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Directed dynamical influence  
is more detectable with noise
Jun-Jie Jiang1,2, Zi-Gang Huang1,2, Liang Huang2, Huan Liu3 & Ying-Cheng Lai1,4

Successful identification of directed dynamical influence in complex systems is relevant to significant 
problems of current interest. Traditional methods based on Granger causality and transfer entropy have 
issues such as difficulty with nonlinearity and large data requirement. Recently a framework based 
on nonlinear dynamical analysis was proposed to overcome these difficulties. We find, surprisingly, 
that noise can counterintuitively enhance the detectability of directed dynamical influence. In fact, 
intentionally injecting a proper amount of asymmetric noise into the available time series has the 
unexpected benefit of dramatically increasing confidence in ascertaining the directed dynamical 
influence in the underlying system. This result is established based on both real data and model time 
series from nonlinear ecosystems. We develop a physical understanding of the beneficial role of noise in 
enhancing detection of directed dynamical influence.

Two types of behaviors can show similar trends and may thus be highly correlated, but they may not have any-
thing to do with each other. Three hundred years ago already, Bishop Berkeley famously declared that “correlation 
does not imply causation”1, but there is still tendency to confuse correlation with causation in modern scien-
tific research. A widely known example2 occurred in epidemiological studies where it was found that women 
undergoing hormone replacement therapy (HRT) had a lower-than-average probability of incurring coronary 
heart disease (CHD), leading to the proposal that HRT can be effective at suppressing CHD. More carefully 
designed control experiments showed, however, that women who took HRT were more likely to belong to higher 
social-economic groups with healthier diet and regular physical exercise. In fact, the use of HRT and reduction 
in CHD can both be attributed to the common cause of social-economic origin, but they have no causal relation 
with respect to each other. To be able to correctly and accurately detect directed dynamical influence is generally 
of fundamental importance to many branches of science and engineering3,4 ranging from neuroscience5–7 and 
climatology8,9 to economics10–12.

In real world situations a precise mathematical model of the underlying system is often unavailable, thus 
one must rely on measured time series, data, or other types of information to uncover the directed dynamical 
influence in the system. Such influences generally are quite subtle - noise in the time series or uncertainties in the 
available information constitute a serious obstacle to successful unraveling of the influence. Conventional wisdom 
would stipulate that noise should be removed from data as much as possible. In this paper, however, we report a 
surprising phenomenon: in a recently developed, nonlinear dynamics based framework13, noise can counterintu-
itively enhance the detectability of directed dynamical influence. In fact, intentionally injecting a suitable amount 
of measurement noise into the time series can optimize a quantitative measure (to be described below) charac-
terizing the detectability, which we establish using physical reasoning based on analyzing the interplay between 
nonlinearity and stochasticity, as well as examples from real data and model systems. Our results suggest that, 
in situations where ambiguity arises in the detection of directed dynamical influence injecting a certain level of 
noise into the time series may provide an effective resolution, leading to more reliable detection. We note that this 
phenomenon is distinct from stochastic resonance14,15, as noise in our case can be either additive or dynamical. 
In fact, the beneficial role of noise uncovered here is characteristically different because it emerges from a human 
designed framework/scheme to detect directed dynamical influence, one of the most subtle and elusive properties 
of dynamical systems.

Traditionally, causation detection is done using methods based on either the Granger causality test16 or trans-
fer entropy17. The Granger test is a linear method operated on the hypothesis that the underlying system can be 
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described as a multivariate stochastic process. Thus, in principle, the method is ineffective for nonlinear systems, 
in spite of efforts to extend the methodology to strongly coupled systems18–20. In the traditional Granger frame-
work, measurement noise is generally detrimental in the sense that, as its amplitude is increased the value of 
the detected causal influence measure decreases monotonically, leading to spurious detection outcomes21. The 
transfer entropy framework is applicable17 to both linear and nonlinear systems, but often the required data 
amount is prohibitively large. In the special case of Gaussian dynamical variables, the two methods, one of the 
autoregressive nature (Granger test) and another based on information theoretic concepts (transfer entropy), 
are in fact equivalent to each other22. Quite recently, an alternative information theoretic measure, the causation 
entropy, was proposed23–25. In our study, we exploit the recent framework of convergent cross mapping (CCM)13 
based on delay-coordinate embedding, the paradigm of nonlinear time series analysis26–29. The CCM method can 
deal with both linear and nonlinear systems with small data sets, and it has been applied to data from different 
contexts, such as EEG data30, FMRI31, fishery data32, economic data33, and cerebral auto-regulation data34. Here, 
we consider bivariate nonlinear time series from both experimental and model studies of a classic predator-prey 
system13,35, and investigate systematically the effects of intentionally injecting noise on detection of directed 
dynamical influence.

Results
Evidence of beneficial role of noise in detecting directed dynamical influence from an experi-
mental data set.  We consider a classic experimental prey-predator system with sustained oscillations in prey 
and predators, the system of Paramecium aurelia and Didinium nasutum13,36–38. In ref. 13, it was shown that there 
exists a stronger top-down control from Didinium x to Paramecium y, so x and y are the driving (predator) and 
driven (prey) variables, respectively, which naturally defines a directed dynamical influence. To demonstrate the 
beneficial role of noise in directed dynamical influence detection, we inject independent noise into the original x 
and y data (see Supplementary Note 1 for a description of the data set):

ησξ= +x t x t( ) ( ) , (1)t
x

0

σξ= +y t y t( ) ( ) , (2)t
y

0

where x0(t) and y0(t) are the original time series normalized to unit mean and variance, ξt
x and ξt

y are white noise 
of zero mean and unit variance, σ is the noise amplitude, and η is a control parameter characterizing the ratio of 
asymmetry of the noise perturbation to the original predator and prey variables. The quality of CCM index detec-
tion can be measured13 by the quantity R (see Methods), where a larger positive value of R indicates a stronger 
directed dynamical influence from x to y. For the experimental system studied here, for σ =  0 the value of R is 
about 0.035.

Figure 1 shows R versus the noise amplitude σ from the CCM method. We observe the phenomenon that 
R can be maximized for some optimal value of the noise amplitude when there is an asymmetry in the injected 
noise to the predator and prey data. As the noise amplitude σ is increased, R increases and reaches maximum. 
Strikingly, the maximally achievable value of R can be as large as 0.08 - more than 100% improvement as com-
pared with the case of zero noise. This indicates that, when a proper amount of asymmetric noise is injected into 
the data set, our ability to detect directed dynamical influence can be enhanced significantly. We note that, there 
exists a critical value of the asymmetry ratio ηc that for η >  ηc, the enhancement phenomenon occurs and the 
R −  σ curve exhibits a characteristic non-monotonic behavior. However, for η <  ηc, the non-monotonic behavior is 
lost, and no improvement in the detectability can be achieved (for too large noise amplitude σ, incorrect detection 
occurs). This provides a practically useful criterion to apply asymmetric noise: only when comparatively larger 

Figure 1.  Effect of noise on detecting directed dynamical influence from an experimental data set. For the 
predator-prey system of paramecium and Didinium, quantity R characterizing the detectability versus the noise 
amplitude σ. The time series contains L =  61 records, into which noise is intentionally injected. The results are 
averaged over 1000 realizations of noise. The dimension of the reconstructed phase space is Ex =  Ey =  3.
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noise is injected into the driving variable (i.e., x for this experimental prey-predator system) will the R −  σ curve 
be non-monotonic, as exemplified in Fig. 1. For a system of unknown relationship of directed dynamical influ-
ence, a non-monotonic behavior of R is indication that the correct the relationship has been detected. In addition, 
as shown in Fig. 1, small values of the asymmetry ratio and relatively large noise amplitude can lead to incorrect 
assessment of the directed dynamical influence13.

Beneficial role of noise in detecting directed dynamical influence from model data set.  In gen-
eral, noise can cause two relevant quantities, ρX MY

 and ρY MX
, to decay, where ρX MY

 is the CCM measure from X 
to Y, with larger value indicating a higher casual effect of the variable x to the variable y, and ρY MX

 has a similar 
meaning. (The detailed definitions of ρX MY

 and ρY MX
 are given in Methods.) The key point is that, due to the 

directed dynamical influence, the decay rates are different, so the difference R between ρX MY
 and ρY MX

 can be 
maximized for proper amount of noise, leading to enhancement of detectability. To develop a physical under-
standing of the counterintuitive phenomenon in a concrete setting and also to be able to compare results directly 
with those from real data in Fig. 1, we consider a two-dimensional ecosystem model13:

β+ = 
 − − 

x t x t r r x t y t( 1) ( ) ( ) ( ) , (3)x x x y0 0 0 , 0

β+ = 
 − − 

y t y t r r y t x t( 1) ( ) ( ) ( ) , (4)y y y x0 0 0 , 0

where rx, ry ∈  [0, 4] are parameters of the intrinsic population dynamics, βx,y ∈  [0, 0.1] and βy,x ∈  [0, 0.1] are the 
coupling parameters from y0 to x0 and vice versa, respectively. The degree of directed dynamical interaction 
between the two variables can be adjusted by changing the relative values of the coupling parameters. As in our 
analysis of the experimental data, we inject measurement noise into the original time series x0 and y0 to obtain the 
corresponding new time series x and y. The dimensions of the reconstructed phase space for x and y are 
Ex =  Ey =  2, and the length of the time series is L =  1001. We choose βx,y <  βy,x so that the x-dynamics has a 
stronger influence on the y-dynamics than that in the opposite direction, indicating a larger directed dynamical 
influence from x to y. Indeed, we obtain from numerics that the value of R is positive and increases with the dif-
ference (βy,x −  βx,y). Figure 2(a) shows R versus the noise amplitude σ for an increasing set of βx,y values (from 0.01 
to 0.1) but for fixed βy,x =  0.1. We see that R can be maximized by noise (for σ ≈  0.005), similar to the behavior 
observed from the experimental data set (Fig. 1). We also validate that, when coupling between the two dynamical 
variables is symmetric, i.e., for βx,y =  βy,x =  0.1, the value of R tends to fluctuate about zero as σ is increased, as it 
should be. Both the non-monotonic behavior of R and the overall increase in the value of R with η can be 

Figure 2.  Enhancement of detectability of directed dynamical influence from model. Measure of 
detectability R versus noise amplitude σ for a model ecosystem: (a) for different values of βx,y but fixed βy,x =  0.1 
and η =  1, (b) for different values of the asymmetry parameter η but for fixed βx,y =  0.05 and βy,x =  0.1. The value 
of R for each parameter setting is averaged over 10 dynamical realizations and 10 different noise arrangements 
for each dynamical realization. Other parameters are rx =  3.8 and ry =  3.5.
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attributed to the more rapid decay of the correlation coefficient ρY MX
 associated with larger η (see Supplementary 

Note 2 for additional examples and Figs S1 and S2 in Supplementary Information for the detailed behaviors of the 
correlation coefficients ρX MY

 and ρY MX
). Figure 2(b) compares the results from different values of noise asymme-

try ratio η for fixed dynamical coupling (βx,y =  0.05 and βy,x =  0.1). We see that, as η is increased, the overall curve 
of R versus σ is elevated, and the position of the peak moves toward the region of smaller σ values.

To obtain a comprehensive understanding of the role of noise in detecting the directed dynamical influence, we 
calculate R for the whole parameter plane (η,σ) characterizing the properties of measurement noise for βy,x >  βx,y, 
as shown in Fig. 3. We see that the noise enhancement effect takes place in the region of η >  ηc (for η <  ηc, R 
decreases monotonically with the noise amplitude). In each panel, the value of ηc is indicated by a dashed line. We 
also note that, in the upper-left region of the parameter plane (i.e., small η and large σ), the values of R are negative, 
indicating incorrect identification of directed dynamical influence. This can be explained from the dynamical 
structures in the reconstructed phase space. In particular, for the case of extremely small values of η, noise in x 
makes the value of Dx =  ησ too small to induce a significant decay of ρY MX

 with σ. However, ρX MY
 decays to a 

smaller value (e.g., for η =  0.3727 in Fig. 2), leading to negative values of R. For the case where bidirectional causa-
tion is more homogeneous, i.e., βy,x and βx,y have approximately the same values, as shown in Fig. 3(a–d), the 
region of incorrect CCM index detection is enlarged. All these indicate that the applicability of the CCM method 
depends on how noise is introduced into the measured time series. When this is done properly, detectability of 
directed dynamical influence can be greatly enhanced.

Physical theory.  An effective approach to gaining a physical understanding of the role of noise in promot-
ing directed dynamical influence detection is through examination of the relative effects of coupling and noise 
on “disturbing” the phase space structure. In general, the dynamics of the system is determined by the structure 
of the attractor manifold. In the model system, there is an influence of y0 on x0 through the coupling term − βx,y 
x0(t)y0(t). In this sense, we say that y0 has an effect on the ordered structure of the manifold MX, where MX is the 

Figure 3.  Measure of detectability R in the parameter plane of noise. The parameters characterizing the 
properties of measurement noise are σ and η. The model system has fixed βy,x =  0.1 and different values of βx,y: 
(a) 0.01, (b) 0.02, (c) 0.05, and (d) 0.07. Other parameters are rx =  3.8, ry =  3.5 and L =  1001. The values of 
the threshold ηc =  βx,y/βy,x above which noise enhancement of CCM index measure occurs are marked by the 
dashed lines.
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shadow manifold constructed from the time series x0 with embedding dimension Ex and time-delay τ. Similarly, 
MY is the shadow manifold obtained from the time series y0 with the same parameter (see a detailed explanation 
in Methods). For a given value of x0(t), the points (x0(t), x0(t +  1)) in MX spread in a region with its upper and 
lower bounds determined by the possible minimum and maximum values of y0, respectively. The effect of y0 on 
MX can be characterized by the width in the reconstructed phase space:

β∆ = − ∆H x t y x t y( ( ), ) ( ) , (5)x y0 , 0

where Δy =  max(y0) −  min(y0). More specifically, the detailed behavior of y0 contributes to the formation of the 
structure of MX. For example, a continuously distributed y0 (e.g., for ry =  3.8) leads to a continuous strip of MX, as 
shown in Fig. 4, but two separated clusters of y0 (e.g., for ry =  3.5) produces a pair of long parallel strips in MX (see 
Fig. S3 in Supplementary Information).

To better understand the mutual influence between MX and MY, we color the dots in one state space according 
to their corresponding positions in the counterpart state space. Take the case shown in Fig. 4(a) as an example. We 
select a boundary in the middle of the manifold MY [e.g., y(t) =  0.5, as shown in the inset of panel (a)] and color 
the dots on the left-hand and right-hand sides in red and black, respectively, where each dot in MY corresponds to 
one point (y(t), y(t +  1)) for certain value of t. We set the same color to the dot (x(t), x(t +  1)) in the manifold MX. 
This color scheme presents us with a clear picture of the structural relationship between the manifolds MX and 
MY. For example, for the two clusters in MY (denoted by the value 0.5), the corresponding structure in MX consists 
of two stretched, thin strips that are close to each other. The dynamics on the two thin strips in MX are sensitive to 
noise, since a small perturbation can move a dot from one strip to another, visually leading to a mixing of dots of 
different colors. As we estimate Ŷ t( ) according to the dots in MX through the neighbors of X(t), noise of amplitude 
about the thickness of the strips will result in a decrease in the prediction accuracy. The thickness of the strip in 
MX depends on the dynamical coupling from y. For the extreme case of βx,y =  0, i.e., y is decoupled from x, the 
thickness of the strip in MX becomes zero. As βx,y is increased, the strip in MX becomes thicker, as shown in 
Fig. 4(c–e).

The features of y0 thus determine how the structure of the manifold MX is modified through the coupling 
parameter βx,y. A relatively small value of βx,y indicates a weaker influence from y0 to x0, which results in a nar-
rower strip in MX, and some larger value of βx,y will enlarge the width H(x0, Δy) of MX, as shown in Fig. 4(c–e). 
To illustrate the influence of y0 on x0, we mark the points in MY with y0(t) <  0.5 and y0(t) ≥  0.5 with red and black 
colors, respectively. The corresponding points in MX at the same instants are marked by the same color. We see 

Figure 4.  Effect of noise on reconstructed phase space of dynamical variables. Attractor manifolds MX 
(a,c–e) and MY (b,f) for σ =  0 and βy,x =  0.1. The insets in (a,b) show the manifold counterparts, respectively, 
with the color scheme indicated. For example, in (a), the dots (x(t), x(t +  1)) in MX is colored according to the 
corresponding point y(t) in MY, where points with y(t) ≥  0.5 are in black and those with y(t) <  0.5 in red. The 
values of βx,y are 0.01 (a,c), 0.046 (d), and 0.082 (e), respectively. Panels (c,f) are magnifications of the squared 
frames in (a,b), respectively. Other parameters are rx =  ry =  3.8.
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that the points in MX corresponding to different values of y0(t) tend to spread farther away from each other, and 
MX exhibits separated long pairing strips. Analogously, the effect of x0 on y0 is embedded in the structure of MY 
of size determined by

β∆ = − ∆H y t x y t x( ( ), ) ( ) (6)y x0 , 0

and Δx =  max(x0) −  min(x0). The widths of MX and MY, as determined by the coupling between the two variables, 
play a crucial role in system’s response to noise associated with the detection of directed dynamical influence.

The phenomenon of noise enhanced detection of directed dynamical influence can be intuitively understood 
in terms of noise-induced diffusion. In particular, in the reconstructed phase space, noise can be viewed as induc-
ing random diffusion of points on the attractor manifolds, which alters the originally ordered phase space struc-
tures that are result of the mutual dynamical interactions. On the manifold MX, what is relevant is the expected 
diffusion radius π ησ=D /2x  of point X(t), with respect to the width H(x(t),Δy) of the manifold due to the 
influence from y0. In predicting Y(t) according to its weighted average Ŷ t( ), the E +  1 nearest neighbors of X(t), 
denoted as X(ti) in MX, are taken into account. However, diffusion can introduce “wrong” neighboring points 
from the region within the average distance Dx. When these points are mapped to MY, they correspond to the 
points Y(ti) with horizontal ordinate y(t) deviating by the amount

δ π ησ
β

=
∆
∆ = .y D

H x t y
y

x t( ( ), )
/2

( ) (7)
x

x y0 , 0

The points in MY with the horizontal ordinates y(t) ±  δy are actually used to estimate Ŷ t( ) (see Fig. S3 in 
Supplementary Information for a specific example). Here, δy is a measure of how errors in x(t) (due to noise) 
propagate to the corresponding errors in y(t). The accuracy of the estimation Y(t) decreases with δy. For the nor-
malized time series (i.e., 〈 x0〉  =  1), the average deviation is given by

δ π ησ β=y /2 / , (8)x y,

where a smaller effective noise amplitude ησ on x0 or a larger coupling parameter βx,y from y0 to x0 will yield a 
smaller value of δy, leading to more accurate estimation Ŷ t( ). The quantity δy thus characterizes the competition 
between the effects on y0 from x0 (denominator) and that from noise (numerator). A similar picture arises when 
estimating X̂ t( ) based on MY, where the width of the manifold MY is H(y0(t), Δx), the expected vertical diffusion 
radius is π σ=D /2y , and the corresponding points X(ti) for the weighted average have the deviation

δ π σ β= .x /2 / (9)y x,

We thus see that, interaction from the coupled variable contributes to forming a wider well-organized manifold 
of the focal variable, while noise tends to destroy the order of the structure. The competition between nonlinear 
interaction and noise in detecting directed dynamical influence is general and independent of the system and 
measurement details.

Consider the setting where the variable x is the cause to y, as for βy,x >  βx,y in the model system. The distinct 
responses of x and y to noise can lead to enhancement of R. Our analysis suggests δx and δy as the indicators of 
the competition between coupling and noise. The ratio

δ δ ηβ β=y x/ / , (10)y x x y, ,

quantifies the relative decay rate of ρX MY
 with respect to ρY MX

 as the noise amplitude σ is increased. A faster 
decay of ρX MY

 to zero with σ, which in CCM prediction is associated with δ δ >y x/ 1, leads to the non-monotonic 
behavior in R versus σ. Furthermore, the condition δ δ =y x/ 1 defines the threshold ratio ηc (or critical value) for 
the emergence of the non-monotonic behavior (Fig. 3). For a real system with the directed dynamical relationship 
unknown a priori, the ratio βx,y/βy,x can be estimated by injecting asymmetric noise into the time series and cal-
culating the threshold ηc. As shown in Fig. 1, the experimental system has the threshold ηc around 1.5. We also 
find that, for systems under dynamical noise, detection of directed dynamical influence can still be enhanced, as 
described in Supplementary Note 3 and shown in Fig. S4.

Discussions
We have uncovered a practically implementable mechanism to significantly enhance detection of directed 
dynamical influence in nonlinear dynamical systems: injecting asymmetric noise into the time series of the 
dynamical variables of interest. The general idea is that, since directed dynamical influence reflects the differ-
ential interaction of the dynamical variables on each other, noise can lead to an asymmetric degradation of the 
interactions. Because of the nonlinear dynamical underpinning of the CCM algorithm, its performance can in 
fact be enhanced and optimized by noise, which is the main result of our work. In particular, the CCM method 
relies on the asymmetry in the directed dynamical influence measures between the two dynamical variables in 
the two opposite directions. When noise of non-identical amplitude is added to the two variables, the asymmetry 
in the directed dynamical influence measures can be amplified, leading to better performance in the detection. 
For example, let x and y be the two dynamical variables, and assume that the directed dynamical influence from 
x to y is stronger than that for the opposite direction: βy,x >  βx,y. As the noise amplitude is increased to a level 
corresponding to the weaker directed dynamical influence from y to x as characterized by βx,y but not yet up to 
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that from x to y (characterized by βy,x), the ability to predict y from x will be dramatically reduced but that in the 
opposite direction will be affected less. As a result, the difference (βy,x −  βx,y) will be enhanced. In other words, the 
beneficial role of noise can be attributed to the fact that weaker dynamical influence is destroyed earlier than the 
stronger one as the noise amplitude is increased. However, if the noise amplitude reaches the level of the stronger 
directed dynamical influence from x to y, the algorithm will not be able to detect any such influence. As a result, a 
non-monotonic relation between the detectability of directed dynamical influence and noise amplitude arises, in 
contrast to the monotonic decreasing behavior associated with the original Granger method.

It should be noted that, while a larger value of the metric R suggests a larger degree of asymmetry between 
the directed dynamical influence of dynamical variables in the two opposite directions, the task of enhancing the 
value of R should not be confused with that of detecting causality in the first place. Often, for any pair of variables 
in a nonlinear dynamical system, there is typically directed dynamical influence in both directions. That is, the 
question of whether there is causality has a trivial answer. The nontrivial and challenging task is to assess which 
direction possesses a stronger directed dynamical influence. Our main finding is that an appropriate amount of 
asymmetric noise can facilitate the assessment.

Intuitively, the phenomenon of noise enhanced detection of directed dynamical influence can be understood 
by resorting to the picture of noise induced diffusion in the phase space. The explanation is heuristic, calling for 
a quantitative or even rigorous analysis, which remains to be an outstanding issue at the present. Practically, the 
phenomenon noise can be induced extremely readily utilizing time series only, and we expect it to be appealing to 
ascertaining directed dynamical influence in experiments or data analysis of complex dynamical systems.

We remark that, while the intuitive argument that noise disrupts the structure of the noise-free manifold of 
the dynamical system is reasonable, it may not be generally true that the magnitude of the error can be preserved 
as measured by the directed dynamical influence metric R. For the systems studied in this paper, the coupling 
functions between the dynamical variables are assumed to be linear, i.e., the effect of one variable on the other 
is linear. This, however, may not be true generally. In particular, if the response of one variable to the other is 
nonlinear, small errors could be amplified and large errors could be reduced, and the nonlinear amplification/
reduction effect can be state-dependent. In realistic systems there is no guarantee that the response of one varia-
ble to another is even a continuous function. For such cases, the effect of noise on detecting directed dynamical 
influences would depend on the system details. For complex dynamical systems with nonlinear or discontinuous 
coupling functions, whether a general relation exists between a measure of directed dynamical influence and the 
noise strength is an open question deserving further investigation.

Methods
CCM method.  The nonlinear-dynamics based method was proposed recently13 to detect and quantify 
directed dynamical influence between a pair of dynamical variables through the corresponding time series. The 
starting point is to reconstruct a phase space, for each variable, based on the delay-coordinate embedding 
method26. Specifically, for time series x(t), the reconstructed vector is X(t) =  [x(t), x(t −  τ), … , x(t −  (Ex −  1)τ)], 
where τ is the delay time and Ex is the embedding dimension. For variable y, a similar vector can be constructed 
in the Ey dimensional space. Let MX and MY denote the attractor manifold in the Ex- and Ey-dimensional space, 
respectively. If x and y are dynamically coupled, there is a mapping relation between MX and MY. The CCM 
method measures how well the local neighborhoods in MX correspond to those in MY. In particular, the 
cross-mapping estimate of a given Y(t), denoted as Ŷ t M( ) X, is based on a simplex projection39,40 that is essentially 
a nearest-neighbor algorithm involving E +  1 nearest neighbors of X(t) in MX. (Note that E +  1 is the minimum 
number of points required for a bounding simplex in the E-dimensional space.) The time indices of the E +  1 
nearest neighbors are denoted as t1, t2, … , tE+1 in the order of distances to X(t) from the nearest to the farthest, i.e., 
point X(t1) is the nearest-neighboring point of X(t) in MX. These time indices are used to identify the points (puta-
tive neighborhoods) in MY, namely, to find the points at the corresponding instants: Y(t1), Y(t2), … , and Y(tE+1), 
which are used to estimate Ŷ t( ) through the weighted average

∑= ⋅
=

+
Ŷ t w t Y tM( ) ( ) ( ),

(11)i

E

i iX
1

1

where

∑µ µ=w t t t( ) ( )/ ( )
(12)

i i
j

j

is the weight of the vector Y(ti),

µ = −t d X t X t d X t X t( ) exp{ [ ( ), ( )]/ [ ( ), ( )]}, (13)i i 1

and d[X(t), X(ti)] is the Euclidean distance between the two vector points X(t) and X(ti) in MX. An estimated time 
series ŷ t( ) can then be obtained from Ŷ t M( ) X. Likewise, the cross mapping from Y to X can be defined analo-
gously so that the time series of x(t) can be predicted from the cross-mapping estimate X̂ t M( ) Y.

The correlation coefficient between the original time series y(t) and the predicted time series ŷ t( ) from MX, 
denoted as ρY MX

, is a measure of CCM directed dynamical influence from y to x. Larger value of ρY MX
 implies 

that y is a stronger cause of x, while ρ ≤ 0Y MX
 indicates that y has no influence on x. The relative strength of 

directed dynamical influence can be defined as ρ ρ= −R X YM MY X
, which is a quantitative measure of the casual 
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relationship between x and y. A positive value of R indicates that x is the CCM cause of y. The measure R is used 
in Fig. 1 to quantify the degree of noise enhancement of CCM index detection.

Time delay and embedding dimension.  The CCM method for detecting directed dynamical influence is 
derived from the standard delay-coordinate embedding method26 in nonlinear time series analysis. For properly 
chosen time delay41 (denoted as τ) and embedding dimension (denoted as E), the phase space of the underlying 
dynamical system can be faithfully reconstructed from time series. There are various methods for choosing the 
parameters42 τ and E, such as those based on the mutual information43, the correlation integral and dimen-
sion44–49, false nearest neighbors (FNN)50, and nonlinear prediction criteria51–53.

In the text, the time delay and embedding dimension for the experimental predator-prey data are chosen to 
be τ =  1 and Ex =  Ey =  3, respectively. For the model systems with measurement noise and dynamical noise, we 
choose Ex =  Ey =  2 and τ =  1. A comprehensive treatment of the effect of noise on phase space reconstruction can 
be found in ref. 53.
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