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Production of lignolytic enzymes by the mushroom fungus Stereum ostrea in liquid medium under conditions of vegetative growth
was examined for 10 days in comparison to the reference culture Phanerochaete chrysosporium. Though growth and secretion of
extracellular protein by S. ostrea were comparable to those of P. chrysosporium, yields of laccase enzyme by S. ostrea were higher
than laccase titres of P. chrysosporium by more than 2 folds on the peak production time interval (IVth day of incubation). S. ostrea
yielded titres of 25 units of laccase/ml as against 8.9 units of laccase/ml on the IVth day of incubation. Stereum ostrea also exhibited
activities of other lignolytic enzymes, lignin peroxidase (LiP) and manganese peroxidase (MnP), higher than the reference culture.
Growth of S. ostrea on the medium in the presence of Remazol orange 16 resulted in the decolourisation of dye, confirming the
presence of lignolytic enzymes. S. ostrea appears to be a promising culture with complete lignolytic system.

1. Introduction

Lignin is the second most abundant aromatic polymer in
nature with three-dimensional structure composed of phenyl
propanoid units linked through several carbon-carbon and
ether bonds [1, 2]. Such complex structure of lignin is de-
signed in plant cell wall to protect plant cells from microbial
attack [3]. Degradation of recalcitrant lignin requires an ox-
idative process mediated by lignolytic enzymes. Lignolytic
enzymes include laccase (Lce) (EC 1.10.3.2), lignin peroxi-
dases (LiP) (EC 1.11.1.4), manganese peroxidases (MnP) (EC
1.11.1.3), and versatile peroxidases and are secreted by white
rot fungi [2, 4, 5]. A few of them, in particular, Phanerochaete
chrysosporium and Trametes versicolor, have been the focus of
intensive research and a greater understanding of physiology
biochemical and molecular biology of lignolytic enzymes in
the above organisms have been gained [6]. Activities of lig-
nolytic enzymes appear only in the culture medium after
attainment of peak growth with exhaustion of nutrients—
C, N, and S in respect of P. chrysosporium and T. versicolor

[7]. Production of lignolytic enzymes in these organisms
is enhanced by inducers [8]. Lignolytic enzymes in other
organisms, Cereporiopsis subvermispora, Trametes trogii and
Panus tigrinus, are constitutive and produced even under
conditions of nitrogen sufficiency [9-11]. Profiles of enzymes
of lignolytic system depend on growth conditions and vary
from one organism to another. Peroxidases are dominant in
lignolytic system in respect of P. chrysosporium, where laccase
is a major component in lignolytic system of Ganoderma
adspersum [6, 12, 13]. In view of broader specificity and
oxidation of wider range of xenobiotic compounds including
chlorinated phenolics, synthetic dyes, pesticides, and pol-
ycyclic aromatic hydrocarbons, lignolytic enzymes offer ad-
vantages for biotechnological applications. Although the
majority of earlier studies have been on lignin-degrading
enzymes of organisms, P. chrysosporium, Pleurotus ostreatus
and Trametes versicolor, there has been a growing interest
in studying lignolytic enzymes of wider array of white-rot
fungi from the standpoint of comparative biology but also
with expectation of finding better lignin degrading system.
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Activity of laccase enzyme was detected in the culture filtrate
of Stereum ostrea [14]. In that direction, the present inves-
tigation has been undertaken to study lignolytic enzymes of
a mushroom, Stereum ostrea in comparison to the reference
culture Phanerochaete chrysosporium.

2. Materials and Methods

Stereum ostrea was kindly supplied by Professor M. A.
Singaracharya, Department of Microbiology, Kakatiya Uni-
versity, Andhra Pradesh, India, and was isolated from wood
logs. The reference culture, Phanerochaete chrysosporium
was obtained from IMTECH, India. Both the cultures
were maintained on Koroljova-Skorobogat’ko medium [15]
because of good growth [14].

Sterile Koroljova-Skorobogat’ko medium was dispersed
into sterile 250 mL Erlenmeyer flasks at a rate of 50 mL
of medium per flask. The flasks were inoculated with ho-
mogenized mycelial suspension and incubated in an orbital
shaker (Orbitek, Chennai, India) at 30°C and speed of
200rpm. The flasks with growing cultures of Stereum
ostrea and Phanerochaete chrysosporium were withdrawn at
different time intervals during the course of the experiment
for processing. The entire culture medium in flasks was
used for processing in the same manner as mentioned
earlier [14]. The fungal cultures were aseptically filtered
through preweighed Whatman no 1 filter paper to separate
mycelial mat and the culture filtrate. The filter paper along
with mycelial mat was dried at 70°C in an oven until
constant weight. Difference between the weight of the filter
paper having mycelial mat and weight of only filter paper
represented biomass of fungal mat. Fungal growth was
expressed in terms of mg/flask. pH of the culture filtrate was
measured. Content of extracellular protein in culture filtrates
of both fungi was estimated according to Lowry et al. [16].

2.1. Enzyme Assay. Activities of lignolytic enzymes in the
cultural filtrate of both fungal cultures were estimated
following the standard protocols. Laccase activity was assayed
using 10 mM guaiacol in 100 mM acetate buffer (pH 5.0)
containing 10% (V/V) acetone. The change in absorbance of
the reaction mixture containing guaiacol was monitored at
470 nm (e = 6740 M~ cm™!) for five minutes of incubation
[17] Laccase activity was expressed in International Units
(IU), where one unit corresponded to the amount of
enzyme that oxidized one micromole of guaiacol per minute.
Lignin peroxidase activity was determined by oxidation of
veratryl alcohol at 310nm (e = 9,300M ' cm™!) [18]. The
reaction mixture was composed of 0.5mL culture filtrate,
0.4 mM H,0, and 50 mM tartaric acid (pH 2.5) and 2mM
veratryl alcohol. The enzyme activity was expressed in IU,
where one unit of LiP corresponded to the amount of
enzyme that oxidized one micromole of veratryl alcohol
per min. MnP activity was determined by oxidation of
phenol red at 610nm [19]. The assay mixture included
0.5 mL culture filtrate, 0.25 M sodium lactate (pH 4.5), 0.5%
bovine albumin, 200 mM MnSOy, 2.0 mM H,0, (prepared
in 0.2 mM sodium succinate buffer pH 4.5) and 0.1% phenol
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red. The changes in the absorbance of reaction mixture was
monitored at 610nm (¢ = 22,000M 'cm™!) for 5min.
MnP activity was expressed in IU, where one unit of MnP
was defined as the amount of enzyme that oxidized one
micromole of phenol red per min.

2.2. Decolourisation of Dye. Another experiment was con-
ducted by growing both fungal cultures in the same lig-
uid medium in the presence of dye Remazol orange 16
(Amax = 530nm) at concentration within a range of
0.02 to 0.10% in 250 mL Erlenmeyer flasks in the same
manner as mentioned earlier. Medium without dye and
inoculum and dye-amended medium without inoculum
were maintained as controls. At regular intervals flasks were
withdrawn for processing for determination of decolouri-
sation of dye in addition to parameters mentioned in the
previous experiment. Absorbance of colour of dye in the
uninoculated medium amended with dye was measured
against uninoculated medium without dye at 530 nm at any
given time interval and is treated as absorbance of control.
Absorbance of colour of dye in the culture filtrate derived
from the growth of fungi was measured against uninoculated
medium without dye at 530 nm at the respective time interval
and was considered as observed absorbance. Decolourisation
was expressed as activity (%)

% Decolourisation

_ Control absorbance — observed absorbance
B Control absorbance

X 100
(1)

3. Results and Discussion

Biomass of cultures of Stereum ostrea and Phanerochaete
chrysosporium upon growth in liquid medium under shaking
conditions was determined and is presented in (Figure 1).
Growth of both cultures was initially slow for 4 days and then
picked up and remained steady from 8th day of incubation.
Stereum ostrea produced maximum biomass of 1.89 g/flask
on the 10th day of incubation as against 1.78 g/flask in
respect of P. chrysosporium.

The secretion of extracellular protein into liquid medium
under shaking conditions for 10 days was measured
(Figure 2). The secretion of extracellular protein by both
fungal cul-tures increased with increase in incubation time
and reached maximum on 6th day of incubation and there-
onwards dropped. Stereum ostrea secreted maximum protein
content of 750 yg/mL into medium as against 770 yg/mL by
P. chry-sosporium on 6th day of incubation.

Wood-rot fungi are a large group of microorganisms with
a potential to metabolise lignin by action of three major
groups of enzymes: Lignin peroxidase, Mn peroxidase, and
Laccase outside cell. Our knowledge in the understanding
of nutritional requirements for growth of the organisms,
Phanerochaete chrysosporium, and Trametes versicolor, Pleu-
rotus ostrea, Trametes trogii, has been improving with
continuous efforts of probing. There are many wood-rot or-
ganisms which have not been explored. The present study
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F1GURE 2: Extracellular protein of the fungal cultures.

examined the growth of an unexplored wood-rot fungus-
Stereum ostrea, in comparison to the model lignolytic culture
P. chrysosporium. Both the test organism and the model
culture grew well on Korlojova liquid medium used in this
study under shaking and noninducing conditions as reflected
by large biomass of both cultures and high protein secretion.

Both cultures exhibited laccase activity when grown
on medium under noninducing conditions (Figure 3). Un-
like extracellular protein secretion, laccase production by
both cultures touched peak on 4th day of incubation and
thereonwards declined. Stereum ostrea gave titres of laccase
3 times higher than P. chrysosporium. Maximum vyields of
laccase to the tune of 25 Units/mL by S.ostrea was recorded as
against only 9.0 units/mL by P. chrysosporium. Thus, results
clearly show that S. ostrea was better than the reference
culture on the score of laccase production.

Production of lignolytic enzymes was studied in only
a few wood-rot organisms: Phanerochaete chrysosporium,
Trametes versicolor, Pleurotus ostrea, and Trametes trogii.
Stereum ostrea notably displayed higher capacity of laccase
production (25 Units/ml) under noninducing conditions
than even other white-rot fungi Ganoderma sp. [13], newly
isolated basidiomycete PM1 [20] and Trametes versicolor
[21] and Trametes hirsuta [22] reported elsewhere. Baldrain
and Snajdr [23] compared the production of laccase by
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FIGURE 3: Laccase activity of the fungal cultures.

litter-decomposing basidiomycetes with reference white-
rot fungi Trametes versicolor and Pleurotus ostreatus on
HNHC medium and found vyields of laccase by only one
basidiomycete Collybia dryophila close to figures of laccase
yields of Trametes versicolor (60 Units/lit). Growth of the
white-rot fungus Coriolopsis rigida [24] and Trametes trogii
[10] in liquid medium under induced conditions produced
maximum levels of 40 Units/ml and 90 Units/ml of laccase
activity, respectively. In the majority of the above studies,
laccase assay was determined with use of 2,2"-Azino-bis(3-
Ethylbenzthiazoline-6-Sulfonic Acid) as a substrate, whereas
guaiacol was employed as substrate in assay medium for
laccase in the present study. As Kcat of laccase of different
organisms Pleurotus ostreatus POXA and Trametes trogii with
substrate ABTS was higher than Kcat of laccase of the same
organisms with guaiacol as substrate, yields of laccase in
cultures of organisms determined on the basis of ABTS
method is expected to be higher [25]. This fact is taken into
consideration along with production of laccase carried out
under noninduced conditions in the present study, yields of
laccase by Stereum ostrea were comparable and may be even
higher than yields of laccase by C. rigida and Trametes trogii.

Growth of both fungal cultures resulted in drop in pH
of Koroljova medium which was initially set to pH 6.0
(Figure 4). During the course of growth of fungal cultures,
pH of culture medium was not regulated. Decrease in pH of
the culture medium of both fungal cultures occurred up to
4th day of incubation, and there was recovery in pH of the
culture medium towards the end of the experiment. Drop in
pH of the medium was sharper in respect of S. ostrea and fell
below 4 on the 4th day of incubation.

Another experiment was conducted with the selected
fungal cultures in liquid Koroljova medium to find out
whether other lignolytic enzymes lignin peroxidase and
manganese peroxidase are present in lignolytic system of
S. ostrea. LiP activity was detected in the culture filtrate of
S. ostrea and P. chrysosporium throughout the incubation
period (Table 1). There was an increase in activity of LiP
up to 6th day of incubation followed by declining trend.
Maximum activities of LiP recorded in respect of S. ostrea
and P. chrysosporium on 6th day of incubation were 0.516 and
0.472 U/mL, respectively. Stereum ostrea displayed activity of
even LiP on higher side than P. chrysosporium.
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TasLE 1: Lignin peroxidase activity of the fungal cultures.

Lieni - — D) of
Incubation Period (days) ignin peroxidase activity (U/mL) o

S. ostrea P. chrysosporium
I 0.300 0.216
v 0.432 0.344
VI 0.516 0.472
VIII 0.260 0.241
X 0.172 0.165

TaBLE 2: Manganese peroxidase activity of the fungal cultures.

Incubation Period Manganese peroxidase activity (U/mL) of

(days)
S. ostrea P. chrysosporium
I 0.164 0.036
v 0.292 0.220
VI 0.590 0.272
VIII 0.328 0.200
X 0.200 0.144

Like LiP, Mn peroxidase of both cultures followed the
similar trend during the course of incubation (Table 2). Both
cultures secreted MnP into broth throughout the incubation
period. But maximum activities of MnP in both cultures
was observed on 6th day of incubation. S. ostrea exhibited
MnP activity two folds higher than P. chrysosporium. S.
ostrea yielded titres of 0.590 U/ml of MnP as against titres
of 0.272 U/mL by P. chrysosporium on 6th day of incubation.

Breakdown of lignin is mediated by action of the enzymes
lignin peroxidase, and manganese peroxidase apart from
laccase. Titres of both LiP and MnP yielded by both cultures
under noninducing conditions were low when compared
to laccase by the same cultures and did not exceed one
Unit/ml. However, these yields of lignolytic peroxidases by
S. ostrea in the present study were considerable in com-
parison to other organisms including P. chrysosporium on
different growth media under different conditions. Growth
of P. chrysosporium in submerged fermentation generated
MnP and LiP with specific activity of 144 and 14 U/mg,
respectively [26]. Yields of lignolytic peroxidase enzymes in
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majority of studies with different strains of P. chrysosporium
in liquid medium occurred within a range of 0.07-0.8 U/mL
[12, 27-30]. Growth of other organisms—Trametes versicolor
[23, 31], hyperlignolytic fungus IZU-154 [32], the strain
K, isolated from polyphenol polluted site [33], Nematoloma
forwardii [34], and Pleurotus pulmonarius [35] in solid state
fermentation/submerged fermentation produced lignolytic
peroxidases at low levels. However, two organisms Phellunus
robusties [13] and Schizophyllum commune [27], with high
production of MnP in liquid medium to the extent of 10
and 580 U/mL, respectively were spotted in the literature.
Differences in titres of enzyme yielded by organisms in
different studies may be due to differential inherent capacity
of organisms to synthesize lignolytic enzymes, growth condi-
tions, nutritional requirements and inducer. Organism like P.
chrysosporium produced higher yields of lignolytic enzymes
under conditions of starvation for nitrogen and carbon
[36, 37], whereas in other cases—Panus tigrinus lignolytic
enzymes were generated under even conditions of nitrogen
sufficiency. The presence of inducers veratryl alcohol induced
2-fold increase in yields of lignolytic enzymes by P. chrysospo-
rium [37]. Yields of lignolytic enzymes by S. ostrea in the
present study were determined only under noninducing
conditions. Exposure of S. ostrea to inducer may further
improve yields of lignolytic enzymes. Laccase appears to be
a dominant component in lignolytic enzymes of S. ostrea
under growth conditions employed in the present study.
Similar observation of dominance of laccase in lignolytic
system of Ganoderma adspersm was made [13]. In contrast,
lignolytic peroxidases are major component of lignolytic
system of P. chrysosporium Schizophyllum commune [27].

Textile dye Remazol orange-16, has undergone decolori-
sation even at the highest concentration (0.10%) in both
grown cultures (Table 3). Decolourisation of dye by both
cultures followed the pattern of growth. Decolourisation was
initially slow later picked up and reached maximum on VI
day of incubation in both cultures but values were lower side
in case of Phanerochaete chrysosporium.

Maximum decolorisation of dye by Stereum ostrea at 3
different concentrations—0.01, 0.05, and 0.10% was found
to be 84.42, 81.27, and 70.85%, respectively, where as the cor-
responding figures in respect of Phanerochaete chrysosporium
was 77.66, 66.74, and 65.47 at the 6th day of incubation.

Decolourisation of dye Remazol orange-16 in the present
study by both cultures indicates indirect evidence for pres-
ence of lignolytic enzymes in the culture filtrates of both
cultures used in the present study. Activities of lignolytic
enzymes Lce, MnP, and LiP in the culture filtrate of both
fungal cultures grown on the medium in the presence of
Remazol orange-16 at regular intervals were measured. As
activities of these enzymes in the culture filtrate, derived
from growth of fungi in the medium amended with dye,
followed the similar trend to those of the same enzymes in
the culture filtrate of the same cultures grown in the medi-
um without dye, the results are not represented here. Colour
changes of dyes may also occur due to sensitivity of dyes
to pH changes that took place in medium upon growth of
fungal cultures. It was tested whether Remazol orange-16
undergoes change in colour in a medium with pH up to 3.
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TaBLE 3: Decolorisation of textile dye, Remazol orange, 16 by the fungal cultures.

Incubation period (days)
Stereum ostrea at

% decolorisation of dye by

Phanerochaete chrysosporium at

0.01% 0.05% 0.10% 0.01% 0.05% 0.10%
II 31.12 29.15 28.42 17.52 15.25 10.76
v 77.31 70.56 62.80 70.56 68.13 60.75
VI 84.42 81.27 70.85 77.66 66.74 65.47
VIII 81.17 75.26 60.13 71.19 60.11 58.75
X 81.18 75.63 60.97 71.31 60.20 58.85

The possibility of decolourisation due to pH changes was
ruled out because of stability of colour of Remazol orange-
16 under low pH. Generally, decolorisation of dyes is
probably due to physical adsorption of dye to mycelial mat
or participation of lignolytic enzymes or combination of
both. Appearance of colour on mycelial mat followed by
loss of colour from mycelial mat was an observation made
in the present study and supports involvement of lignolytic
enzyme in decolorisation of dye. Similarly, a clearance
of purple colour around fungal growth on agar medium
with poly-R Assay was considered as a positive result for
production of lignolytic enzymes and was used for screening
basidiomycetes for the presence of lignolytic enzymes [35].
Decolourisation of dyes was also demonstrated even with
purified lignolytic enzyme Laccase [14]. For this simple
reason, protocols with use of dyes as possible substrate for
lignolytic enzymes have been developed and permit rapid
assay of lignolytic enzymes [8, 38].

4. Conclusions

The following conclusions can be drawn from the results of
the present study. The white-rot fungus S. ostrea produces
a complete lignolytic system Lcc, LiP, and MnP under
conditions of vegetative growth. Lcc appears to be a dom-
inant component in the lignolytic system of S. ostrea. For
production of lignolytic enzymes, Stereum ostrea culture is
more promising and potential culture than the reference
culture P. chrysosporium.
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