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Dust pollution in construction sites is an invisible hazard that is often ignored as a nuisance. Regulatory and engineering control
methods are predominantly used for its mitigation. To control dust, dust-generating activities and their magnitudes need to be
established. While researchers have comprehensively studied dust emissions of construction work, prediction of dust con-
centrations based on work phases and climatic conditions is still lacking. To overcome the above knowledge gap, this article
selected two construction stages of a project to monitor dust generation using the HXF-35 dust sampler. Based on the collected
data, dust emission characteristics of these two stages are studied, and dust emission characteristics under multiple pollution
sources are analyzed. Based on the results, a BP neural network model is built to perform simulations of dust emission con-
centrations in different work areas and predict construction dust concentrations under different conditions. Except few, the
majority of the work areas monitored have exceeded the allowable upper limit of TSP concentration stipulated by relevant
standards. In addition, dust emission differences of work areas are pronounced. .e results verified that the BP neural network
dust concentration prediction model is feasible to be used to predict dust concentration changes in different work faces under
different climate conditions and to provide a scientific base for pollution control. .is study provides several practical solutions
where the prediction of dust concentrations at designated work areas will allow construction companies early warning to
implement mitigation measures before it becomes a serious health hazard. In addition, it provides an opportunity to re-evaluate
those hazardous work in the light of these revelations. .e outcome of this study is both original and useful for both construction
companies and regulatory agencies. It can better predict the concentration of construction dust in different operating areas and
different weather conditions and provide a guide for the prevention and control of construction dust.

1. Introduction

With the rapid economic development, China’s construction
industry has been ushered into a period of large-scale
construction and infrastructure development. .e increas-
ing scale of construction activities, including building
construction, building demolition, equipment installation,
and so on, has aggravated particle pollution. .e majority of
construction activities are in-situ and organized in the open
air. In addition, material transportation, loading and
unloading, and stockpiles of earthwork cause large-scale
unavoidable emissions..e large particles of these emissions
tend to settle down near the construction site after being
raised. However, small particles tend to flow with the wind

and enter the atmosphere to form suspended solids that are
commonly known as construction dust [1]. According to
past research, construction dust has been considered to be an
important source of particle pollution [2–4].

.e formation of construction dust has been widely
studied by scholars for years, which included dust moni-
toring technologies [5], dust emission factors [6, 7], dust
diffusion rules [8–10], dust pollution characteristics [11, 12],
health hazard evaluation [13–15], and dust prevention and
control measures [16]. So far, instrument sampling has been
the most commonly used method to monitor construction
dust particle concentration. Gao [17] measured the TSP
(total suspended particulate) concentration using the HXF-
35 dust sampler and the TSP as a monitoring index of
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construction dust. In response to the complexity and
uniqueness of construction sites, Ma [18] adopted un-
manned aerial vehicles and image recognition technologies
to design an automatic monitoring system of construction
dust pollution sources and analyzed construction dust from
three aspects: tests for construction dust pollution sources,
identification of construction dust polluted areas, and
characteristic comparison of construction dust pollution
sources.

In order to quantify dust data acquired frommonitoring,
researchers have employed construction dust emission
factors and emissions via three commonly used research
methods [19]: exposure profiling method, four-dimensional
Flux model, and Flux-FDM method. Tian [20] built a
mathematical model, a four-dimensional flux model, which
is similar to the exposure profiling method proposed by the
U.S. Environmental Protection Agency, and a set of con-
struction dust emission monitoring plan matched with this
model. .e model also combined the actually measured data
of more than 40 construction sites for a quantitative as-
sessment of emissions and emission factors of construction
dust. After analyzing relevant data of a Tianjin building
construction site, Zhao [21] set up the Flux-FDM model,
which is used for the estimation of PM10 emissions of
construction, and combined the dust emission factors and
construction dust influencing factors obtained through the
nonlinear fitting. .ey found wind velocity and the super-
ficial dust water content are key factors that affect dust
emissions. However, construction dust emission is not only
subjected to the influence of climate factors, but also to the
monitoring height, construction intensity, and other factors.

In the studies of emission characteristics of construction
dust particles, Tian [22] studied the vertical and horizontal
diffusion laws of construction dust at the boundary of the
construction site by monitoring the change of the dust fall
concentration near the construction site. .ey found con-
struction dust fall concentration is inversely proportional to
the square of height on the same plane of the construction
site boundary. .e same correlation was also observed be-
tween the dust concentration and the square of the distance
from the monitoring point to the center on the same height.
Li [23] chose typical residential construction projects in
Beijing and set up dust concentration collection points in
major work areas during three different periods, namely
earthworks, frame, and partitions and interior decoration.
.ey conducted on-site monitoring with TSP as the mon-
itoring index. By comparing the dust pollution status of
different construction activities, Li [24] analyzed dust
emission characteristics and major distribution principles,
and the results suggested that dust emissions of different
construction activities significantly differed from each other
in terms of their concentration, which, to be specific, showed
that the dust concentration during the construction of frame
is lower than that of the earthworks. .e emission intensity
of the former is more stable, and the overall dust concen-
tration of the partitioning and interior decoration stage was
high but stable. Hou [25] selected the construction sites in
Mentougou District and Daxing District of Beijing as the
monitoring objects and used the light scattering method and

the gravimetric method to measure the dust at different
points of the construction site. .e results suggested that the
dust concentration distribution characteristics are different
in different areas of the earthwork construction site..e dust
concentration of the foundation pit is much higher than that
of the main entrance and downwind area, and the con-
struction site with poor dust prevention level is more likely
to produce high-concentration dust pollution.

To sum up, researchers have comprehensively studied
dust emissions characteristics of construction work, but
most researches have focused on the analysis of the overall
dust emission levels and characteristics of the entire con-
struction site. Nevertheless, research into dust emissions
characteristics of different work phases of construction is
still lacking. .e construction process is not homogenous
and hence different work phases generate different dust
concentrations, dust types, and hazards. A building’s con-
struction process goes through three distinctly unique
stages: foundation, frame, and internal partitions/finishes.
Different from the first two stages, the third mainly happens
indoor. .erefore, dust generated during the third stage
would not influence the external environment, and the dust
characteristics are significantly different from those of the
other two stages. Meanwhile, researchers have also done a lot
of work in the prediction of construction dust particles. In
the establishment of construction dust prediction models,
researchers mostly use traditional multiple linear regression
models [26, 27], but they have great limitations and cannot
capture the relationship between the concentration of dust
emission particles and dust monitoring factors, resulting in
predictions are not accurate. While a back propagation (BP)
neural network can overcome this limitation very well, it can
build a very complex nonlinear model, which can well reflect
the nonlinear relationship between particle concentration
and dust monitoring factors [28].

Hence, in order to accurately portray the dust emission
concentration of outdoor construction, this article mainly
focuses on the first two stages, namely foundation and
construction of the frame of a building. Based on the field
data monitoring, dust emission characteristics of these two
stages are studied, and dust emission characteristics under
multiple pollution sources are analyzed. Meanwhile, a BP
neural network model is built using the monitored data..is
model is employed to perform simulation analysis of dust
emission concentrations in different work areas and predict
construction dust concentrations under different conditions.

2. Division of Work Areas and Layout of
Monitoring Points

.e foundation and construction of frames are the main
stages of a building construction, whose activities are quite
different. Foundation work mainly includes preparation of
site, excavation, slope support, filling disposal, rebar pro-
cessing, concreting, etc. Among them, excavation, slope
support, and filling would form part of the foundation
excavation. .erefore, the foundation excavation area is
chosen as a monitoring point. Activities in the rebar pro-
cessing area and concreting area differ from each other
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significantly; therefore, they should be two separate moni-
toring points. .e construction of the frame mainly covers
formwork, bar bending, rebar processing, concrete mixing,
concrete pouring, and timberwork. Additionally, activities
such as formwork demolition and setup, floor rebar binding,
concrete pouring, and scaffolding are all done on the
construction floor or nearby. Since these work areas are close
to each other and have a similar construction environment,
the floor work area is set up as a monitoring point.
Meanwhile, the rebar processing area, concrete mixing area,
and timberwork area are set up as other monitoring points.
Moreover, vehicles transporting construction materials
during these two stages can easily raise road dust. .erefore,
the road area where the vehicles travel in and out of the site
was set up as a monitoring point. .e profile of all moni-
toring points in this research is presented in Table 1.

As shown in Table 1, there are 9 monitoring points set up
for the two construction stages. .e type of dust in different
work areas varies different, which primarily includes sili-
cious dust, cement dust, and timber dust. As the most
commonly seen dust type, silicious dust generally comes
from the soil, which is diffused into the air through natural
wind and by vehicles. Cement dust is generally caused by the
dust settlement during the loading and unloading of cement
bags, transportation process, and dust diffusion during the
feeding process, which is common in the concrete mixing
area. Timber dust refers to the dust generated during the
erection of timber formwork [29].

3. Construction Dust Monitoring

3.1. Monitoring Index, Equipment, and Methods. At present,
there are four main monitoring indicators to measure
construction dust, namely dust fall, TSP, PM10, and PM2.5.
.e total suspended particle (TSP) is defined as the sus-
pended particle whose aerodynamic diameter is smaller than
100 μm, and from a particle size perspective, TSP includes
particulate matter 10 (PM10) [30]. .e increasing mass
concentration of TSP in the air can increase the morbidity of
chronic obstructive pulmonary diseases, cardiovascular
diseases, cerebrovascular diseases, and acute respiratory
tract infections [31, 32]. Compared with direct monitoring of
PM10 concentrations, monitoring TSP concentrations is less
expensive and simpler to operate and can increase the

density of monitoring sites and enable larger data collections
[33]. .erefore, considering the scientificity and operability
of monitoring indicators, combined with the consideration
of construction site conditions and dust monitoring costs,
the TSP concentration in the air is chosen as the con-
struction dust monitoring indicator. In this research, the
TSP concentration is monitored using the dust sampler
HXF-35. Measurement results of this instrument can ac-
curately reflect the position and occurrence time of dust
pollution and realize multipoint simultaneous monitoring to
acquire mass data.

.is research refers to the Chinese national standard,
“Determination of Dust in the Air of Workplace–Part 1:
Total Dust Concentration” and uses the filter membrane
increment method for measurement. Before sampling, the
filter membrane is weighed. During the process of sam-
pling, the dust sampler HXF-35 is installed on an A-frame
holder. Under the obligation of not influencing the con-
struction operations, the sampling point can be kept as
close to the operator as practically possible, and the
sampling flow rate is set to be 20 L/min. After the end of
sampling, all samples are taken back to the lab for weighing
and data recording. .e TSP concentration can be given by
the following equation:

c �
m2 − m1

V∗ t
∗ 1000, (1)

where c denotes the total dust concentration (mg/m3), m2
denotes the membrane quality after sampling (mg), m1
denotes the membrane quality before sampling (mg), V
denotes the sampling flow (mg), and t denotes the sampling
time (min).

Because of sharp differences in dust concentration at
different monitoring points, the monitoring points should
be selected according to the practical situations. If there is no
serious dust within the vicinity, the sampling time should be
above 60min. If the monitoring point is severely affected by
pollution, the sampling time should be controlled within
30min. .e dust concentration of every monitoring point
should be monitored for at least four different periods of a
day to ensure the completeness and accuracy of dust data. In
addition to dust monitoring of different work areas, me-
teorological data should be recorded, including, tempera-
ture, wind velocity, and humidity.

Table 1: Profile of dust monitoring points.

Construction stage Monitoring points Construction dust types Major activities

Foundation

Foundation excavation
area Silicious dust Soil excavation, slope support, earthwork compaction

Rebar processing area Silicious dust Rebar transportation, processing, and storage
Concrete mixing area Cement dust Concrete mixing and transportation

Road area Silicious dust Earthworks and construction material transportation

Structural frame

Floor area Silicious dust Rebar binding, erection of formwork, scaffolding work, and
demolition

Concrete mixing area Cement dust Concrete mixing and transportation
Rebar processing area Silicious dust Rebar transportation, processing, and storage
Timber formwork area Timber dust Timber formwork and other timber processing

Road area Silicious dust Transportation of premixed concrete and other construction materials
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3.2. Overview of the ProjectMonitored. .is research chose a
residential construction project in the Donghu District of
Nanchang, as shown in Figure 1. Nanchang is located at
115°27′ -116°35′ E and 28°10′ - 29°11′ S, which is charac-
terized by a moist monsoon climate of the mid-subtropical
region with a pleasant temperature and ample sunlight. .e
average annual temperature of Nanchang is between 17°C
and 18°C, and its average annual precipitation is around
1,600mm. .e meteorological conditions in Nanchang are
characterized by a high frequency of calm wind, a high

frequency of atmospheric stability, and a high frequency of
near-earth inversion layers..e frequencies of calmwinds in
the four seasons are 25.9%, 24.8%, 21.4%, and 26.6%, re-
spectively. During the calm wind period, the wind speed is
small, about grades 1-2, and the temperature inversion
phenomenon lasts for a long time, which inhibits the dif-
fusion and dilution of atmospheric pollutants in Nanchang.
According to relevant researches, calm wind and temper-
ature inversion are the most important meteorological
conditions that cause serious air pollution [34].

(a) (b)

(c) (d)

Figure 1: Location of the project.
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4. Dust Concentration Emission Characteristics

4.1. Dust ConcentrationMonitoring Result. According to the
“Occupational Exposure Limit for Hazardous Agents in the
Work-place,” it can be seen that the standard limit of dust
concentrations is related to dust types. In order to compare
the dust emission concentration of different work areas, this
article chose the standard limit for different types of dust
concentration to calculate the average concentration, excess
multiple, measurement point yield, and other indices, as
shown in Table 2.

As shown in Table 2, the average construction dust
concentration of the foundation during excavation is 0.988,
which is the lowest of value and falls within the allowable
limit of the silicious dust. .ere are two reasons for this.
Firstly, the soil water content in the construction area is high,
which retards the formation of dust. Secondly, earthwork is
mainly carried out by large machinery, whose tracks can
help consolidate the soil beneath, preventing the generation
of dust. .e dust emissions of the road area and the concrete
mixing area are severe. .e average dust concentration, dust
concentration peak, and sample variance of the concrete
mixing area are 7.392, 17.760, and 10.017, respectively,
which are considerably higher than those of other work
areas. .e average dust concentration of the road area is
4.287, which is around four times the average dust con-
centration of the foundation area and rebar processing area.
.is suggests that concrete processing and vehicular traffic
are the main sources of dust during the foundation work.

During the construction of the frame, the average dust
concentration of timber formwork area is 8.697, which is
around eight times the average of the floor area and exceeds
the average of the concrete mixing area and the road area by
four-folds. .e measurement point yield of the work area is
just 12%, meaning that the dust emissions are severe in the
timber formwork area and also constitute the main dust

source of this stage. .is is mainly caused by a tight
workspace, which slows down dust diffusion. Emissions
from the road area are the second largest for this stage,
whose average dust concentration, measurement point yield,
and sample variance are all below those of the timber
formwork area. .e average dust concentration of the
concrete mixing area is below that of the floor work area and
the rebar processing area. .e dust concentration of the
concrete mixing area is within the allowable standard, its
exceeding multiple is 0, and its measurement point yield is
100%. All these data suggest that dust emissions of the
concrete mixing area are slightly lower than those of the
floor area and the rebar processing area. Compared with the
floor work area, the rebar processing area has a higher
average concentration, exceeding multiple, and measure-
ment point yield, implying that dust emissions of the latter
are more severe than those of the former; because the dust
pollution in the vertical direction of the spread is limited, the
dust concentration of the floor area decreases constantly
with the increase of floors.

4.2. Comparison of Construction Dust in the SameWork Area
but at Different Stages. Table 3 summarizes the average
construction dust concentration, average exceeding multi-
ple, and variation of the indices during earthwork and
structural frame stages. Overall, with the exception of the
rebar processing area, a decrease in the average construction
dust concentration and average exceeding multiple could be
observed, when construction activities move from the
foundation to the structural frame.

Based on average concentration, emissions in the rebar
processing area are on an upward trend, because of the heavy
demand placed on rebar for the structural frame. .ough
road area is the major dust source during foundation, it
decreases bymore than 50% when constructionmoves to the

Table 2: Concentrations of dust at different monitoring points of work areas.

Construction
periods

Dust monitoring
points Dust types Average concentration

(mg/m3)
Scope of excess

multiple
Measurement
point yield (%) Variance

Foundation

Foundation
excavation area

Silicious
dust a 0.988 0.000–0.320 72.000 0.042

Rebar processing area Silicious
dust a 1.103 0.000–0.590 70.000 0.082

Concrete mixing area Cement dust b 7.392 0.000–3.440 37.000 10.017

Road area Silicious
dust a 4.287 0.000–5.650 13.000 3.391

Structural frame

Floor area Siliciousdust a 1.148 0.000–0.600 60.000 0.066
Concrete mixing area Cement dust b 2.093 — 100.000 0.791

Rebar processing area Silicious
dust a 1.374 0.000–0.740 38.000 0.127

Timber formwork area Timber dust c 8.697 0.000–3.740 12.000 4.855

Road area Silicious
dust a 2.124 0.000–2.200 30.000 0.860

Note. .e concentration of silicious dust, cement dust, and timber dust is a, PC-PWA� 1mg/m3, b, PC-PWA� 4mg/m3, and c, PC-PWA� 3mg/m3 [35],
respectively.
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structural frame..ere are two main reasons for the decline.
Firstly, there is more bare soil during the earthwork as most
pavements have not been hardened. However, by the time
construction moves over to the structural frame, most of
these road surfaces are hardened, reducing dust raised by
vehicles. Secondly, during the structural frame, there are
fewer vehicles transporting soil from and to the site..e dust
concentration of concrete mixing during earthworks is three
times higher than that of structural frame. .is is mainly
because concrete is transported using a pump for pouring
into the formwork, whereas for foundation, a pump is not
used. .e cement, before entering the compression pump,
has full contact and reaction with water and aggregates, thus
evading the generation of cement dust.

From the average exceeding multiple perspective, vehicle
movements cause severe dust during both foundation and
structural frame stages. As to dust emissions of the rebar
processing area and the road area, their average exceeding
multiple varies significantly and drops by a large margin. In
particular, the average exceeding multiple of the concrete
mixing area during the structural frame has dropped to zero.

4.3. Comparison ofWorkAreas withMajor ConstructionDust
Emissions. Table 4 summarizes work areas with severe
construction dust emissions in the two stages. During
foundation work, road area, concrete mixing area, and rebar
processing area are the main dust-generating areas. How-
ever, during the construction of structural frame, timber
formwork area, road area, and rebar processing areas have
emerged as major dust-generating areas.

A comparison of average dust concentration and average
exceeding multiple of the three work areas is shown in Fig-
ure 2..ehighest average excessmultiple is found for the road
area,which is five times as high as that of the other two.Hence,
these threework areas should be the key areas for construction
dust prevention and control during construction.

5. Establishment of Dust Concentration
Prediction Model Based on the BP
Neural Network

Considering the complexity of building construction pro-
cess, multiple work phases, high emission randomness, and
difficulty of quantifying dust pollution, it is very important
to model dust concentrations at different work phases.
.erefore, this research conducts a simulation prediction of
dust particle concentration at different work areas in an
attempt to build a construction dust particle concentration
prediction model using the BP neural network.

5.1. Overview of the BP Neural Network. As one of the most
widely used models, the BP neural network has found ap-
plications in many fields [36–38]. .e BP neural network is
defined as a feedforward neural network or backpropagation

Table 3: Comparison of construction dust in the same work area at different stages of construction.

Monitoring point
Average concentration (mg/m3) Average exceeding multiple

Foundation Structural frame Variation Foundation Structuralframe Variation
Rebar processing area 0.988 1.374 39.070 0.590 0.740 25.420
Concrete mixing area 7.392 2.089 −71.730 3.440 0.000 −100.000
Road area 4.287 2.124 −50.450 5.650 2.200 −61.060

Table 4: Comparison of work areas with severe dust emissions.

Serial number Foundation Structural frame
1 Road area Timber formwork area
2 Concrete mixing area Road area
3 Rebar processing area Rebar processing area

4.287

8.7
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5.65

0.935
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Figure 2: Comparison of dust concentration and excess multiple in
work areas with severe emissions.
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Figure 3: BP neural network structure.
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neural network, which is characterized by the forward
propagation of signals and backward propagation of errors.
Generally speaking, the BP neural network consists of the
input layer, hidden layer, and output layer [39], and its
structure is presented in Figure 3. .e optimization capacity
of the BP neural network has a close bearing on its
structure—a structure characterized by variability, nonlin-
earity, error tolerance, self-adaption, and autonomous
learning.

5.2. Dust Concentration Prediction Model. .e neural net-
work model adopted in this research to build the con-
struction dust concentration prediction model features a

three-layer network structure, in which there are three
neurons in the input layer, namely the temperature, mois-
ture, and wind velocity [40]. .e initial hidden layer has 20
neurons, and the output layer has one neuron that is dust
concentration. In other words, it is a model with a 3-20-1
three-layer network structure. Meanwhile, MATLAB2016a
is adopted as the numerical computing platform. Before
prediction, the BP neural network should first receive
network model training to get equipped with the ability of
memorization and prediction. To the end, the “Rand”
function is used to acquire 60 samples from every moni-
toring point, and the first 50 samples are adopted as the
training set, while the other 10 as the test set. .e iteration
items are set as 100, and the learning rate is taken as 0.01.
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Figure 4: Comparison between the predicted values and the measured values of dust particle concentration during the foundation stage:
(a) foundation excavation area, (b) rebar processing area, (c) concrete mixing area, and (d) Road area.
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5.3. Dust Concentration Simulation of Different Work Areas.
.emodel with a 3-20-1 network structure thus built is used
to conduct simulated prediction of various work areas.
Figure 4 shows the actually measured values and predicted
values of the dust emission concentration of different work
areas of the foundation stage. Table 5 shows the correlation
coefficient of simulation prediction of different work areas
during the foundation and structural frame stages. Hence,
R2 below denotes the decision coefficient of regression
analysis, which is 0.9807, 0.98724, 0.9677, and 0.97255 in the
foundation area, rebar processing area, concrete rebar area,
and road area of the foundation stage, respectively. .e
prediction results and the actually measured value show a
high degree of fitting, indicating favorable simulation pre-
diction effects as shown in Figure 4. From Table 5, it can be
seen that R2 of the floor work area, concrete mixing area,
rebar processing area, timber formwork area, and road area
are 0.9749, 0.9097, 0.9556, 0.9608, and 0.9988, respectively.
Combining the results of Table 4 with the results of Figure 4,
the neural network training results of different work areas in
the structural frame stage are favorable.

Table 6 shows the regression results of the predicted output
and the target data of different work areas during the two
stages. Figure 5 shows the regression analysis results of the
predicted output and the target data of the road area during the
structural frame stage, where training, validation, test, and all
represent the regression coefficient R of the training samples,
verification samples, test samples, and integrated samples,
respectively. .e regression coefficients are above 90% as
shown in Table 6 and are generally close to 1. By combining the
results demonstrated in Figure 5, it is concluded that themodel
generates favorable simulation prediction results. It also shows
the feasibility of developing a construction dust emission

concentration prediction model based on the BP neural
network.

6. Discussion

Research results suggest that, during the construction pe-
riod, dust emissions of different work areas differ from each
other significantly, which aligns with the previous research
findings [41]. However, numerical simulations of con-
struction dust at present are mostly based on the gas-solid
two-phase flow theory to simulate the diffusion based on
rules of the wind velocity, height of the generation source,
and dust concentration [42, 43]. It is not based on the
characteristics of on-site construction activities and their
influences on dust emissions. .is is a major gap in the
extant literature, and hence some of the highly polluting
areas are neglected in auditing and monitoring schemes. In
order to fill the above gap in the knowledge, this research
chose the wind velocity, temperature, and moisture as input
factors to build a construction dust simulation prediction
model for different work areas of a construction site, fo-
cusing primarily on two work stages that happen in the open
air. Hence, the model considers not only the influence of the
meteorological conditions, but also the influence of con-
struction activities on dust emissions. .e regression coef-
ficients show that the predicted values and the measured
values demonstrate good agreement. .erefore, the estab-
lished model should be capable of well-predicting con-
struction dust concentration changes in different work areas
and under different weather conditions and providing a
scientific base for its control, diffusion, and pollution.

In order to verify the validity of the construction dust
prediction model, ten test samples are randomly chosen

Table 5: Dust particle concentration of different work areas.

Construction periods Work areas R2

Foundation

Foundation excavation area 0.9807
Rebar processing area 0.9872
Concrete mixing area 0.9677

Road area 0.9726

Structural frame

Floor area 0.9749
Concrete mixing area 0.9097
Rebar processing area 0.9556
Timber formwork area 0.9608

Road area 0.9988

Table 6: Regression analysis results of the predicted output and the target data of different work areas.

Construction stage Work areas Training Validation Test All

Foundation

Foundation excavation area 0.9937 0.9459 0.9833 0.9859
Rebar processing area 0.9968 0.9135 0.9583 0.9746
Concrete mixing area 0.9821 0.869 0.9098 0.9586
Both sides of road 0.9986 0.9913 0.9966 0.9973

Structural frame

Floor area 0.9917 0.9777 0.9908 0.9837
Concrete mixing area 0.9986 0.9894 0.9988 0.9962
Rebar processing area 0.9962 0.9956 0.9721 0.9921
Timber formwork area 0.9968 0.7586 0.9442 0.9885
Both sides of road 0.9996 0.9949 0.9953 0.9978

8 Computational Intelligence and Neuroscience



from the road area during the construction of the structural
frame for prediction as shown in Table 7. .e relative error
between the predicted values and the actual values of the ten
samples are all around 0.01, meaning that the construction
dust prediction model proposed by this article can obtain
favorable results. In addition, the neural network

construction dust prediction model is easy to use and well
demonstrate the prediction results in the form of curves..e
prediction of dust concentrations in different work areas of a
construction site has several positive implications. It allows
the construction company to monitor dust levels at different
stages of work and plan strategic interventions before it is
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Figure 5: Regression analysis results of the road area during the structural frame stage: (a) training: R� 0.99957, (b) validation: R� 0.99492,
(c) test: R� 0.99533, and (d) all: R� 0.99783.
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too late. It could prevent dust-related long-term illnesses
among workers who are routinely involved in such tasks.

For example, an investigation by the Australian
Broadcasting Cooperation (ABC, 2019) revealed that the
workers who are involved in installing stone kitchen bench-
tops have reported silicosis due to exposure to silica dust
(http://www.aap.com.au/,2019). .e report states “doctors
are worried Australia is facing the worst occupational lung
disease crisis since the peak of the asbestos disaster” as
number of stonemasons in New South Wales, Victoria,
Australian Capital Territory, and Queensland have been
reported to the hospital with accelerated silicosis of alarming
levels. However, the builders involved in residential con-
struction in Australia have never been on the spotlight for
any violation of WHS laws related to dust pollution. .e
reason is, construction dust is considered as “nuisance dust”
because most auditing and monitoring (if all happens) is
based on the overall measurement results rather than on
designated areas. Based on these overall measurements, the
site does not exceed the regulatory thresholds set by the
Environmental Project Agency (EPA) of Australia. How-
ever, if measurements were taken at different work areas,
some areas could be well above those limits. .erefore, the
prediction of dust concentrations at designated work areas
should be a high priority for construction companies.
Furthermore, regulatory agencies should avoid blanket
rulings on construction sites as different activities have
varying dust generation potential, some of which could be
very harmful to workers and the neighboring community.

7. Conclusion

Due to the complexity, continuity, and time-varying char-
acteristics of construction dust emissions, traditional re-
gression prediction models cannot accurately predict the
concentration of the dust emissions. .erefore, in order to
simulate construction dust under multiple pollution sources,
this article monitored dust emissions during two important
stages of a residential construction project, namely foun-
dation and structural frame. .e study identified training
and learning samples for the neural network, compiled the
learning and training algorithm, and built the neural net-
work model reflecting dust emission concentrations in
different work areas. Based on the results of simulation
prediction, the output data of the BP neural network model
demonstrate a favorable and ideal correlation, and compared
with the traditional regressionmodel, the dust concentration
prediction model established by the BP neural network is
feasible to be used to predict dust concentration changes in
different work areas and under different climate conditions,
which can provide a scientific base for pollution control.

.e majority of work areas have exceeded the allowable
upper limit of TSP concentration stipulated by relevant
standards. .is means that most work areas are suffering from
the serious concentration of dust pollution under multiple
pollution sources. .e dust emission differences of work areas
are pronounced. To be specific, the areas with serious dust
emission concentrations during foundation include the road
area, concretemixing area, and rebar processing area..e areas
with serious dust emission concentrations during the con-
struction of structural frame include the timber formwork area,
road area, and rebar processing area. While the road area in
foundation construction, concrete mixing area, and wood
formwork area in structure construction are the key areas of
dust emission in construction period.

.e prediction of dust concentrations in designated
work areas will provide construction companies with an
early warning to implement mitigation measures before it
becomes a serious health hazard. In addition, it provides an
opportunity to re-evaluate those hazardous work in the light
of these revelations. Although this study showed that the BP
neural network could develop such early warning, the study
only used two stages of a long and laborious construction
process as a demonstration. Further research is needed in
other stages and activities to evaluate the true potential of BP
neural network simulations and to demonstrate their suit-
ability. Further research into other stages of construction
could reveal activities that are prone to severe dust emissions
which at present are not considered as hazardous by builders
or regulatory bodies.
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