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Endothelial-to-mesenchymal transition (EndMT) emerges as an important source of fibroblasts. MicroRNA let-7 exhibits anti-
EndMT effects and fibroblast growth factor (FGF) receptor has been shown to be an important in microRNA let-7 expression.The
endogenous antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is a substrate of angiotensin-converting enzyme
(ACE). Here, we found that AcSDKP inhibited the EndMT and exhibited fibrotic effects that were associated with FGF receptor-
mediated anti-fibrotic program. Conventional ACE inhibitor plus AcSDKP ameliorated kidney fibrosis and inhibited EndMT
compared to therapy with the ACE inhibitor alone in diabetic CD-1 mice. The endogenous AcSDKP levels were suppressed
in diabetic animals. Cytokines induced cultured endothelial cells into EndMT; coincubation with AcSDKP inhibited EndMT.
Expression of microRNA let-7 family was suppressed in the diabetic kidney; antifibrotic and anti-EndMT effects of AcSDKP
were associated with the restoration of microRNA let-7 levels. AcSDKP restored diabetes- or cytokines-suppressed FGF receptor
expression/phosphorylation into normal levels both in vivo and in vitro. These results suggest that AcSDKP is an endogenous
antifibrotic molecule that has the potential to cure diabetic kidney fibrosis via an inhibition of the EndMT associated with the
restoration of FGF receptor and microRNA let-7.

1. Introduction

Diabetic nephropathy is leading course of end-stage kidney
disease and kidney fibrosis is the final common pathway in
progressive kidney diseases.The fibroblasts that play a role in
kidney fibrosis are believed to be heterogeneous [1]. Recently,
the endothelial-to-mesenchymal transition (EndMT) has
emerged as an important source of myofibroblasts or acti-
vated fibroblasts [2].

N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is a te-
trapeptide that is normally present in human plasma and is
hydrolyzed by angiotensin-converting enzyme (ACE); ACE-
inhibitor (ACE-I) treatment increases the plasma level of
AcSDKP by fivefold [3]. We demonstrated that AcSDKP has
an antifibrotic activity; that is, AcSDKP inhibits the trans-
forming growth factor (TGF)-𝛽-induced fibrogenic gene

expression in human mesangial cells by inhibiting the smad
2/3 signaling [4] and rescues glomerular damage in db/db
mice [5]. AcSDKP reportedly exhibits antifibrotic and organ
protective effects in various experimental models [6–14].

We aimed to investigate whether antifibrotic peptide
AcSDKP exerts additive antifibrotic effects associated with
the inhibition of EndMT on top of the conventional ACE-I
based therapy in fibrotic kidney model of diabetic mice.

2. Materials and Methods

2.1. Reagents and Antibodies. The AcSDKP was a gift from
Dr. Omata from Asabio Bio Technology (Osaka, Japan).
Imidapril (ACE-I) and TA-606 (ARB) were provided by
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Mitsubishi Tanabe Pharma (Osaka Japan) through an MTA
agreement. The mouse monoclonal anti-human CD31 anti-
body was purchased from R&D Systems (Minneapolis, MN,
USA), and the rat polyclonal anti-mouse CD31 antibody
was purchased from EMFRET Analytics GmbH & Co. KG
(Eibelstadt, Germany). The polyclonal rabbit anti-𝛼SMA
antibodywas obtained fromGene Tex (Irvine, CA,USA).The
rabbit polyclonal anti-SM22𝛼 antibody andmonoclonal anti-
VE-cadherin antibody were obtained from Novus Biological
(Littleton, CO, USA). The polyclonal anti-GAPDH and anti-
TGF-𝛽-receptor I antibodies were obtained from Sigma-
Aldrich (St. Louis, MO, USA). Fluorescein-, rhodamine-, and
Alexa 647-conjugated secondary antibodies were obtained
from Jackson ImmunoResearch (West Grove, PA, USA).
Antifibroblast growth factor (FGF) receptor, anti-phospho-
FGF receptor, and the HRP-conjugated secondary antibodies
for Western blot detection were purchased from Cell Signal-
ing Technology (Danvers, MA, USA). TGF-𝛽2, tumor necro-
sis factor (TNF)-𝛼, and interleukin (IL)-1𝛽 were purchased
from PeproTech (Rocky Hill, NJ, USA).

2.2. Animal Experiments. We utilized a fibrotic diabetic kid-
ney diseasemodel, that is, streptozotocin- (STZ-) treatedCD-
1 mice [15]. Eight-week-old male CD-1 mice were obtained
from Sankyo Lab Service (Tokyo, Japan). A single intraperi-
toneal injection of streptozotocin (STZ) (200mg/kg) was
given to the mice. We confirmed the induction of diabetes
by a blood glucose level >16mM at 2 weeks after the STZ
injection. Sixteen weeks after the induction of diabetes, the
diabetic mice were divided into the following four groups:
(imidapril [2.5mg/kg BW/day], AcSDKP [500𝜇g/kg BW/day
using an osmotic mini-pump], AcSDKP+imidapril, TA-606
[3mg/kg BW/day], and nontreatment). Imidapril or TA-
606 was provided in drinking water. All of the mice were
euthanized 24 weeks after the induction of diabetes, and their
bloodpressurewasmonitored using the tail-cuffmethodwith
a BP-98A instrument (Softron Co. Beijing, China) within a
week before euthanasia.

2.3. AcSDKP Measurements. Blood was harvested into a
heparinized tube containing captopril (final concentration
10 𝜇mol/L) and centrifuged at 3, 000× g for 15min at 4∘C.We
obtained estimated plasma and urine Ac-SDKP concentra-
tions using a competitive enzyme immunoassay kit (SPI-BIO,
Massy, France) according to the manufacturer’s instruction.
Urine AcSDKP was normalized at the urine creatinine level.

2.4. EndMT Detection In Vivo. EndMT were determined by
double-labeling with antibodies against CD31 and 𝛼SMA, or
with antibodies against CD31 and FSP1 on frozen sections (5-
𝜇m). The immunolabeled sections were analyzed using flu-
orescence microscopy (Axio Vert.A1, Carl Zeiss Microscopy
GmbH, Jena, Germany). We obtained images of six different
fields of view at 300x magnification and performed quantifi-
cation. All immunolabelings were analyzed with appropriate
negative control, including isotype IgG.

2.5. Morphological Evaluation. We determined the surface
area of 10 glomeruli in each mouse using ImageJ software. A
point-counting method was utilized to evaluate the relative
area of themesangialmatrix (%).We analyzed 10 PAS-stained
glomeruli from eachmouse using a digital microscope screen
grid containing 540 (27 × 20) points and employing Adobe
Photoshop Element 6.0. The number of grid points on
the mesangial tissue was divided by the total number of
points in the glomerulus to obtain the mesangial area in
a given glomerulus as the percentage of the total area of
the glomerulus. Images of Masson’s trichrome-stained tissue
were analyzed using ImageJ software, and the fibrotic areas
were quantified. For eachmouse, images of six different fields
of view at 100x magnification were evaluated.

2.6. In Vitro EndMT. Human umbilical vein endothelial cells
(HUVEC) (Kurabo Industries Ltd., Osaka, Japan) cultured
in HuMedia-EG2medium and human dermal microvascular
endothelial cells (HMVEC) (Lonza, Basel, Switzerland) cul-
tured in EGMmediumwere used for the experiments. When
cells grown on an adhesion reagent (Kurabo Medical, Osaka,
Japan) reached 70% confluence, a combination of TGF-𝛽2
(2.5 ng/mL), TNF-𝛼 (1.0 ng/mL), and IL-1𝛽 (2.0 ng/mL) was
added to the experimental medium (a mixture of Humedia-
EG2 in serum-free RPMI, 1 : 3 ratio) for an indicated interval,
with or without a 2 h preincubation in AcSDKP (100 nM).

2.7. Western Blotting. Protein lysates were denatured in a
SDS sample buffer at 100∘C for 5min. After centrifugation
(17, 000 ×g for 10min at 4∘C), supernatantswere separated on
SDS-polyacrylamide gels and blotted onto PVDFmembranes
(Pall Corporation, Pensacola, FL, USA) using the semidry
method. The immunoreactive bands were developed using
an enhanced chemiluminescence (ECL) detection system
(Pierce Biotechnology, Rockford, IL, USA) and detected
using an ImageQuant LAS 400 digital biomolecular imaging
system (GE Healthcare Life Sciences, Uppsala, Sweden).

2.8. MicroRNA Array Analysis. Total RNAwas isolated using
a miRNeasy kit (Qiagen). After dephosphorylation and
denaturation, the total RNA was labeled with cyanine 3-pCp
and subsequently hybridized to an Agilent mouse microRNA
microarray (release version 15) using the microRNA Com-
plete Labeling andHybKit (Agilent Technologies, Inc.). After
hybridization for 20 h, the slides were washed using the Gene
ExpressionWashBuffer (Agilent Technologies, Inc.), scanned
using an Agilent Scanner G2565BA, and processed and
analyzed using Agilent Feature Extraction Software version
9.5.1. The raw data were analyzed using GeneSpring GX
software version 12.5 (Agilent Technologies, Inc.).

2.9. MicroRNA Isolation and qPCR. The kidney tissues that
had been maintained at −80∘C were first incubated in
RNAlaterR-ICE (Life Technologies) for 16 h at −20∘C before
homogenization. The tissues were homogenized on ice and
the microRNA was extracted. Total cDNA was synthesized
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Figure 1: Characteristics of the experimental animals. (a) Blood pressure was measured within 1 week before the mice were euthanized.
(b) Body weight. (c) Blood glucose level at the time of euthanasia. (d–f) Organ weights. Kidney (d), liver (e), and heart (f) weights relative to
body weight (g) are shown. The data are expressed as the mean ± SEM values. Control: 𝑛 = 7, STZ-induced diabetes: 𝑛 = 5, diabetes treated
with imidapril: 𝑛 = 6, diabetes treated with imidapril+AcSDKP: 𝑛 = 5, diabetes treated with TA-606: 𝑛 = 3. Diabetic mice are designated as
DM.
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Figure 2: AcSDKP exerts antifibrotic effects on diabetic kidney disease. ((a)–(e)) Representative periodic acid Schiff- (PAS-) stained kidney
samples from the indicated groups of mice. The original magnification of the images was 300x. ((f)–(j)) Representative images of Masson’s
trichrome-stained (MTS) samples from the indicated groups of mice are shown. The original magnification of the images was 200x. ((k)–
(m))Morphometric analysis.The glomerular surface area (k), relative mesangial area (l), and relative area of fibrosis (m) were analyzed by the
method described in the Methods section. (n) Urinary albumin/creatinine ratio. The data are expressed as the mean ± SEM values. Control:
𝑛 = 7, STZ-induced diabetes: 𝑛 = 5, diabetes treated with imidapril: 𝑛 = 6, diabetes treated with imidapril+AcSDKP: 𝑛 = 5, diabetes treated
with TA-606: 𝑛 = 3. Diabetic mice are designated as DM. Scale bar: 50𝜇m.
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Figure 3: Negative correlation between the concentration of AcSDKP and mesangial area or relative fibrosis area. (a) Plasma concentration
of AcSDKP in the indicated group of mice. (b) Urinary AcSDKP/creatinine ratio. Inset in (b) shows an enlargement of the dotted square area
of the graph. The data are expressed as the mean ± SEM values. Diabetes is designated as DM. Control: 𝑛 = 7 (urine, 𝑛 = 5), STZ-induced
diabetes: 𝑛 = 5, diabetes treated with imidapril: 𝑛 = 6, diabetes treated with imidapril+AcSDKP: 𝑛 = 5, diabetes treated with TA-606: 𝑛 = 3.
((c)–(e)) Linear regression analysis of the relationship between the plasma AcSDKP concentration and the values for the morphometric
parameters. Glomerular surface area (c), relative mesangial area (d), and relative fibrosis area (e) are shown.The AcSDKP levels were plotted
using a log conversion. Only diabetic animals were analyzed.

using amiScript II RT kit (Qiagen) and the real-time quantifi-
cation of microRNA expression was performed using a miS-
cript SYBRGreen PCR kit (Qiagen). Samples of 3 ng of cDNA
were used in the qPCR experiment. The primers for Mm let-
7f-1, Mm let-7 g-1, and Mm let-7i-1 were from the miScript
Primer Assay designed by Qiagen. The mature microRNA
sequences were 5CUAUACAAUCUAUUGCCUUCCC for
Mm let-7f-1, 5ACUGUACAGGCCACUGCCUUGC for
Mm let-7 g-1, and 5CUGCGCAAGCUACUGCCUUGCU
for Mm let-7i-1. All of the experiments were performed
in triplicate, and Hs RNU6-2 1 (Qiagen) was used as an
endogenous control for normalization.

2.10. Statistical Analysis. The data are expressed as the mean
± SEM values. The Mann-Whitney U-test was used to deter-
mine the significance. Statistical significance was defined as
𝑃 < 0.05. GraphPad Prism software (ver. 5.0f) was used for
the statistical analyses.

3. Results

3.1. Antifibrotic Effect of AcSDKP on the Top of ACE-I. The
characteristics of the mice in each group are shown in
Figure 1. Compared to the controlmice, the diabeticmice had
lower blood pressure, weighed less, and had higher blood glu-
cose; their kidneys and livers weighed more, and their hearts
weighed less. Treatment with imidapril, imidapril+AcSDKP,
or the angiotensin II receptor blocker (ARB) TA-606 [16] did
not alter the blood pressure, body weight, or organ weights of
the diabetic mice (Figure 1).

The diabetic CD-1 mice exhibited glomerulomegaly
and the accumulation of a PAS-positive matrix in the
glomeruli (Figures 2(a), 2(b), 2(k), and 2(l)). Imidapril,
imidapril+AcSDKP, and TA-606 inhibited the expansion
of the glomerular surface area (Figures 2(b), 2(c), 2(d),
2(e), and 2(k)). The expansion of the mesangial area was
partially inhibited by treatment with imidapril, and imi-
dapril+AcSDKP treatment nearly completely inhibited the
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Figure 4: AcSDKP inhibits EndMT in the diabetic kidney. ((a)–(e)) Immunolabeling for FSP1 and CD31 in a kidney from each group of mice.
Arrows indicate cells that are double-labeled for FSP1 and CD31. ((f)–(j)) Immunolabeling for 𝛼SMA and CD31 in a kidney from each group
of mice. Arrows indicate cells that are double-labeled for 𝛼SMA and CD31. Merged images with DAPI-stained nuclei are shown. Scale bar:
25 𝜇m. ((k), (l)) Quantification of cells undergoing EndMT. FSP1 and CD31 double-labeled cells (k) and 𝛼SMA and CD31 double-labeled cells
(l) in each visual field were imaged using fluorescence microscopy and quantified.The data are expressed as the mean ± SEM values. Diabetes
is designated as DM. For all of the groups except the group that received TA-606 (𝑛 = 3), 𝑛 = 5mice were analyzed.

matrix expansion (Figures 2(b), 2(c), 2(d), and 2(l)). How-
ever, TA-606 did not inhibit the expansion of the mesan-
gial area in the diabetic kidney (Figures 2(b), 2(e), and
2(l)).

MTS staining revealed massive tubulointerstitial fibrosis
in the diabeticmice that was not exhibited in the controlmice
(Figures 2(f), 2(g), and 2(m)). A comparison to the untreated
diabetic mice showed that imidapril partially decreased
interstitial fibrosis (Figures 2(g), 2(h), and 2(m)) and that
imidapril+AcSDKP combination nearly completely inhibited
the interstitial fibrosis (Figures 2(g), 2(i), and 2(m)).However,
TA-606 treatment did not suppress kidney fibrosis (Figures
2(g), 2(h), 2(i), 2(j), and 2(m)). Compared to the control
mice, the diabetic mice exhibited enhanced urinary albumin
excretion (Figure 2(n)). Imidapril and TA-606 treatment
inhibited the trend of increased urinary albumin excretion;

imidapril+AcSDKP significantly inhibited urine albumin
excretion in the diabetic mice (Figure 2(n)).

3.2. The Levels of AcSDKP and Kidney Fibrosis. The plasma
AcSDKP concentration demonstrated a decreased trend in
the diabetic mice (Figure 3(a)). The AcSDKP concentration
was high in the mice treated with imidapril (Figure 3(a):
𝑃 = 0.05). When AcSDKP was added to the imidapril
treatment, the concentration of AcSDKP was additionally
increased by 5.5-fold (Figure 3(a)). The mice treated with
AcSDKP alone exhibited several antifibrotic effects of dia-
betic mice and displayed higher plasma levels of AcSDKP
compared to the diabetic mice, as shown in several fibrotic
animal models (see Supplementary Figure 1 available online
at http://dx.doi.org/10.1155/2014/696475) [6–14]. The ratio of

http://dx.doi.org/10.1155/2014/696475{%}20
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the AcSDKP concentration to the creatinine concentration
in urine exhibited a trend similar to that of the plasma
AcSDKP levels, except that the urinary AcSDKP levels of
diabetic mice were significantly lower than those of control
mice (Figure 3(b)). TA-606 treatment in diabetic mice did
not alter the level of AcSDKP either in plasma or in urine
(Figures 3(a) and 3(b)).There was no correlation between the
plasma AcSDKP concentration and the glomerular surface
area in the diabetic mice (Figure 3(c)). In contrast, we found
a negative correlation between the plasma concentration of
AcSDKP and the mesangial area (Figure 3(d)) or the relative
fibrotic area of the kidneys (Figure 3(e)).

3.3. AcSDKP Inhibited EndMT. An analysis of cells undergo-
ing EndMT, which were identified by double-labeling with
FSP1 and CD31 antibodies [FSP1(+); CD31(+)] or with 𝛼SMA
and CD31 antibodies [𝛼SMA(+); CD31(+)], showed that the
diabetic kidneys contained significantly more cells undergo-
ing EndMT than did the control kidneys (Figures 4(a), 4(b),
4(f), 4(g), 4(k), and 4(l)). Imidapril treatment decreased the
number of FSP1(+); CD31(+) cells but did not affect the num-
ber of 𝛼SMA(+); CD31(+) cells compared to the untreated
diabetic mice (Figures 4(b), 4(c), 4(g), 4(h), 4(k), and 4(l)).
Imidapril+AcSDKP combination therapy nearly completely

inhibited the induction of cells undergoing EndMT (Figures
4(b), 4(d), 4(g), 4(i), 4(k), and 4(l)). However, TA-606
treatment did not reduce the number of FSP1(+); CD31(+)
cells; furthermore, the number of 𝛼SMA(+); CD31(+) cells
was increased by TA-606 treatment relative to the diabetic
mice (Figures 4(b), 4(e), 4(g), 4(j), 4(k), and 4(l)).

When HMVEC were stimulated with a triple mixture of
cytokines (TGF-𝛽2, IL-1𝛽, and TNF-𝛼), the expression of the
endothelialmarker CD31 orVE-cadherinwas suppressed; the
expression of the mesenchymal marker FSP1 or SM22𝛼 was
induced, suggesting induction of EndMT (Figure 5). AcS-
DKP preincubation inhibited cytokines-stimulated EndMT
associated with the suppression of smad3 phosphorylation
(Figure 5).

3.4. Endogenous Antifibrosis Program by AcSDKP through
FGF Receptor. Chen et al. [19] reported that FGF receptor-
mediated induction of microRNA let-7 family members,
which exhibits kidney protective roles [17, 18], acts as negative
regulators of the EndMT program via inhibition of the TGF-
𝛽 signaling pathway [19]. FGF receptor phosphorylation
and protein levels were suppressed in diabetic kidney [20];
imidapril treatment increased both the phosphorylation and
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protein levels of the FGF receptor in the diabetic kid-
ney (Figures 6(a), 6(b), and 6(c)). A combination therapy
exhibited stronger effects on the FGF receptor levels and
phosphorylation (Figures 6(a), 6(b), and 6(c)). Such effects
of intervention on the FGF receptor in diabetic mice were
likely transcription-dependent (Figure 6(d)).WhenHMVEC
was stimulated by mixture of cytokines, the protein levels
and phosphorylation of the FGF receptor were significantly
diminished; AcSDKP preincubation restored the FGF recep-
tor levels (Figures 6(e), 6(f), and 6(g)).

Our microRNA array analysis of kidney samples revealed
that expression of the microRNA mmu-let-7 family was
suppressed in the diabetic kidney;we found that expression of
most of the microRNA let-7 family members was restored by
therapywith the combination of imidapril+AcSDKP (Supple-
mentary Figure 2). qPCR analysis also confirmed that certain
sets of microRNA let-7 were indeed inhibited in diabetic
mice (Supplementary Figure 2); treatment with the imi-
dapril+AcSDKP combination therapy completely restored
their levels. The FGF receptor-microRNA let-7 family axis
can suppress TGF-𝛽 receptor I levels [19, 21]. In agreement
with this report, we observed that endothelial cells in diabetic
mice exhibited strong expression of TGF-𝛽 receptor I; the
combination therapy group nearly completely abolished such
TGF-𝛽 receptor I expression on endothelial cells in the
diabetic kidney (Figures 6(h), 6(i), 6(j), 6(k), and 6(l)).

4. Discussion

4.1. AcSDKP Inhibited EndMT in Fibrotic Kidney in Diabetes.
EndMT has emerged as an important source of activated
fibroblasts or myofibroblasts [1, 2, 22–24]. The EndMT has
been shown to be associated with glomerulosclerosis in early
diabetic kidney disease and tubulointerstitial fibrosis in a
chronic type 1 diabetes kidney disease model [25]. The TGF-
𝛽-induced Smad signaling pathway plays an essential role
in the EndMT [26]. In our analysis, AcSDKP inhibited both
EndMT in diabetic kidney and in vitro culture cells associated
with the inhibition of TGF-𝛽/Smad signal transduction. It
needs to be mentioned that we rather focused on EndMT in
our analysis; there is a possibility that AcSDKP inhibits other
fibroblast activation pathways, as reported elsewhere [27].
Also anti-inflammatory, antiapoptotic, and enhanced normal
angiogenesis pathways would be contributed in the beneficial
effects of AcSDKP [3].

4.2. Two Catalytic Sites of ACE and Endogenous Antifibrotic
Program via AcSDKP. Mammalian ACE has two catalytic
sites, the N- and C-terminal catalytic domains. These two
catalytic domains may have different substrate selectivity.
Although angiotensin-I can be converted to angiotensin-II
by either catalytic domain, the C-terminal domain has a
threefold higher affinity for angiotensin-I. Interestingly, only
the N-terminal catalytic domain hydrolyzes AcSDKP [3].
Notably, each ACE-I exhibits a distinct affinity for one of the
catalytic domains; for example, captopril exhibits a higher
affinity for the N-terminal catalytic domain. Li et al. recently
reported that mice deficient in the N-terminal catalytic

domain of ACE exhibited an antifibrotic effect because of the
accumulation of AcSDKP [28], which reveals the importance
of the N-terminal domain for the antifibrotic activity of ACE-
I [29–32].

4.3. AcSDKP Stimulates Antifibrotic Program. In our analysis,
the concentration of AcSDKP was negatively associated with
mesangial expansion and kidney fibrosis.Moreover, we found
that endogenous AcSDKP levels were lower in the urine
of diabetic animals with fibrotic kidneys. Similar to this
observation, suppressed levels in other antifibroticmolecules,
such as bone morphogenic protein 7 or its receptor-mediated
signaling, in fibrotic kidney diseases have been reported
elsewhere [33]. Apart from diabetic kidney disease model,
the association between the levels of AcSDKP, other fibrotic
kidney disease, and human kidney diseases needs further
investigation. These results suggest that high intrarenal
ACE activity in the diabetic kidney reduced the level of
endogenous AcSDKP; this reduction of the antifibrotic pep-
tide AcSDKP accelerated the fibrotic process in the kidney
because of the imbalance between profibrotic and antifibrotic
molecules. The antifibrotic/anti-EndMT effects of AcSDKP
were associated with restoration of the FGF receptor’s levels
and associated induction ofmicroRNA let-7. Regardwith this,
microRNA let-7 family has been shown to protect kidney
from fibrotic stimuli [17, 18].

5. Conclusion

In conclusion, AcSDKP is potentially a valuable endogenous
antifibrotic molecule that inhibits the EndMT and restores
the expression of the let-7 microRNA family through FGFR
restoration at least in part. AcSDKP may therefore be useful
for the clinical therapy for kidney fibrosis in diabetes.
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