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Abstract. In contrast to many other peroxisomal pro- 
teins catalase A contains at least two peroxisomal tar- 
geting signals each sufficient to direct reporter pro- 
teins to peroxisomes. One of them resides at the 
extreme carboxy terminus constituting a new variant of 
this signal, -SSNSKF, not active in monkey kidney 
cells (Gould, S. J., G. A. Keller, N. Hosken, J. 
Wilkinson, and S. Subramani 1989. J. Cell Biol. 
108:1657-1664). However, this signal is completely 
dispensable for import of catalase A itself. In its 
amino-terminal third this protein contains another 

peroxisomal targeting signal sufficient to direct 
reporter proteins into microbodies. This internal signal 
depends on the context. The nature of this targeting 
signal might be a short defined sequence or a struc- 
tural feature recognized by import factors. In addition, 
we have demonstrated that the carboxy-terminal seven 
amino acids of citrate synthase of Saccharomyces 
cerevisiae encoded by CIT2 and containing the canoni- 
cal -SKL represents a targeting signal sufficient to di- 
rect reporter proteins to peroxisomes. 

I 
MPORT of proteins into various organelles of the eukary- 
otic cell is thought to require defined targeting signals. 
These signals basically direct any protein into the target 

organelle. Thus far only the nuclear localization signal is 
positioned in the internal part of an amino acid sequence 
(Silver, 199D. All other targeting signals found are located 
either at the amino terminus or at the carboxy terminus 
(Verner and Schatz, 1988). Most probably, proteins destined 
for import into an organelle are recognized by chaperone- 
like proteins keeping the nascent polypeptide chain in an 
import-competent state (Deshaies et al., 1988; Landry and 
Gierasch, 1991). The sequence or the molecular structure 
recognized by chaperones is not known (Gething and Sam- 
brook, 1992). In any case, the partially folded polypeptides 
finally interact with specific receptors followed by incorpo- 
ration into the matrix or the membrane of the target or- 
ganeUe, e.g., the mitochondrion (Neupert et al., 1990). 

Proteins found in microbodies are usually synthesized at 
their mature size (Borst, 1989) and the peroxisomal targeting 
signal is thought to be a short tripeptide at the extreme car- 
boxy terminus (Gould et ai., 1987, 1989, 1990) consisting 
of serine-lysine-leucine or a similar amino acid sequence. 
However, some peroxisomal proteins do not contain such a 
sequence at their carboxy termini (see Gould et al., 1989). 
Examples are peroxisomai catalases (Schroeder et al., 1982; 
Korneluk et al., 1984; Redinbaugh et al., 1988; Cohen et al., 
1988) and peroxisomal 3-ketoacyl-CoA thiolases (Bout et 
al., 1988; Bodnar and Rachubinski, 1990; Hijikata et al., 
1990) from various organisms. For the two peroxisomal thio- 

lases from rat, which are synthesized as precursors with 
amino-terminal presequences of 36 and 26 amino acids, 
respectively, the amino termini comprise the peroxisomal 
targeting signal (Swinkels et al., 1991). They are necessary 
for targeting the thiolases into peroxisomes and sufficient to 
direct otherwise cytosolic proteins into peroxisomes. 

Catalases are among the best-characterized peroxisomal 
proteins and three-dimensional structures of some of them 
are known (Murthy et al., 1981; Fita and Rossmann, 1985; 
Vainshtein et al., 1986). All enkaryotic peroxisomal cata- 
lases are tetrameric bemoproteins assembled inside the or- 
ganelle (for review see Lazarow and Fujiki, 1985). Catalases 
are devoid of the conserved tripeptidyl peroxisomal targeting 
signal at their carboxy termini, although some contain fairly 
similar sequences in this position like -SKF (e.g., Cohen et 
al., 1988; Orr et al., 1990), which has been shown to be in- 
active in monkey kidney cells (Gould et al., 1989). Here we 
describe experiments to locate a peroxisomal targeting sig- 
nal in the catalase A of Saccharomyces cerevisiae. 

Materials and Methods 

Yeast Strains 

The yeast strains GAI-SC (a leu2 uru3 his3 trpl cttl gall; Simon et al., 1991) 
and GC1-8B (a leu2 trpl ura3 r ctal; Cohen et al., 1985) were used 
throughout this study. The former one was used for experiments with fusion 
proteins, the latter one for experiments with catalase A and its variants. 
Yeast was transformed by the Lithium acetate method (Ito et al., 1983). 
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Growth Conditions 

Transformants of yeast were cultured in synthetic media containing 0.67% 
Yeast Nitrogen Base without amino acids (Difco Laboratories, Inc., 
Detroit, MI), 0.5 % glucose, and an appropriate mixture of amino acids (SC- 
ura). After growth at 30"C with shaking until glucose concentration was 
very low ('~0.05%, usually 12 to 16 h) cells were harvested by contrifuga- 
tion and resuspended in twice the original volume of induction medium con- 
taming 30 mM potassium phosphate (pH 6.0), 0.3% yeast extract, 0.5% 
peptone, 0.2% oleic acid (adjusted to pH 7 with NaOH), and 0.02% Tween 
80. After shaking for 16 h at 30"C cells were harvested by centrifugation. 

Escherichia coli 

The E. coli strain HB101 (Bolivar and Backmann, 1979) was used for all 
transformations and plasmid isolations. For in vitro mutagenesis and M13- 
phage isolation the strain TGI (Amersham International, Herpenden, UK) 
was used. 

DNA Methods 

Isolation of plasmids from E. coli was carried out as described (Bimboim 
and Doly, 1979). Standard procedures were used for cloning and hybridiza- 
tion of DNA (Maniatis et al., 1982). Linear fragments were isolated from 
the agarose gels as described (Drctzen ct ai., 1981). Restriction enzymes 
were obtained from Boehringer-Manulaeim GmbH (Mannheim, Germany) 
and used as recommended. Double strand sequencing was performed using 
the T7 sequencing kit from Pharmacia (Uppsaia, Sweden). Oligonnclee- 
tides were kindly supplied by Dr. G. Schaffner (Institute for Molecular 
Pathology, Vienna, Austria). 

Plasmid Construction and Mutagenesis 

All plasmids used in yeast are derived from the multicopy plasmid YEp352 
(Hill et al., 1986). Gene fusions between different parts of the CTAl gene 
and the eDNA encoding dihydrofolate reductase (DHFR) 1 of mouse under 
the control of the CTA1 promoter cloned into this vector were available 
from previous work (Hartig et ai., 1990). The eDNA encoding DHFR (0.65 
kb BamHI-HindIII fragment) was replaced with a BamI-II-HindIII fragment 
coding for subunit IV of cytochrome e oxidase (cox IV; Maarse et al., 1984) 
of Saccharomyces cerevisiae or with modified versions of DNA-sequenees 

1. Abbreviations used in this paper: DHFR, dihydrofolate reductase; PCR, 
polymerase chain reaction. 

encoding one of the two reporter proteins. DNA containing cox IV from 
S. cerevisiae encoding a truncated version of suburdt IV without the 20 
NH2-terminal amino acids representing the mitoehondrial signal sequence 
was a kind gift from Dr. A. P. G. M. van Loon (Hoffmann LaRoehe AG, 
Basel, Switzerland). The DNA fragment contained a BamHI-restriction 
site in the same reading frame as used previously for DHFR and a HindllI 
site downstream of the stop codon. Modifications in the DNA-sequenco of 
both reporter proteins to alter their carboxy termini were introduced with 
oligonucleotide-directed mutagenesis carried out on single strand DNA 
using a kit from Amersham International. Oligonneleotides used for muta- 
genesis and the corresponding amino acid changes are summarized in Ta- 
bles I and II. The three different modifications of the cox IV part were intro- 
duced with three different oligonucleotides. The eDNA of DHFR was first 
mutngenized to introduce the sequence -SKL onto the carboxy terminus. 
In a second mutagenesis the earboxy terminus was modified to resemble 
the carboxy terminus of citrate synthase or lueiferase. The last six codons 
of CTA1 were fused to the eDNA of DHFR by eliminating 10 codons of 
CTA1 from a clone constructed earlier (Hartig et al., 1990) containing the 
last 16 codons of CTA1 at the 3' end ofthe eDNA of DHFR. 

Oligonucleotide-directed mutagenesis on single strand DNA was also ap- 
plied to eliminate the last three codons of catalase A or to introduce the 
amino acid sequence Arg-His-His-His (RHHH) instead of the penultimate 
amino acid lysine (K) or to eliminate the sequence from amino acid 369 
to 416. The modified DNA-sequence was used to replace the wild type 
coding sequence in the vector YEp352 containing the 2.7 kb EcoRI frag- 
ment of the complete CTA1 gene (Cohen et al., 1988) but missing the multi- 
ple cloning site except the EcoRI recognition site. The same plasmid was 
used to delete the part of the DNA encoding the sequence between amino 
acid 3 and 43 or 111 with polymerase chain reaction (PCR; Saiki et ai., 
1988; Ho et ai., 1989), using the unique restriction sites for SacI and 
BamI-II in the primer sequences (lines 2, 3, and 4 in Table II) to replace 
the corresponding wild type fragments. The same plasmid was also used 
as template to introduce the deletion between bp 378 and bp 427 of the eata- 
lase A coding region (between amino acid 126 and amino acid 143). Two 
parallel PCRs were carried out using primers depicted in Table II (lines 4 
and 5 and lines 6 and 7, respectively). The products were purified by gel 
electrophoresis, hybridized together and amplified using the "outside 
primers" (lines 4 and 7 in Table II). The resulting DNA fragment was cut 
with SacI and BamHI, purified, and used to replace the SacI-BamHI frag- 
ment of the wild type gene. Mutagenesis by PCR was also used to introduce 
deletions into the catalase A part of fusion proteins consisting of a reporter 
protein and 126 or 140 amino acids of cataiase. Primers are shown in lines 
2, 3, and 8 in Table II, plasmids containing gene fusions with the eDNA 
of DHFR were used as templates (Hartig et ai., 1990), and the cDNA of 

Table L Oligonucleotides Used for In Vitro Mutagenesis at the Carboxy Termini 

Amino acid 
Oligoouclcotide sequence Position (gene) sequence Comments 

GATGACCACCATAAAAACATTGAAAGCAAACTATAATCTTATCATTC +452/+479 
(coxiv) 

GATGACCACCATGGCGGAAAGTCCAAATTGTAATCTTATCATTC 

GATGACCACCATTCGAGTAACTCCAAATTTTAATCTTATCATTC 

CCTGTTAAAGTTTACTCTTCTCG 

GTTAAAGTTTACTTTCAATGTTTTTCTTCTCGTAGAC 

GTTAAAGTTTACTCTTTCCGCCCTTCTCGTAGAC 

GGAGTTACTCGACTTCTCGTAGAC 

CTTAAGCTTGTCGACTCAGTTACTCGA 

ACTTAAGCTTTTCAAAAATGATGATGACGGGAGTTAC 

+ 452/+ 479 
(coxiv) 

+ 452/+ 479 
(eoxiv) 

+ 568/+ 549 
(eDNA of DHFR) 

+ 565/+ 544 
(eDNA of DHFR) 

+565/+544 
(eDNA of DHFR) 

+1539/+544 
(CTA1/eDNA of DHFR) 

+ 1558/+ 1528 
(CTA1) 

+ 1559/+ 1532 
(CTAI) 

- H K N I E S K L *  citrate synthnse-terminus on 
subunit IV of cytochrome c 
oxidase 

lueiferase-terminus on subunit 
IV of eytochrome c oxidase 

catalnse-terminus on subunit 
IV of cytochrome c oxidase 

carboxy-terminal modification 
in DHFR 

- E K K N I E S K L *  citrate synthase-terminus on 
DI-IFR 

- E K G G K S K L *  luc i ferase- terminus  o n  D H F R  

- HGGKSKL* 

- HSSNSKF* 

- EKSKL* 

- E K S S N S K F *  catalase-terminus on DHFR 

-SELSSN* 

- N S R H H H F *  

carboxy-terminal modification 
in catalase 

carboxy-terminal modification 
in catalase 

All oligonucleotides used for mutagenesis at the carboxy termini are listed with the position of hybridization in the corresponding geae or eDNA and the new 
amino acid sequence (larger bold print). Ends of amino acid sequences are indicated by asterisks. Amino acid sequences of the carboxy termini of the authentic 
proteins are given for comparison: catalase A, -SSNSKF (Cohen et al., 1988); DHFR, -VYEKKD (Stone and Phillips, 1977); and subunit IV of cyteehrome 
c oxidase, -NDDHHH (Maarse et al., 1984). 
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Table II. Oligonucleotides Used for Deletions in CTA1 

Amino acids 
Oligonucleotide sequence Position fused Comments 

CCTAACTTCCAT-CCCATTCAACAAC 

GAGCTCTAGAAGATGTCCAAA-GGCCCTTTGCTTTTGCAAGATTAT 

GGAGCTCTAGAAGATGTCCAAA-GTGGGTGGTGATAAAGGTAGTGC 

CTGGATTGGATCCCGCAAT 

CGTGATCCAAGGGGG-AATAATACACCGGTAT 

CCCCCTTGGATCACG 
TAAATTTGGAGCTCTAGAAGATG 
GACGATGCAGTTCAATGGTCG 

+ 1093/+ 1261 . .NFH-PIQ..  
(368-417) 

- 13/+ 150 MSK-GPL..  
(3-43) 

- 13/+353 MSK-VGG..  
(3-111) 

+ 766/+ 748 

+ 364/+ 442 .. PRG-NNT.. 
(126-143) 

+ 378/+ 364 
- 2 0 / + 3  
+ 2 7 / + 7  

(cDNA of  DHFR) 

deletion between basepair 
1104 and 1249 

deletion between basepair 
9 and 127 

deletion between basepair 
9 and 331 

primer for PCR 

deletion between 
378 and 427 

primer for PCR 
primer for PCR 
primer for PCR 

basepair 

Oligonucleotides used for mutagenesis are listed with their position of hybridization and the resulting amino acid sequence. Deletions are indicated by hyphen. 
The first oligonucleotide listed was used for mutagenesis of single strand DNA, all others for mutagenesis with the PCR. 

DHFR was replaced by the truncated coxIV gene as described above using 
the unique restriction sites BamHI and HindIII. 

Preparation of OrganeUar Pellet and 
lmmunoblot Analysis 

Yeast cells were harvested by centrifugation ('~250 ml cell suspension, 2 • 
107 cells/mi), washed once with water, and converted to spheroplasts by in- 
cubation in 0.1 M Tris-SO4 (pH 9.4), 10 mM DTT for 10 rain at 300C and 
in 1.2 M sorbitol, 20 mM potassium phosphate (pH 7.4) containing 5 mg/g 
cells zymolyase 20T (Seikngaku Kogyo Co., Ltd., Ibkyo, Japan) for 30 to 
60 rain at 30"C. After centrifugation at low speed these spheroplasts were 
resuspended in ice-cold 20 mi of 0.6 M sorbitol, 5 mM MOPS (pH 6.0), 
1 mM KC1, 0.5 mM EDTA, 1 mM PMSF, and homogenized by 12 strokes 
with a Dounce homogenizer (Kontes Glass, Vineland, NJ) (1,000 rpm). The 
pellet after a short centrifugation at 2,000 g was homogenized again by six 
strokes with the homogenizer, and after centrifugation at 2,000 g the super- 
natant was united with the supernatant of the first eentrifugation. For sepa- 
ration of organelles from the remaining cytosol the supernatants were cen- 
trifuged at 25,000 g for 15 min. The resultant fractions are referred to as 
organellar pellet and postorganellar supernatant. Protein was determined 
with the method of Bradford (Bradford, 1976). Equal amounts of protein 
were separated by SDS-PAGE (Laemmli, 1970) and blotted onto nitrocellu- 
lose as described (Burnette, 1981). 

Antibodies 
Antibodies against catalase A and against DHFR were from goat. Rabbit 
antibodies against subunit IV of cytochrome c oxidase were a kind gift from 
Dr. G. Schatz (University of Basel, Basel, Switzerland). For detection of 
the respective proteins on Western-blots the first antibodies were diluted 
1:1,000 in 5 % wt/vol non-fat dry milk in TBS. The second antibodies, either 
alkaline phosphatase-conjngated anti-goat antibodies from rabbit or alka- 
line phosphatase-conjugated goat anti-rabbit antibodies (Axell, Westbury, 
NY), were used in a dilution of 1:2,500 in 5% wt/vol non-fat dry milk in 
TBS and visualized with a combination of 5-bromo-4-chloro-3-indolyl 
phosphate p-toluidine salt and nitro blue tetrazolium chloride (Robinson et 
al., 1988). 

EM 

Yeast cells were harvested from the induction medium containing oleic acid 
by centrifngation (50 ml cell suspension, ,x,4 x 107 cells/mi). After two 
washes in 5 mi medium without carbon source, the cells were resuspended 
in 2.5 ml of the same medium. An equal volume of ice-cold 2x  fixative 
(8% formaldehyde, freshly prepared from paraformaldehyde, and 4% 
glutaraldehyde in 2x  PBS (80 mM K2HPO4, 20 mM KH2PO4, 300 mM 
NaC1, 0.2% NAN3, pH 7.3) was added rapidly to ensure uniform mixing. 
After incubation for 5 min at room temperature the cells were harvested by 
centrifugation and resuspended in I x fixative (5 ml). Fixation continued on 
ice for 30 rain. Subsequently, cells were washed three times in PBS. Cell 
wall carbohydrates were oxidized by incubation in 1% sodium metaperio- 

date followed by ammonium chloride treatment as described (Van Tuinen 
and Riezman, 1987). Thereafter, several rinses with PBS were followed by 
inclusion of cells in low-melt agarose. Low temperature dehydration and 
embedding in Lowicryl HM20 (Chemische Werke Lowi, Waldkraiburg, 
Germany) was carded out as described (Carlemalm et al., 1982). After po- 
lymerization, 90-nm thick sections were cut with a diamond knife and 
mounted on carbon-parlodion-coated nickel grids (300 mesh). Immunocy- 
tochemical staining was performed essentially as described (Roth et al., 
1978). For blocking of unspecific binding sites, grids were floated on drops 
of PBS containing 1% BSA for 5 min at room temperature. After blocking, 
the grids were placed on drops of antibody solution (diluted in PBS contain- 
ing 1% BSA, 0.1% Triton X-100, 0.1% Tween 20, and 0.02% NAN3) and in- 
cubated for 2 h at room temperature. Three washes in PBS were followed 
by incubation with protein A-gold (diluted to an OD of 0.44 at 525 mn with 
PBS containing BSA, Triton, Tween 20, and NaN3 as above) for 1 h at 
room temperature. Protein A-gold complexes were prepared as described 
earlier (Binder et al., 1986). Finally, the grids were washed twice in PBS 
and once in distilled water. Air-dried sections were poststained with 2 % 
uranyl acetate and Millonig's lead acetate (Millonig, 1961). Sections were 
viewed in a Philips electron microscope (Philips, Eindhoven, The Nether- 
lands). For control of the specificity of the labeling procedures for innnuno- 
electron microscopy, the respective primary antibody in the incubation mix- 
ture was replaced by non-immune serum. 

For each construct at least 10 sections equalling ,x,700 peroxisomal 
profiles were looked at. We considered the frequency of occurrence of la- 
beled peroxisomes as: (a) negative ( - ) ,  if none of the inspected peroxisomal 
profiles were labeled; (b) borderline ( + / - ) ,  if up to 1% of inspected perox- 
isomal profiles were labeled; and (c) positive (+), if more than 1% of in- 
spected peroxisomal profiles were labeled. 

Results  

Construction of Gene Fusions and Deletions in the 
CTA1 Gene 

Many fusion proteins consisting of the entire DHFR at the 
carboxy terminus and different parts of the 515 amino acids 
of catalase A at the amino terminus did not enter peroxi- 
somes of S. cerevisiae (Hartig et al., 1990). Therefore we 
decided to test the influence of the reporter protein and 
of the carboxy termini of different peroxisomal proteins 
(luciferase from firefly [-GGKSKL], citrate synthase from 
S. cerevisiae encoded by CIT2 [-KNIESKL], and catalase A 
[-SSNSKF]) on import into peroxisomes. A summary of the 
constructs and of the resulting products is shown in Figs. 1 
and 2. 

Modifications in the coding region of CTA1 gave rise to 
catalase proteins with altered carboxy termini or with inter- 
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Figure 1. Intracellular location of fusion proteins. The intracellular location of fusion proteins consisting of a variable number of amino 
acids of catalase A at the amino terminus and the reporter protein subunit IV of cytochrome c oxidase was determined by immunoelectron 
microscopy. The numbers symbolize the length of the amino acid sequence from catalase A at the amino terminus. Deletions in the catalase 
part of fusion proteins are indicated in brackets with the last amino acid of the sequence still present and the first amino acid already present 
in the hybrid protein. The cytoplasmic location of some of the proteins led to proteinaceous aggregates (inclusion bodies) due to over- 
expression. 

nal deletions. These include proteins missing the last three 
amino acids of catalase A or those whose penultimate amino 
acid lysine (K) was replaced with the sequence Arg-His-His- 
His (RHHH) as well as proteins missing sequences from 
amino acid 4 to 42 or from 4 to l l 0  or from 127 to 142 or 

from amino acid 369 to 416. In addition, fusion proteins con- 
sisting of the entire sequences of catalase A and DHFR have 
been constructed by appropriate gene fusions. A summary 
of  the catalase variants is shown in Fig. 4. 

Relative amount of  all proteins analyzed was determined. 

Figure 2. Intracellular location of fusion proteins. The intracellular location of fusion proteins consisting of the six amino-terminal amino 
acids from catalase A at the amino terminus, a reporter protein (DHFR or subunit IV of cytochrome c oxidase) and different carboxy 
termini was determined by immunoelectron microscopy. The letters indicate the six carboxy-terminal amino acids from catalase A (cat) 
or from luciferase (/uc) or the seven carboxy-terminal amino acids from citrate synthase (cit) at the carboxy terminus of the fusion protein, 
or an artificial carboxy terminus consisting of Serine-Lysine-Leucine (SKL). 
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Figure 3. Localization of hy- 
brid proteins with the electron 
microscope by immunogold 
staining. Yeast ceils (strain 
GA1-SC) transformed with 
plasmids containing different 
gene fusions were prepared 
for electron microscopy as de- 
scribed (see Materials and 
Methods). Thin sections were 
reacted with anti-cytochrome 
c oxidase antibody and pro- 
tein A-gold (14 nm, dilution 
1:60). Abbreviations used for 
gene fusions are the same as 
in Figs. 1 and 2. N, nuclei; 
M, mitochondria; I, inclusion 
body. (a) 57-cox. Antibody 
diluted 1:9,000. Nucleus and 
cytoplasm are sparsely la- 
beled. No label over peroxi- 
somes (arrows). (b) 6-cox- 
cat. Antibody diluted 1:6,000. 
Note labeled peroxisomes 
(arrows). (c) 6-cox-luc. Anti- 
body diluted 1:9,000. Note la- 
beled peroxisomes (arrows). 
(d) 126-cox. Antibody diluted 
1:9,000. Peroxisomes are la- 
beled (arrows). Few gold par- 
ticles are seen over the nuclear 
profile. (e) 140-cox. Antibody 
diluted 1:3,000. Note labeled 
peroxisome (arrow). (f) 126 
(A3/Ill)-cox. Antibody di- 
luted 1:6,000. Note unlabeled 
peroxisomes (arrows) and la- 
bel over nucleus and cytoplasm. 
Bars: 0.5 #m. 

Fusion proteins and all catalase A variants were immunolog- 
ically detected on Western blots (Burnette, 1981) of proteins 
from crude organellar pellets and from postorganellar super- 
natants (results not shown). Basically, no major differences 
in expression levels and stability were found. 

lntracellular Location o f  Fusion Proteins 

The intracellular location of fusion proteins was determined 
with the electron microscope only, since biochemical tech- 
niques might be misleading due to formation of inclusion 
bodies (Hartig et al., 1990). Representative electron micro- 
graphs are shown in Fig. 3, results are summarized in Figs. 
1 and 2. Hybrid proteins with small parts of catalase A (e.g., 
6-cox, 57-cox, or 104-cox) were not imported into peroxi- 

somes (Figs. 1 and 3 a). However, the fusion protein consist- 
ing of 126 amino acids of catalase A at the amino terminus 
and subunit IV of cytochrome c oxidase was imported into 
peroxisomes (Fig. 1). Nearly each peroxisome was labeled 
with antibodies against subunit IV of cytochrome c oxidase 
(Fig. 3 d). Two slightly larger fusion proteins (135 or 140 
amino acids of catalase A and subunit IV of cytochrome c 
oxidase) were found in the peroxisomal compartment, too 
(see Figs. 1 and 3 e). However, frequency of labeled peroxi- 
somes was much lower. Larger fusion proteins (151, 159, 
168, or 492 amino acids and subunit IV of cytochrome c oxi- 
dase) did not enter peroxisomes at all. They were usually lo- 
cated in the cytoplasm, often aggregated to large inclusion 
bodies. This resembles the situation with catalase A itself, 
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peroxisomes 
4515 cah~lase A + 

i A 3--43 + 

"~ ~. 3-111 + 

A 126-143 

I A 368--417 + 

1512 A C-tcn'Tl[rlus + 

m o d  C-terminus + / /  
-SRHHHF 

Figure 4. Intracellular loca- 
tion of catalase A and vari- 
ants. The intracellular loca- 
tion of catalase A and variants 
thereof was determined by 
immunoelectron microscopy. 
The carboxy termini of the 
proteins consisted of the au- 
thentic carboxy terminus of 
catalase A (-SSNSKF, line 
1-5 and 8) except for the hy- 
brid protein catalase A-DHFR 
0ine 9) and where indicated 
(lines 6 and 7). Catalase A 
was modified at the carboxy 
terminus by deletion of the 
last three amino acids serine- 
lysine-leucine (SKF, line 6) 

, DHFR c ~ t ~  A + or by insertion of arginine- 
' ca~J~se ̂  - D H F R  histidine-histidine-histidine in- 
stead of lysine (-SRHHHF, line 7). The deletions are indicated with numbers representing the last amino acid still present and the first 
amino acid already present in the new protein. Due to overexpression the cytoplasmic location of the proteins led in some cells to protein- 
aceous aggregates (inclusion bodies), whose appearance is not indicated in this figure. 

which upon overexpression is also found aggregated in the 
cytoplasm besides its peroxisomal location (Binder et al., 
1991). Aggregation and import into peroxisomes are not 
mutually exclusive, as was demonstrated for catalase A it- 
self (Binder et al., 1991) and some fusion proteins in this 
work. Deletion of parts of the catalase A sequences from fu- 
sion proteins found inside peroxisomes (e.g., 126-cox and 
140-cox) resulted in the loss of import competence (Figs. 1 
and 3 f) .  

Slight modifications at the carboxy termini of import in- 
competent hybrid proteins (e.g., 6-DHFR or 6-cox) by addi- 
tion of few amino acids resembling the carboxy termini of 
peroxisomal proteins allowed import into peroxisomes (see 
Fig. 2). These carboxy termini consisted of the six carboxy- 
terminal amino acids from luciferase (de Wet et al., 1987), 
or of the seven carboxy-terminal amino acids of the perox- 
isomal citrate synthase (Rosenkrantz et al., 1986; Lewin et 
al., 1990) or of the six carboxy-terminal amino acids ofcata- 
lase A (Cohen et al., 1988). Examples are depicted in Fig. 
3, b and c. Addition of the signal tripeptide SKL (Gould et 
al., 1988) to the carboxy terminus of the fusion protein 
6-DHFR was not sufficient for a peroxisornal location of the 
resultant polypeptide (see Fig. 2). 

lntraceUular Location of  Modified Catalase A Proteins 

Results with the modified catalase A proteins are summa- 
rized in Fig. 4 and examples are depicted in Fig. 5. In con- 
trast to the results described above indicating a signalling 
function at the carboxy terminus of catalase A the deletion 
of the last three amino acids (SKF) of catalase A did not alter 
the peroxisomal location of the protein. Similarly, a catalase 
protein whose penultimate amino acid lysine (K) was 
replaced by the tetrapeptide Arg-His-His-His (RHHH) was 
imported into peroxisomes. Deletions in the more amino- 
terminal part of catalase A (deletion 3-111, deletion 3-43) 
had little or no effect on import, whereas a protein devoid 
of the sequence between amino acid 126 and 143 could not 
be found inside peroxisomes. Deletion of the region consist- 
ing of the sequence between amino acid 368 to amino acid 

417 had no effect on import. This region was originally pro- 
posed as a possible candidate for a targeting signal, since the 
differences to the cytoplasmic catalase T are pronounced 
(Cohen et al., 1988). Major modifications by adding the 187 
amino acid sequence encoding DHFR from mouse to the 
carboxy terminus of catalase A resulted in a cytoplasmic lo- 
cation of the hybrid protein. However, a fusion protein of the 
same size with catalase A at the carboxy terminus was im- 
ported into peroxisomes. 

Discussion 

Carboxy-terminal Peroxisomal Targeting Signal 

In Fig. 2 results are summarized indicating that carboxy ter- 
mini of three different proteins are sufficient for the perox- 
isomal location of hybrid proteins. Although citrate synthase 
encoded by the CIT2 gene was shown to be imported into 
peroxisomes of S. cerevisiae (Lewin et al., 1990) and al- 
though the carboxy terminus of this protein consists of SKL 
(Rosenkrantz et al., 1986), it was the experiment described 
above that identified a peroxisomal targeting signal residing 
in the seven carboxy-terminal amino acids of this protein. 
The carboxy terminus of catalase A consists of the amino 
acid sequence -SKF, which is not a peroxisomal targeting 
signal for luciferase in monkey kidney cells (Gould et al., 
1989). Nevertheless, the six carboxy-terminal amino acids 
of catalase A were sufficient to direct proteins into peroxi- 
somes ofS. cerevisiae. Most published experiments are simi- 
larly designed, and the conclusions drawn from these results 
are certainly correct: the carboxy termini of various perox- 
isomal proteins are sufficient to direct otherwise cytosolic 
proteins into peroxisomes. Variants of the carboxy-terminal 
signal are tolerated in lower eukaryotic organisms as indi- 
cated by signals like -AKI in the trifunctional enzyme of 
Candida tropicalis (Aitchinson et al., 1991) or -SKI, -NKL, 
and -ARF for catalase (Didion and Roggenkamp, 1992), di- 
hydroxyacetone synthase, and methanol oxidase in Hansen- 
ula polymorpha, respectively (Hansen et al., 1992). 
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Figure 5. Localization of cata- 
lase A and modified catalase- 
proteins with the electron 
microscope by immunogold 
staining. Yeast ceils (strain 
GC1-SB) transformed with 
multicopy plasmids harboring 
the wild type gene or modified 
versions thereof were prepared 
for EM as described (see 
Materials and Methods). Thin 
sections were reacted with anti- 
catalase antibody and subse- 
quently with protein A-gold (14 
rim, dilution 1:60). N, nuclei; 
M, mitochondria; I, inclusion 
body. (a) W'dd-type catalase A 
with modified carboxy termi- 
nus (-SRHHHF instead of 
SKF) encoded by the plasmid. 
Antibody diluted 1:200. Note 
labeled peroxisomes (arrows) 
and labeled inclusion bodies 
(I). (b) Wild type CTA1 gene 
on the plasmid. Anti-catalase 
antibody diluted 1:400. Perox- 
isomes are labeled (arrows). (c) 
Wild-type catalase A with 
modified carboxy terminus 
(without SKF) encoded by the 
plasmid. Antibody diluted 
1:400. Note labeled inclusion 
body (I) and labeled peroxi- 
some (arrow). (d) Catalase A 
devoid of the sequence between 
amino acid 3 and 43 (A 3--43) 
encoded by the plasmid. Anti- 
body diluted 1:300. Note la- 
beled peroxisomes (arrows). 
(e) Catalase A devoid of the se- 
quence between amino acid 
368 and 417 (A 368--417) en- 
coded by the plasmid. Anti- 
body diluted 1:400. Note la- 
beled peroxisomes (arrows). 
(f) Catalase A devoid of the se- 
quence between amino acid 
126 and 143 (A 126-143) en- 
coded by the plasmid. Anti- 
body diluted 1:500. Note la- 
beled inclusion body (I). 
Peroxisomes are not labeled 
(arrows). Bars: 0.5 #m. 

In most cases the carboxy termini are also necessary for 
import into the organelle, e.g., of luciferase (Gould et al., 
1989). However, deletion of the authentic carboxy terminus 
of catalase A or major modifications in the carboxy terminus 
did not change the poroxisomal location of catalase A (see 
Fig. 4). The only possible conclusion from these results is 
that catalase A possesses at least one other peroxisomal tar- 
geting signal. This signal(s) must reside somewhere in the 
amino acid sequence or in structural features of the import- 
competent protein. 

Location of  the Internal Peroxisomal 
Localization Signal 

Besides the well-established peroxisomal targeting signals at 
the carboxy terminus (Gould et al., 1987) a peroxisomal lo- 
calization signal can also be found at an amino-terminal lo- 
cation (Swinkels et al., 1991). Our findings demonstrate the 
internal location of a peroxisomal localization signal. In 
Fig. 1 results are summarized indicating a possible perox- 
isomal localization signal in the first third of the amino acid 
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sequence of catalase A. 126 to 140 amino-terminal amino 
acids of catalase A permit the import of a fusion protein with 
subunit IV of cytochrome c oxidase. With DHFR as reporter 
protein similar results could be observed with a much lower 
frequency of labeled peroxisomes (M. Binder, unpublished 
observation) indicating that DHFR might not be an ideal 
reporter protein for peroxisomal import studies in S. cere- 
visiae. In addition, this low import seems to be strain depen- 
dent, since hybrid proteins with DHFR could not be detected 
inside peroxisomes of strain A777 used previously (Hartig 
et al., 1990). The first 104 amino acids of catalase A were 
not sufficient for import of fusion proteins. If we assume that 
the reporter protein does not provide any part of the localiTa- 
tion signal, the putative peroxisomal targeting signal must 
reside somewhere in the sequence between amino acid 104 
and 126. Comparison in this region between catalases from 
different eukaryotic organisms and catalase A showed iden- 
tity of amino acid sequence between 82 and 56 % (data not 
shown) with catalase from H. polymorpha (Didion and Rog- 
genkamp, 1992) and maize encoded by cat1 (Redinbaugh et 
al., 1988) at the extreme ends, respectively. However, the 
effectiveness of this signal depends very much on the con- 
text, since fusion proteins with more than 140 amino acids 
of catalase A could not be found inside peroxisomes. Addi- 
tionally, fusion proteins containing only the sequence from 
amino acid 43 (or 111) to 140 of catalase A or from amino 
acid 111 to 126 of catalase A besides the first three amino 
acids of this protein at the amino terminus were not found 
inside peroxisomes (see Fig. 1). Therefore, it seems too early 
to confine the internal peroxisomal localization signal to the 
sequence between amino acid 104 and 126 of catalase A, 
since we cannot exclude contributions of parts of catalase A 
or of the reporter protein to the targeting signal. Moreover, 
only the deletion of a region immediately adjacent to the 
putative targeting signal, deletion of the sequence between 
amino acids 126 and 143, resulted in incompetence for 
peroxisomal import of the respective protein. Already the 
first paper published on the carboxy-terminal peroxisomal 
targeting signal (Gould et al., 1987) demonstrated, that 
somewhere in the amino-terminal half of luciferase a large 
sequence or structure is present whose alteration abolishes 
import into peroxisomes. The major difference to our results 
with catalase A is that for the peroxisomal import of lucifer- 
ase the carboxy terminus of this protein is indispensable 
(Gould et al., 1989), whereas for catalase A it is not. 

Nature of the Internal Peroxisomal Localization Signal 

Many different proteins containing the newly identified in- 
ternal peroxisomal localization signal were not imported into 
the organelle (see Figs. 1 and 4). A possible interpretation 
would be that the recognition of a defined sequence requires 
exposure of such a signal to the interacting proteins. There- 
fore, internal signal sequences may depend on the context for 
exposure to interacting proteins, similar to the nuclear local- 
ization sequences (Silver, 1991), Formation of a structure al- 
lowing interaction of a targeting sequence would be an intrin- 
sic feature of authentic peroxisomal proteins like catalase A. 
If the targeting sequence is properly exposed interaction oc- 
curs followed by import into peroxisomes. 

However, another mode of action could be imagined: the 
structural features alone and~not a distinct contiguous se- 
quence represent the signal aiad are recognized by specific 

cytosolic factors delivering their substrates to peroxisomes. 
In this case the formation of the "targeting structures" 
represents already a commitment for import into microbod- 
ies. This commitment can be so strong, that the carboxy ter- 
minus is not required any more, as demonstrated for cata- 
lase A (Fig. 4) and fusion proteins with 126, 135, or 140 
amino acids of catalase A at the amino terminus (Fig. 1). The 
formation and the effectiveness of these "targeting structures" 
certainly depend on other influences like exposure on the 
surface, size or overall structure of the protein. Only fusion 
proteins and catalase variants would be targeted to peroxi- 
somes, in which the formation of this "targeting structure" 
is permitted. An independent alternative targeting signal ex- 
ists at the carboxy terminus, which is dispensable in the 
authentic catalase A, but might be essential in fusion pro- 
teins like DHFR-catalase (Fig. 4). 
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