
ways of pooling/re-using data (Schölkopf et al., 2021). It also
concerns computational resources. A biological network has a
limited size defined by the number of its nodes and arcs to solve
the plethora of tasks in the daily life. Seen as a computational
system that responds to stimuli and reconfigures its algorithms
to changes in the surrounding environment, it is therefore
forced to adapt its topology and consequently its
computational performances to the environment conditions
and the tasks it have to accomplish. The adaptability and the
consequent evolvability of a biological network are made
possible by the ability of the network to factor out variations
of tasks and contexts. The modular structure of a biological
network is the key of the mechanisms allowing to the network to
factor out tasks and contexts.

Future machine learning models that aim to infer a biological
network should be implemented to learn the modular structure of
the biological network itself and also the crosstalks between the

network modules. The latter capability in particular is the one
that allows machine-learning for network inference to be carried
out with less data and a limited number of computational
resources. It is advisable that machine learning methods to
learn the functional modules and their interactions mimic the
way of learning of animal brain. In fact, modularity is the
principle that provides a natural way of achieving
compositionality and generalization. An example from
Schölkopf’s work (Schölkopf et al., 2021) may help to better
understand this statement. If, because of the variations of natural
lighting the environment can appear in brightness conditions
spanning several orders of magnitude, then visual processing
algorithms in animal brain factor out these variations, so they do
not need to build separate sets of object recognition algorithms
for every lighting condition. Building different object recognizers
would require considerable computational expenses and would
involve the risk of not having sufficient computational resources
within the physical dimensions of the brain.

The modular structure and the interactions between the
modules of a biological network, if reflected in an automatic
learning procedure, are what allows artificial intelligence to
factor out different variations of tasks and contexts, to save
computational resources, and to require less training data.
Paraphrasing a statement by Schölkopf (Schölkopf et al., 2021)
regarding the components of an AI device, we could say that “if
the world is indeed modular, in the sense that components/
mechanisms of the world play roles across a range of
environments, tasks, and settings, then it would be prudent
for a machine learning approach to employ corresponding

FIGURE 2 | In many situations, training experience is very expensive. While meta-learning is a strategy to reduce the training-data requirements for a new task,
modular meta-learning is a strategy to reduce or save computational resources. Modular meta-learning methods learn sets of network modules of a biological network.
This learning scheme aims at mimicking the animal brain which is capable to factor out variations of a context or a task, and by virtue of this ability it does not need to
implement different algorithms in separate anatomical regions to learn each single variation of a context or task. The functional modularity of a real system (here
represented as a collection kitchen utensils with different functions) is first mapped into a modular network (each module of which performs a different function). The
causal structure of processes within each module can be learned by modular meta-learning methods, and finally the causal structure of the interactions among network
clusters is learned by meta-learning approaches including regression of the functions fi internal to each modules (modular meta-learning) and then of the Fi representing
the cross-talks between clusters (global meta-learning). The image of the kitchen utensils in this figure is part of the Pixabay free online pictures (https://pixabay.com/it/).
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modules”. This also holds with regard to the capability of a
machine learning model to implement causal discovery.
Modular meta-learning for causal discovery could be the
new research Frontier of the systems biology. Modular
meta-learning would in fact allow learning sets of network
modules (Alet et al., 2018) whose dynamic interactions and
adaptive reconfiguration mechanisms could be learned
subsequently. This perspective is depicted in Figure 2. A
modular network maps the modular structure of the set of
function of a real world system. Then, modular meta-learning
approaches learn the causal structure of processes within each
cluster of the network, and finally meta-learning approaches
infer the causal structure of the network connecting the
clusters. Regression procedures are applied at the end of
modular meta-learning to determine the fi functions and at
the end of meta-learning to determine the Fi functions
describing the dynamics of the crosstalks between network
modules.

3.2 The Challenges of meta-Learning
In bioinformatics over the last 5 years, there have been studies
using meta-learning approaches applied to the design of
inferential systems (see for example Arredondo and
Ormazábal (2015), who developed inference systems for the
systematic classification of the best candidates for inclusion in
bacterial metabolic pathway maps). However, these have
mainly been inference procedures for deducing missing
knowledge at the level of the network node rather than at
the level of the arc and interaction mechanism, i.e. the causal
relationship between nodes (Hill et al., 2016). Modular meta-
learning in the schemes proposed in the previous section could
be a step towards the evolution of machine learning algorithms
for causal discovery. However, these schemes also face
challenges. In order to function at their best, they must rely
on observational and interventional data when causal variables
are observed. It is indeed known that a central problem for AI
and causality is, learning of high-level causal variables from
low-level observations. A key research area at the intersection
of modular meta-learning and causal modelling will be in the
next future learning of causal variables and connecting them to
the data and the task/contexts. Connecting causal variables to
the data is at the moment an undetermined problem in
machine learning and more specifically in modular meta-
learning, as when a network is trained for sets of tasks,
different high-level causal variables may be identified
depending on the task. We mainly see this problem as the
first next challenge to be faced by machine learning approaches
for causal discovery, including more specialised approaches
such as reinforcement learning and deep learning (Luo et al.,
2020; Shen et al., 2020). The second major challenge will then
be to identify indirect causal relationships, i.e. those
relationships that would take place through latent mediating
variables. To this end, current research focuses in particular on
deep-learning methods, as testified by recent preliminary
results published as a preprint (e. g.) (Yuan and Bar-Joseph,
2019b; Fan et al., 2021)), and envisaged by previous studies
(e.g. (Ching et al., 2018; Jin et al., 2020)).

4 CONCLUSION

In the light of the above, the convergence of three research areas,
namely experimental research guided by data acquisition protocols
aimed at inferring causal relationships, machine learning, and
graphical causal modelling, is becoming increasingly urgent. In
the context of this convergence, the limitations of one area will
have to be compensated for by the advances of another area. For
example, experiments in biology or in the clinic, observational data
can often provide observational data, due to experimental limitations
or ethical codes. It is well known that causal inference from
observational data is particularly difficult and its outputs are
mostly unreliable. Observational data are affected by biases from
confounding, selection and measurement, which can result in an
underestimate or overestimate of the effect of interest (Hammerton
andMunafò, 2021). In this case, it is expected that in the near future
machine learning methods will be able to identify high-level causal
variables from low-level data, and causal modelling approaches will
be able to output accurate causal relationships. Meta-modelling and
meta-learning are two approaches conceived in the logic of “doing
more with less” (Hammerton and Munafò, 2021). This is why they
want to imitate the animal brain in learning causality, focusing on its
ability to generalise to different contexts, and thus using a smaller
amount of training data and a limited amount of computational
resources. However, we should not forget that this advantage can
come at a cost. Machine learning is a computational process. To that
end, it is strongly tied to computational power and hardware
supporting it. Hardware shapes the methods used in the design
and development of machine learning models. Characteristics such
as the power consumption of chips also define where and how
machine learning can be used in the real world. At present, it is not
yet possible to have a clear idea of the components and hardware
architecture that computational schemes such as those shown in
Figure 1 and Figure 2might require. This is therefore another line of
research that needs to be pursued, not only to understand its impact
on artificial intelligence, but also on the systems biology and
medicine, and, more importantly, on the community.
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